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Abstract

This paper deals with impulsive advanced ordinary differential equations with boundary conditions. We
investigate the existence of solutions and quasisolutions for advanced impulsive differential equations. To
obtain such results we apply Schauder’s fixed point theorem. Corresponding results are also formulated for
differential inequalities.
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1. Introduction

For J = [0, T ], T > 0, let 0 = t0 < t1 < · · · < tm < tm+1 = T . Put J ′ = J \ {t1, t2, . . . , tm}.
In this paper, we investigate first-order impulsive advanced differential equations of type⎧⎪⎨

⎪⎩
x′(t) = f

(
t, x(t), x

(
α(t)

)) ≡ Fx(t), t ∈ J ′,
�x(tk) = Ik

(
x(tk)

)
, k = 1,2, . . . ,m,

0 = g
(
x(0), x(T )

)
,

(1)

where as usual �x(tk) = x(t+k ) − x(t−k ), x(t+k ) and x(t−k ) denote the right and left limits of x

at tk , respectively, and
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(H1) f ∈ C(J ×R×R,R), α ∈ C(J,J ), t � α(t) � T , t ∈ J , Ik ∈ C(R,R) for k = 1,2, . . . ,m,
g ∈ C(R × R,R) and if there exists a point t̄ ∈ J such that α(t̄) ∈ {t1, t2, . . . , tm}, then
t̄ ∈ {t1, t2, . . . , tm}.

Put J0 = [0, t1], Jk = (tk, tk+1], k = 1,2, . . . ,m. Let us introduce the spaces:

PC(J ) = PC(J,R) =
{
x :J → R, x|Jk

∈ C(Jk,R), k = 0,1, . . . ,m,

and there exist x(t+k ) for k = 1,2, . . . ,m

}

and

PC1(J ) = PC1(J,R) =
{
x ∈ PC(J ), x|Jk

∈ C1(Jk,R), k = 0,1, . . . ,m,

and there exist x′(t+k ) for k = 1,2, . . . ,m

}
.

Indeed, PC(J ) and PC1(J ) are Banach spaces with the respective norms:

‖x‖PC = sup
t∈J

∥∥x(t)
∥∥, ‖x‖PC1 = ‖x‖PC + ‖x′‖PC.

By a solution of problem (1) we mean a function x ∈ PC1(J ) which satisfies

– the differential equation in (1) for every t ∈ J ′,
– the boundary condition in problem (1) and
– at every tk , k = 1,2, . . . ,m, the function x satisfies the second condition in problem (1).

Throughout this paper we assume that α(t) �≡ t , t ∈ J.

An interesting and fruitful technique for proving existence results for nonlinear differential
problems is the monotone iterative method, for details, see, for example, [11]. There exists a
vast literature devoted to the applications of this method to differential equations with initial and
boundary conditions. This technique can also be applied to impulsive differential equations, for
details, see, for example, [12]. However, only a few papers have appeared where the monotone
iterative technique is applied to delay impulsive differential problems, see, for example, [2,3,
6,14]. Usually, it is assumed that the function f satisfies a one-sided Lipschitz condition with
corresponding Lipschitz constants. For problems with deviating arguments, it is better to assume
that the above constants are replaced by corresponding Lipschitz functions. I know only a few
papers where such assumptions appeared for differential equations without impulsive, see [7–
10]. I do not know any paper where it is done for impulsive problems with deviating arguments.
Just in this paper the function f from problem (1) satisfies a one-sided Lipschitz condition (with
respect to the last two variables) with functional coefficients and argument α being of advanced
type. Note that impulsive differential equations are also discussed in papers [1,4,5,13].

The plan of this paper is as follows. In Section 2, we formulate sufficient conditions which
guarantee that problem (1) has a solution. To prove Theorem 2 we apply Schauder’s theorem. It
is assumed that a lower solution of (1) is bigger than an upper solution. Indeed, first impulsive
differential inequalities are investigated. In Section 3, we discuss existence of quasisolutions of
problem (1). Given are two examples to show that the assumptions of this paper are satisfied.

2. Lower and upper solutions of problem (1)

Let us introduce the following definition.
We say that u ∈ PC1(J ) is a lower solution of (1) if

http://mostwiedzy.pl
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⎧⎪⎨
⎪⎩

u′(t) � Fu(t), t ∈ J ′,
�u(tk) � Ik

(
u(tk)

)
, k = 1,2, . . . ,m,

g
(
u(0), u(T )

)
� 0,

(2)

and it is an upper solution of (1) if the above inequalities are reversed.
We assume that z0(t) � y0(t), t ∈ J , and define the sector

[z0, y0]∗ = {
v ∈ PC1(J,R): z0(t) � v(t) � y0(t), t ∈ J

}
.

Lemma 1. Assume that K ∈ C(J,R), α ∈ C(J,J ), t � α(t) � T , t ∈ J , and Lk � 0, k =
1,2, . . . ,m. Let p ∈ PC1(J ) and⎧⎨

⎩
p′(t) � K(t)p(t) + M(t)p

(
α(t)

)
, t ∈ J ′,

�p(tk) � Lkp(tk), k = 1,2, . . . ,m,

p(T ) � 0,

(3)

where M is nonnegative and M ∈ PC(J ).

In addition assume that

T∫
0

M∗(t) dt

(
m∏

i=1

(1 + Li)

)
� 1 with M∗(t) = M(t)e

∫ α(t)
t K(s) ds . (4)

Then p(t) � 0, t ∈ J.

Proof. Put

q(t) = e
∫ T
t K(s) dsp(t), t ∈ J.

Then q(T ) = p(T ) � 0, �q(tk) � Lkq(tk), k = 1,2, . . . ,m, and

q ′(t) = e
∫ T
t K(s) ds

{−K(t)p(t) + p′(t)
}

� e
∫ T
t K(s) dsM(t)p

(
α(t)

)
, t ∈ J ′.

Then system (3) takes the form⎧⎪⎨
⎪⎩

q ′(t) � M∗(t)q
(
α(t)

)
, t ∈ J ′,

q
(
t+k

)
� (1 + Lk)q(tk), k = 1,2, . . . ,m,

q(T ) � 0.

(5)

Note that if q(t) � 0, t ∈ J, then also p(t) � 0 on J.

We need to prove that q(t) � 0, t ∈ J. Suppose that the inequality q(t) � 0, t ∈ J , is not
true. It means that we can find t∗1 ∈ [0, T ) such that q(t∗1 ) > 0. Then inf[t∗1 ,T ] q(t) = −ρ. Indeed,
ρ � 0 and there exists t∗0 ∈ Jp for some fixed p such that q(t∗0 ) = −ρ or q(t+p ) = −ρ. Below we
discuss only the situation when q(t∗0 ) = −ρ because in the case when q(t+p ) = −ρ, the proof is
similar.

Let t∗1 ∈ Jr for some r. Indeed, t∗1 < t∗0 , so r � p.

Now, for σ ∈ PC(J ), we consider the following inequalities{
q ′(t) � σ(t), t ∈ [

t∗1 , T
] \ {tr+1, . . . , tm},

q
(
t+k

)
� (1 + Lk)q(tk), k = r + 1, . . . ,m.

Then

http://mostwiedzy.pl


4 T. Jankowski / J. Math. Anal. Appl. 331 (2007) 1–12

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

q(t) � q
(
t∗1

) k∏
i=r+1

′
(1 + Li) +

k∑
i=r+1

′
t̄i∫

t̄i−1

σ(s) ds

(
k∏

j=i

′
(1 + Lj )

)
+

t∫
t̄k

σ (s) ds (6)

for t ∈ J̄k , k = r, r + 1, . . . ,m. Here J̄r = [t̄r , t̄r+1], t̄r = t∗1 , t̄k = tk , J̄k = (t̄k, t̄k+1] for k =
r + 1, . . . ,m, and

∑b
i=a

′ · · · = 0,
∏b

i=a

′ · · · = 1 if a > b.

Let σ(t) = M∗(t)q(α(t)). It yields σ(t) � −ρM∗(t), t ∈ [t∗1 , T ]. Put t = t∗0 . Then

q
(
t∗0

)
� q

(
t∗1

) p∏
i=r+1

′
(1 + Li) +

p∑
i=r+1

′
t̄i∫

t̄i−1

σ(s) ds

(
p∏

j=i

′
(1 + Lj )

)
+

t∗0∫
t̄p

σ (s) ds

>

p∑
i=r+1

′
t̄i∫

t̄i−1

σ(s) ds

(
p∏

j=i

′
(1 + Lj )

)
+

t∗0∫
t̄p

σ (s) ds

� −ρ

{
p∑

i=r+1

′
t̄i∫

t̄i−1

M∗(s) ds

(
p∏

j=i

′
(1 + Lj)

)
+

t∗0∫
t̄p

M∗(s) ds

}
.

Hence, if ρ > 0, we have

1 <

p∑
i=r+1

′
t̄i∫

t̄i−1

M∗(s) ds

(
p∏

j=i

′
(1 + Lj )

)
+

t∗0∫
t̄p

M∗(s) ds

�
T∫

0

M∗(s) ds

(
m∏

i=1

(1 + Li)

)
.

It contradicts (4).
If ρ = 0, then

0 � q
(
t∗1

) p∏
i=r+1

′
(1 + Li) > 0.

It is a contradiction too. The proof is complete. �
Remark 1. If M(t) = 0, t ∈ J, then Lemma 1 reduces to Lemma 4 of [4]. Note that condition (4)
is satisfied if K(t) � 0, t ∈ J , and

T∫
0

M(t)e
∫ T
t K(s) ds dt

(
m∏

i=1

(1 + Li)

)
� 1. (7)

We see that condition (7) does not depend on the advanced argument α. If we extra assume that
K(t) = K > 0, M(t) = M > 0, then condition (4) holds if

M
(
eKT − 1

) m∏
(1 + Li) � K.
i=1

http://mostwiedzy.pl
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For example, if we take m = 2, L1 = 1
3 , L2 = 1

2 , T = 2
3 , K = 3

2 , then from the last condition
we have

M � 3

4(e − 1)
≈ 0.43648.

Theorem 1. Assume that K ∈ C(J,R), η ∈ PC(J ), M is nonnegative, M(t) �≡ 0, and M ∈
PC(J ). Moreover, let α ∈ C(J,J ), t � α(t) � T , γk,Lk ∈ R and Lk � 0 for k = 1,2, . . . ,m.

In addition, assume that

δ ≡
T∫

0

M∗(s) ds +
m∑

i=1

Li < 1, (8)

where M∗ is defined as in Lemma 1. Then the impulsive problem⎧⎪⎨
⎪⎩

v′(t) = K(t)v(t) + M(t)v
(
α(t)

) + η(t), t ∈ J ′,
v
(
t+k

) = (1 + Lk)v(tk) + γk, k = 1,2, . . . ,m,

v(T ) = k0

(9)

has a unique solution v ∈ PC1(J ).

Proof. Put

z(t) = e
∫ T
t K(s) dsv(t), t ∈ J.

Then problem (9) takes the form⎧⎪⎪⎨
⎪⎪⎩

z′(t) = M(t)e
∫ α(t)
t K(s) dsz(α(t) + η(t)e

∫ T
t K(s) ds ≡ Fz(t), t ∈ J ′,

z
(
t+k

) = (1 + Lk)z(tk) + γke

∫ T
tk

K(s) ds ≡ z(tk) +Pkz(tk), k = 1,2, . . . ,m,

z(T ) = k0.

(10)

Note that z is the solution of the following impulsive integral equation

z(t) = k0 −
T∫

t

Fz(s) ds −
m∑

i=k+1

′Piz(ti ) ≡ Az(t), t ∈ Jk, (11)

for k = 0,1, . . . ,m.

To find a solution of problem (11) is equivalent to get a fixed point of the operator
A : PC(J ) → PC(J ). Let x, y ∈ PC(J ). Then

‖Ax −Ay‖ = sup
t∈J

∣∣Ax(t) −Ay(t)
∣∣

� sup
t∈J

[ T∫
t

∣∣Fx(s) −Fy(s)
∣∣ds

]
+

m∑
i=1

∣∣Pix(ti) −Piy(ti)
∣∣

� sup
t∈J

T∫
t

M∗(s)
∣∣x(

α(s)
) − y

(
α(s)

)∣∣ds +
m∑

i=1

Li

∣∣x(ti) − y(ti)
∣∣

= δ‖x − y‖.

http://mostwiedzy.pl
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Problem (11) has a unique solution, by the Banach fixed point theorem. It means that also prob-
lem (9) has a unique solution. This ends the proof. �
Remark 2. If M(t) = 0 on J, then condition (8) is superfluous. Note that in this case system (10)
takes the form⎧⎪⎨

⎪⎩
z′(t) = η̄(t), t ∈ J ′,
z
(
t+k

) = (1 + Lk)z(tk) + γ̄k, k = 1,2, . . . ,m,

x(T ) = k0

(12)

with

η̄(t) = η(t)e
∫ T
t K(s) ds, γ̄k = γke

∫ T
tk

K(s) ds
.

It is easy to verify that the solution z of problem (12) has now the form

z(t) = z(0)

k∏
i=1

′
(1 + Li) +

k∑
j=1

′
{ tj∫

tj−1

η̄(s) ds

k∏
i=j

′
(1 + Li) + γ̄j

k∏
i=j+1

′
(1 + Li)

}

+
t∫

tk

η̄(s) ds, t ∈ Jk, for k = 0,1, . . . ,m,

where

z(0) = 1

V

{
k0 −

m∑
j=1

[ tj∫
tj−1

η̄(s) ds

m∏
i=j

(1 + Li) + γ̄j

m∏
i=j+1

′
(1 + Li)

]
−

T∫
tm

η̄(s) ds

}

with

V =
m∏

i=1

(1 + Li).

Now we give sufficient conditions when problem (1) has a solution.

Theorem 2. Let assumption (H1) hold. Moreover, assume that

(H2) y0, z0 ∈ PC1(J ) are lower and upper solutions of problem (1), respectively, and z0(t) �
y0(t) on J,

(H3) there exist functions K,M ∈ C(J,R), M is nonnegative and such that

f (t, u, v) − f (t, ū, v̄) � −K(t)(ū − u) − M(t)(v̄ − v)

for z0(t) � u � ū � y0(t), z0(α(t)) � v � v̄ � y0(α(t)), t ∈ J,

(H4) there exist constants Lk ∈ [0,1), k = 1,2, . . . ,m, such that

Ik

(
w(tk)

) − Ik

(
w̄(tk)

)
� −Lk

[
w̄(tk) − w(tk)

]
, k = 1,2, . . . ,m,

for any w, w̄ with z0(tk) � w(tk) � w̄(tk) � y0(tk), k = 1,2, . . . ,m,

(H5) conditions (4) and (8) hold,

http://mostwiedzy.pl
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(H6) there exists γ > 0 such that for any u, ū ∈ [z0(0), y0(0)] with u � ū and v, v̄ ∈
[z0(T ), y0(T )] with v � v̄ we have

g(u, v) � g(ū, v), (13)

g(u, v) − g(u, v̄) � γ (v̄ − v). (14)

Then there exist solutions v,w ∈ [z0, y0]∗ of problem (1).

Proof. Some ideas are taken from paper [5]. Let η, ξ ∈ [z0, y0], where

[z0, y0] = {
u ∈ PC(J,R): z0(t) � u � y0(t), t ∈ J

}
.

Put ϕ(t) = sup[η(t), ξ(t)], Φ(t) = inf[η(t), ξ(t)]. Consider the initial value problems⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v′(t) = Fϕ(t) + K(t)
[
v(t) − ϕ(t)

] + M(t)
[
v
(
α(t)

) − ϕ
(
α(t)

)]
, t ∈ J ′,

�v(tk) = Ik

(
ϕ(tk)

) + Lk

[
v(tk) − ϕ(tk)

]
, k = 1,2, . . . ,m,

v(T ) = ϕ(T ) + 1

γ
g
(
ϕ(0), ϕ(T )

)
,

(15)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w′(t) = FΦ(t) + K(t)
[
w(t) − Φ(t)

] + M(t)
[
w

(
α(t)

) − Φ
(
α(t)

)]
, t ∈ J ′,

�w(tk) = Ik

(
Φ(tk)

) + Lk

[
w(tk) − Φ(tk)

]
, k = 1,2, . . . ,m,

w(T ) = Φ(T ) + 1

γ
g
(
Φ(0),Φ(T )

)
.

(16)

By Theorem 1, problems (15), (16) have a unique solution. Therefore, we can define the operator

B : Ω̄ → PC(J ) × PC(J ), [z0, y0] ⊂ PC(J ), B(η, ξ) = (v,w), (17)

where v,w are solutions of (15), (16), Ω̄ = [z0, y0] × [z0, y0].
Now, we want to show that

z0(t) � w(t) � v(t) � y0(t), t ∈ J. (18)

Put p = z0 − w. Then

p′(t) � Fz0(t) − FΦ(t) − K(t)
[
w(t) − Φ(t)

] − M(t)
[
w

(
α(t)

) − Φ
(
α(t)

)]
� −K(t)

[
Φ(t) − z0(t)

] − M(t)
[
Φ

(
α(t)

) − z0
(
α(t)

)] − K(t)
[
w(t) − Φ(t)

]
− M(t)

[
w

(
α(t)

) − Φ
(
α(t)

)]
= K(t)p(t) + M(t)p

(
α(t)

)
.

Moreover,

p(T ) = z0(T ) − Φ(T ) − 1

γ
g
(
Φ(0),Φ(T )

)
� z0(T ) − Φ(T ) − 1

γ
g
(
z0(0),Φ(T )

)
= z0(T ) − Φ(T ) + 1

γ

[
g
(
z0(0), z0(T )

) − g
(
z0(0),Φ(T )

)] − 1

γ
g
(
z0(0), z0(T )

)
� z0(T ) − Φ(T ) + 1

γ
[
Φ(T ) − z0(T )

] = 0,

γ

http://mostwiedzy.pl
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and

�p(tk) � Ik

(
z0(tk)

) − Ik

(
Φ(tk)

) − Lk

[
w(tk) − Φ(tk)

]
� Lkp(tk), k = 1,2, . . . ,m.

This and Lemma 1 show that z0(t) � w(t), t ∈ J. Similarly we can show that v(t) � y0(t), t ∈ J.

To show that w(t) � v(t), t ∈ J, we put p = w − v. Then

p′(t) = FΦ(t) − Fϕ(t) + K(t)
[
w(t) − Φ(t) − v(t) + ϕ(t)

]
+ M(t)

[
w

(
α(t)

) − Φ
(
α(t)

) − v
(
α(t)

) + ϕ
(
α(t)

)]
� −K(t)

[
ϕ(t) − Φ(t)

] − M(t)
[
ϕ
(
α(t)

) − Φ
(
α(t)

)]
+ K(t)

[
w(t) − Φ(t) − v(t) + ϕ(t)

]
+ M(t)

[
w

(
α(t)

) − Φ
(
α(t)

) − v
(
α(t)

) + ϕ
(
α(t)

)]
= K(t)p(t) + M(t)p

(
α(t)

)
.

Moreover,

p(T ) = Φ(T ) − ϕ(T ) + 1

γ

[
g
(
Φ(0),Φ(T )

) − g
(
ϕ(0), ϕ(T )

)]
� Φ(T ) − ϕ(T ) + 1

γ
γ
[
ϕ(T ) − Φ(T )

] = 0,

and, for k = 1,2, . . . ,m, we have

�p(tk) = Ik

(
Φ(tk)

) − Ik

(
ϕ(tk)

) + Lk

[
w(tk) − Φ(tk) − v(tk) + ϕ(tk)

]
� Lkp(tk).

This and Lemma 1 show that w(t) � v(t), t ∈ J , so (18) holds.
Hence B : Ω̄ → Ω̄. In order to apply Schauder’s fixed point theorem we need to show that the

operator B is continuous and compact. Let (vn,wn) ∈ Ω̄, and vn → v, wn → w in PC(J ). Put

D0v(t) = Fϕ(t) + K(t)
[
v(t) − ϕ(t)

] + M(t)
[
v
(
α(t)

) − ϕ
(
α(t)

)]
,

Dkv(tk) = Ik

(
ϕ(tk)

) + Lk

[
v(tk) − ϕ(tk)

]
, k = 1,2, . . . ,m,

k̄0 = ϕ(T ) + 1

γ
g
(
ϕ(0), ϕ(T )

)
.

Then problem (15) takes the form⎧⎨
⎩

v′(t) = D0v(t), t ∈ J ′,
�v(tk) = Dkv(tk), k = 1,2, . . . ,m,

v(T ) = k̄0.

Similarly as in the proof of Theorem 1, v is the solution of the following impulsive integral
equation

v(t) = k̄0 −
T∫

t

D0v(s) ds −
m∑

i=k+1

′Div(ti) ≡ Dv(t), t ∈ Jk, k = 0,1, . . . ,m.

Then, for t ∈ J, we have
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∣∣Dvn(t) −Dv(t)
∣∣ �

T∫
t

∣∣D0vn(s) −D0v(s)
∣∣ds +

m∑
i=1

∣∣Divn(ti) −Div(ti)
∣∣

�
T∫

0

[∣∣K(s)
∣∣vn(s) − v(s)

] + [
M(s)

∣∣vn

(
α(s)

) − v
(
α(s)

)∣∣]ds

+
m∑

i=1

Li

∣∣vn(ti) − v(ti)
∣∣.

Thus the Lebesgue dominated convergence theorem implies

sup
t∈J

∣∣Dvn(t) −Dv(t)
∣∣ → 0 if n → ∞,

so operator D is continuous. Similar property holds for wn → w too. As a result B : Ω̄ → Ω̄ is
continuous. In view of (18), the operator B : Ω̄ → Ω̄ is bounded too.

Now we need to show that the operator B : Ω̄ → Ω̄ is compact. Note that

∣∣Dv(t1) −Dv(t2)
∣∣ �

∣∣∣∣∣
t2∫

t1

D0v(s) ds

∣∣∣∣∣.
Similar property also holds for the solution w. It proves that the operator B : Ω̄ → Ω̄ is equicon-
tinuous on J. The Arzela–Ascoli theorem guarantees that B is compact. Hence, by Schaud-
er’s fixed point theorem, operator B has a fixed point, i.e. there exist (v,w) ∈ Ω̄ such that
B(v,w) = (v,w) and v � w.

Now, by (17), we see that v,w satisfy the following relations⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v′(t) = Fv(t) + K(t)
[
v(t) − v(t)

] + M(t)
[
v
(
α(t)

) − v
(
α(t)

)]
, t ∈ J ′,

�v(tk) = Ik

(
v(tk)

) + Lk

[
v(tk) − v(tk)

]
, k = 1,2, . . . ,m,

v(T ) = v(T ) + 1

γ
g
(
v(0), v(T )

)
,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w′(t) = Fw(t) + K(t)
[
w(t) − w(t)

] + M(t)
[
w

(
α(t)

) − w
(
α(t)

)]
, t ∈ J ′,

�w(tk) = Ik

(
w(tk)

) + Lk

[
w(tk) − w(tk)

]
, k = 1,2, . . . ,m,

w(T ) = w(T ) + 1

γ
g
(
w(0),w(T )

)
.

It shows that v,w ∈ PC1(J ) are solutions of problem (1). This ends the proof. �
Example 1. For J = [0, T ], we consider the problem⎧⎨

⎩
x′(t) = λ1(t)e

x(t) + λ2(t) sin
(
x
(
α(t)

)) − λ1(t), t ∈ J \ {t1},
�x(t1) = Lx(t1),

0 = 2x2(0) + x(T ) − k,

(19)

where λ1, λ2 ∈ C(J,R+), R+ = [0,∞), α ∈ C(J,J ), t � α(t) � T , t ∈ J , 0 < t1 < T , L � 0,
0 � k � 1.

Take y0(t) = 0, z0(t) = −1, t ∈ J. Indeed, z0(t) < y0(t) on J, and

http://mostwiedzy.pl


10 T. Jankowski / J. Math. Anal. Appl. 331 (2007) 1–12

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fy0(t) = λ1(t) − λ1(t) = 0 = y′
0(t),

Fz0(t) = λ1(t)
[
e−1 − 1

] − λ2(t) sin 1 � 0 = z′
0(t),

�y0(t1) = L · 0 = I1
(
y0(t1)

)
,

�z0(t1) = 0 � L(−1) = I1
(
z0(t1)

)
,

g
(
y0(0), y0(T )

) = g(0,0) = −k � 0,

g
(
z0(0), z0(T )

) = g(−1,−1) = 1 − k � 0.

It proves that y0, z0 are lower and upper solutions of problem (19), respectively. Moreover,
K(t) = λ1(t), M(t) = λ2(t), L1 = L, so assumptions (H3), (H4), (H6) are satisfied. If we ex-
tra assume that

T∫
0

λ2(t)e
∫ α(t)
t λ1(s) ds dt + L < 1, (20)

then problem (19) has solutions in the segment [−1,0]∗, by Theorem 2. Note that condition (20)
guaranties that condition (4) is satisfied too.

For example, if we take L = 1
2 , T = π , λ1(t) = λ > 0, λ2(t) = βeλ(t−T ) sin t for t ∈ J, then

condition (20) holds if 0 < β < 1
4 .

3. Coupled lower and upper solutions of problem (1)

Let us introduce the following definition.
We say that u,w ∈ PC1(J,R) are coupled lower and upper solutions of (1) if⎧⎪⎨

⎪⎩
u′(t) � Fu(t), t ∈ J ′,
�u(tk) � Ik

(
u(tk)

)
, k = 1,2, . . . ,m,

g
(
u(0),w(T )

)
� 0,⎧⎪⎨

⎪⎩
w′(t) � Fw(t), t ∈ J ′,
�w(tk) � Ik

(
w(tk)

)
, k = 1,2, . . . ,m,

g
(
w(0), u(T )

)
� 0.

The next result deals with the case when problem (1) has quasisolutions.

Theorem 3. Assume that assumptions (H1), (H3)–(H5) hold, where y0, z0 are coupled lower and
upper solutions of problem (1) and z0(t) � y0(t) on J. In addition, we assume that

(H′
6) there exists γ > 0 such that for any u, ū ∈ [z0(0), y0(0)] with u � ū and v, v̄ ∈

[z0(T ), y0(T )] with v � v̄ we have

g(u, v) � g(ū, v),

g(u, v) − g(u, v̄) � −γ (v̄ − v).

Then there exist u,v ∈ [z0, y0]∗ coupled quasisolutions of problem (1), i.e. the pair (v,w) is a
solution of the system:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎨
⎪⎩

v′(t) = Fv(t), t ∈ J ′,
�v(tk) = Ik

(
v(tk)

)
, k = 1,2, . . . ,m,

g
(
v(0),w(T )

) = 0,⎧⎪⎨
⎪⎩

w′(t) = Fw(t), t ∈ J ′,
�w(tk) = Ik

(
w(tk)

)
, k = 1,2, . . . ,m,

g
(
w(0), v(T )

) = 0.

Proof. Consider the initial value problems⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v′(t) = Fϕ(t) + K(t)
[
v(t) − ϕ(t)

] + M(t)
[
v
(
α(t)

) − ϕ
(
α(t)

)]
, t ∈ J ′,

�v(tk) = Ik

(
ϕ(tk)

) + Lk

[
v(tk) − ϕ(tk)

]
, k = 1,2, . . . ,m,

v(T ) = ϕ(T ) − 1

γ
g
(
Φ(0), ϕ(T )

)
,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
w′(t) = FΦ(t) + K(t)

[
w(t) − Φ(t)

] + M(t)
[
w

(
α(t)

) − Φ
(
α(t)

)]
, t ∈ J ′,

�w(tk) = Ik

(
Φ(tk)

) + Lk

[
w(tk) − Φ(tk)

]
, k = 1,2, . . . ,m,

w(T ) = Φ(T ) − 1

γ
g
(
ϕ(0),Φ(T )

)
,

where Φ and ϕ are defined as in the proof of Theorem 2. The proof is similar to the proof of
Theorem 2 and therefore it is omitted. �
Example 2. Now we consider the problem⎧⎪⎨

⎪⎩
x′(t) = bx(t) − bx2

(
α(t)

) + (a − 1)(b − 5) ≡ Fx(t), t ∈ J = [0, T ],
�x(ti) = Lix(ti), i = 1,2, . . . ,m, with 0 < t1 < t2 < · · · < tm < T,

0 = λ
[
x(0) + x2(0)

] − x(T ) − a,

(21)

where a > 1, b � 5, Li � 0, i = 1,2, . . . ,m, λ > 0, α ∈ C(J,J ), t � α(t) � T and

a
[
λ(a − 1) − 1

]
� 0. (22)

In addition, we assume that
m∑

i=1

Li < 1. (23)

Put y0(t) = 0, z0(t) = −a, t ∈ J. Then

Fy0(t) = (a − 1)(b − 5) � 0 = y′
0(t),

Fz0(t) = −ab − ba2 + (a − 1)(b − 5) < 0 = z′
0(t),

�y0(ti) = 0 = 0Li = Ii

(
y0(ti)

)
, i = 1,2, . . . ,m,

�z0(ti) = 0 � −Lia = Ii

(
z0(ti)

)
, i = 1,2, . . . ,m,

g
(
y0(0), z0(T )

) = g(0,−a) = a − a = 0,

g
(
z0(0), y0(T )

) = g(−a,0) = a
[
λ(a − 1) − 1

]
� 0,

by (22). It shows that y0, z0 are weakly coupled lower and upper solutions of (21). Note that
K(t) = b, M(t) = 0, t ∈ J, so assumption (H3) holds. Assumptions (H4), (H5), (H′

6) are also
satisfied. By Theorem 3, problem (21) has, in the sector [z0, y0]∗, coupled quasisolutions.
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