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Abstract

For a graph G = (V, E), aset D C V(G) is a total restrained doms-
nating set if it is a dominating set and both (D) and (V(G)— D) do not
have isolated vertices. The cardinality of a minimum total restrained
dominating set in G is the total restrained domination number. A set
D C V(G) is a restrained dominating set if it is a dominating set and
(V(G) — D) does not contain an isolated vertex. The cardinality of
a minimum restrained dominating set in G is the restrained domina-
tion number. We characterize all trees for which total restrained and
restrained domination numbers are equal.
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1. INTRODUCTION

Let G = (V(G), E(G)) be a simple graph with |V (G)| = n(G). The neigh-
bourhood Ng(u) of a vertex wu is the set of all vertices adjacent to w in
G and the closed neighbourhood of u is Nglu] = Ng(u) U {u}. For a set
D C V(G) the closed neighbourhood of D is defined to be |J,cp Nglu]. The
private neighbourhood of a vertex u with respect to a set D C V(G), where
u € D, is the set PNg[u, D] = Nglu| — Ng[D — {u}]. If v € PNg[u, D],
then we say that v is a private neighbour of u with respect to the set D.
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The degree dg(u) of a vertex u is the number of edges incident to u in G,
that is dg(u) = |[Ng(u)|. Let Q(G) be the set of all leaves of G, that is the
set of vertices degree 1. A vertex which is a neighbour of a leaf is called a
support vertez. Let S(G) be the set of all support vertices in G. The di-
ameter diam(G) of a connected graph G is the maximum distance between
two vertices of G, that is diam(G) = max, ,cy(g) dc(u,v). We say that a
set D C V(QG) is independent, if the induced subgraph (D) has no edge.

A set D C V(G) is a dominating set of G if for every vertex v € V(G)—D
there exists a vertex v € D such that v and u are adjacent. The minimum
cardinality of a dominating set in G is the domination number denoted v(G).
A minimum dominating set of a graph G is called a (G)-set.

A set D C V(G) is a restrained dominating set of G (RDS) if D is
a dominating set and the induced subgraph (V(G) — D) does not contain
an isolated vertex. The cardinality of a minimum restrained dominating
set in G is the restrained domination number and is denoted by 7,(G). A
minimum RDS of a graph G is called a ~,.(G)-set. The concept of restrained
domination was introduced by Telle and Proskurowski [6], albeit indirectly,
as a vertex partitioning problem. Restrained domination was studied further
for example by Domke et al. [1, 2].

The total restrained domination number of a graph was defined by Ma,
Chen and Sun [5]. A set D C V(Q) is a total restrained dominating set of G
(TRDS) if it is a dominating set and the induced subgraphs (D) and (V(G)—
D) do not contain isolated vertices. The cardinality of a minimum total
restrained dominating set in G is the total restrained domination number
and is denoted by 7%(G). A minimum TRDS of a graph G is called a v%(G)-
set. We note that every graph G without an isolated vertex has a (total)
restrained dominating set, since D = V(G) is such a set.

For any graph theoretical parameters A and u, we define G to be (A, p)-
graph if A(G) = u(G). Henning has wrtitten an extensive series of papers
which give constructive characterizations of trees for which certain domina-
tion parameters are equal (see, for example [4]). In this paper we provide
a constructive characterization of (v,,~!)-trees. For any unexplained terms
and symbols see [3].

2. A CHARACTERIZATION OF (7,,7.)-TREES

As a consequence of the definitions of the restrained and total restrained
domination numbers we have the following observations.
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Observation 1. Let G be a graph without isolated vertices. Then
(i) every leaf is in every v (G)-set;
(i)
(iii) every leaf is in every v, (G)-set;
) Y(G) < 7(G) < 7,(G).

Observation 2. Let T be a (-, 7%)-tree. Then each v%(T')-set is a 7, (T)-set.

every support vertex is in every v/ (G)-set;

(iv

Let 7; and 75 be the following two operations defined on a tree 7.

e Operation 7;. Assume z € V(T) is a support vertex. Then add a
vertex y and the edge zy.

e Operation 75. Assume x € V(T) is a support vertex. Then add a path
Py = (y1, 2,93, y4) and the edge zy;.

Let 7 be the family of trees such that 7 = {T' : T is obtained from Ps
by a finite sequence of Operations 77 or 7o} U {Pa, Ps}. We show first that
each tree in the family 7 has equal restrained domination number and total
restrained domination number.

Lemma 3. If T belongs to the family T, then T is a (yy,7L)-tree.

Proof. We proceed by induction on the number s(7") of operations required
to construct the tree T'. If s(T') = 0, then T € {Ps, P3, Ps} and clearly T is
a (v, yL)-tree. Assume now that 7T is a tree with s(T") = k for some positive
integer k and each tree 77 € 7 with s(T’) < k is a (,7!)-tree. Then T
can be obtained from a tree T’ belonging to 7 by operation 7; or 75. We
now consider two possibilities depending on whether T is obtained from T’
by Operation 77 or 75.

Case 1. T is obtained from T” by Operation 7;. Suppose T' is obtained
from T’ by adding a vertex y and the edge xy, where x € V(T”) is a support
vertex. Thus y belongs to every «,(T)-set and every ~!(T)-set. Hence
10(T) = 7(T) + 1 and AL(T) = AL(T) + 1. Since 1(T") = AL(T’) and
¥(T) < AL(T), we conclude that ~,.(T) = ~L(T).

Case 2. T is obtained from T” by Operation 75. Suppose T' is obtained
from T' by adding a path (y1,y2,ys,y4) and the edge zy;, where z € V(T")
is a support vertex. Then z and y3 are support vertices in T and g4 is
a leaf. Hence x,y3 and y4 belong to every ~%(T)-set and for this reason
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VE(T) > AL(T') + 2. On the other hand, any ~.(T")-set may be extended to
a TRDS of T by adding to it y3 and y4. Thus v4(T) = ~L(T') + 2.

Now let D be a ~,(T)-set. Then y4 € D and Nr[ya] N D # (. For this
reason v,(T) > ~(T") + 2. On the other hand, v,(T) < vL(T) = +L(T") +
2 = 7(T") + 2. We conclude that ~,(T) = 7,(T") + 2 and consequently,
10(T) = AH(T). .

We now show that every (v,,7!)-tree belongs to the family 7. It is clear
that P is a (7, 7%)-tree and P, belongs to the family 7. Therefore from
now on we consider only trees 7" with n(T") > 3.

Lemma 4. Let T be a (v, 7%)-tree with n(T) > 3 and let D! be a minimum
total restrained dominating set of T. If u,v € D! and uwv € E(T), then
either u or v is a leaf.

Proof. It is possible to see that the statement is true for all trees T" with
diameter 2 and 3. For this reason we consider only trees with diameter at
least 4. Suppose T is a (7,,7%)-tree, u,v € D!, uwv € E(T) and neither u nor
v is a leaf. We consider three cases.

Case 1. w is an isolated vertex in ((V(T) — D!) U {u}) and v is an
isolated vertex in ((V(T') — D%) U {v}). Since neither u nor v is a leaf, we
conclude that DI — {u,v} is a RDS of T of cardinality smaller than ,(T),
a contradiction.

Figure 1. Hlustration for Case 2 of the proof of Lemma 4.

Case 2. Both ((V(T) — Dt)u{u}) and ((V(T)— DL)u{v}) are without
isolated vertices. Then since T is a (v;, v!)-tree, we conclude that D! — {u}
and D! — {v} are not dominating sets of 7. Therefore, both u and v have
a private neighbour with respect to D.. Let Uy = {u} and Vy = {v} and
denote by U; and Vj the sets of private neighbours of u and v with respect
to DL, respectively. Of course, U1 NV; = () and U; UV} is an independent set
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of vertices, because T is a tree. Since DI is a TRDS, each vertex of Uy UV}
has a neighbour in V(T') — D!. Denote by Uy and V5 the sets of all vertices
of V(T) — D! which are neighbours of vertices of U; and Vi, respectively.
Observe that Us NV = 0, Uy NUy = 0, ViNVy = ) and Uy U Vs is an
independent set of vertices. Since T is a tree, no two vertices of U1 UV; have
common neighbour in Uz U Vi, so |U;| < |Uz| and |Vi| < |Va|. Moreover,
since Df; is a dominating set of T', each vertex of Uy U V5 has a neighbour
in DL. Denote by Us and V3 the sets of all vertices belonging to D! which
are neighbours of vertices of Us and Vs, respectively. Since T is a tree,
(UsuVz)N{u,v} =0, UsNV3 =0, U3U V3 is an independent set of vertices,
|Ua| < |Us| and |Vz| < |V3]. Finally, since D! is a TRDS of T', each vertex of
Us U V3 has a neighbour in D!. Denote by Uy and Vj the sets of all vertices
belonging to D! which are neighbours of vertices of Us and V3, respectively.
Since T is a tree, (UsUVy)N{u,v} =0, (U,UV)N(UsUV3) =0, UyNVy = 0,
Uy, UV} is an independent set of vertices, |Us| < |Uy| and |V3| < |V,|. Define
Us to be the set of vertices of V(T') — Uy which are private neighbours
with respect to D! of vertices belonging to Us and define V; to be the set
of vertices of V(T) — V5 which are private neighbours with respect to D¢
of vertices belonging to V3. Denote by Ug and Vg the sets of all vertices
of V(T) — D! which are neighbours of vertices of Us and Vs, respectively,
and so on.

Generally, let k be a non-negative integer. Define Uy 15 to be the set of
vertices of V(T') — Uygy2 which are private neighbours with respect to D}
of vertices belonging to Uy13 and define V15 to be the set of vertices of
V(T) — Vig4o which are private neighbours with respect to D! of vertices
belonging to Vi1 3. Since D! is a TRDS, each vertex of Uy 1UVyr1, where
k > 0, has a neighbour in V(T') — DL. Let U2 be the set of all vertices of
V(T)— D! which are neighbours of vertices of U1 and let Vo be the set
of all vertices of V(T') — DL which are neighbours of vertices of Vy 1. Since
D! is a dominating set, each vertex of Uygio U Vig12 has a neighbour in Df.
Denote by Uy 3 the set of all vertices belonging to D! which are neighbours
of vertices of U492 and denote by Vyi13 the set of all vertices belonging to
D! which are neighbours of vertices of Vi 2. Finally, since DL is a TRDS
of T, each vertex of U3 U Vi3 has a neighbour in D!. Denote by Uy 4
and Vyp.4 the sets of all vertices belonging to Df, which are neighbours of
vertices of Uyy3 and Vi3, respectively. Since T is a finite tree, there exist
the smallest integer ¢ such that U5 = () and the smallest integer j such
that Vijy5 = 0.
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Since T is a tree, we conclude that no two vertices of Uygy1 U Vi1 have
common neighbour in Uygio U Vigio. This implies that |Ugki1| < |Uggt2]
and [Vig1| < [Vagso|. Similarly, [Uggio| < [Usgis| and [Vigy2| < [Vigis)-
Further, |Usg+3| < |Usgsa| and |Vigis] < |Vagsal. Moreover, every two of
defined sets are disjoint.

Now consider the set D = D! — (U3U U7z U+ - UUyg13UV3UVZU--- U
VijrsU{u,v}) UU1UUs U - UUgi1 UVIUVEU--- U Vyjpq. It is possible to
observe that D is a dominating set of 7' and (V(T") — D) does not contain
an isolated vertex. Hence D is a RDS of T. Moreover |D| < |D!|, which
implies that 7" is not a (7y,,7%)-tree, a contradiction.

Case 3. Either ((V(T) — D!)U{u}) or ((V(T) — D!) U {v}) contains an
isolated vertex, say u is an isolated vertex in ((V(T) — D!) U {u}). Then
since T is a (7, %)-tree, we conclude that DL — {v} is not a dominating set
of T. Let j and Vp, Vi,..., V445 have the same meaning and properties as
in previous case. Consider the set D = D! — (V3UV7U---UVyj13U{u,v})U
ViuVsU---UVyi41. It is easy to observe that D is a dominating set of
T and (V(T) — D) does not contain an isolated vertex. Hence D is a RDS
of T. Moreover |D| < |D%|, which implies that T is not a (v,,~})-tree, a
contradiction.

This proves the statement. [ |

The above Lemma together with Lemma 1 imply what follows.

Corollary 5. If T is a (v,7L)-tree with n(T) > 3, then Q(T)US(T) is the
unique yL(T)-set and . (T) = ~L(T) = |Q(T) U S(T)|.

Corollary 6. If T is a (v.,7L)-tree with n(T) > 3, then S(T) is a y(T)-set
and A(T) = |S(T)).

Corollary 7. If T is a (y,L)-tree with n(T) > 3, then YL(T) = ~(T) +
Q(T)].

Lemma 8. Let T be a (v,~L)-tree with n(T) > 3. If u,v € S(T), then
dr(u,v) > 3.

Proof. It is possible to verify that the statement is true for all trees with
diameter between 2 and 5. For this reason we consider only trees with
diameter at least 6.
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Let T be a (vy,,7%)-tree with n(T) > 3 and let D! be a «L(T)-set. By
Corollary 5, u,v € D! and by Lemma 4, u and v are not adjacent. Suppose
that dr(u,v) = 2 and let = be the neighbour of u and v in 7. Lemma 4
implies that z is not a support vertex and as x is not a leaf, z ¢ D!. Since
both ((V(T) — D) U {u}) and ((V(T) — D!) U {v}) are without isolated
vertices and T is a (7, y%)-tree, we deduce that D% — {u} and D! — {v} are
not dominating sets of T'. Therefore, both u and v have a private neighbour
with respect to DL. Let j and Vp, V4, ..., Vijt5 have the same meaning and
properties as in the proof of Lemma 4. Consider the set D = D! — (V3U V7 U
c U Vg3 U{o}) UV UVEU---UVyjqq. It is possible to observe that D is
a dominating set of 7" and (V(T') — D) does not contain an isolated vertex.
Hence D is a RDS of T. Moreover |D| < |Df|, which implies that 7" is not
a (yr,7L)-tree, a contradiction. |

Corollary 9. If T is a (v,7%)-tree with n(T) > 3, then each vertex of
V(T) — S(T) has exactly one neighbour in S(T).

Corollary 10. If T is a (y,,7L)-tree with n(T) > 3, then S(T) is the unique
~v(T)-set.

Lemma 11. If T is a (v,7t)-tree with n(T) > 3, then T belongs to the
family T .

Proof. It is easily seen that the statement is true for all trees with with
diameter between 2 and 5. For this reason we consider only trees with
diameter at least 6.

Let T be a (vy,,7%)-tree and assume that the result holds for all trees
on n(T) — 1 and fewer vertices. We proceed by induction on the number of
vertices of a (v, 7%)-tree. Let P = (s, s1,...5;), | > 6, be a longest path in
T and let D! be a v4(T)-set. We consider two cases.

Case 1. dp(s1) > 2. In this case s1 is a neighbour of at least two
leaves of T'. Denote T’ = T — sg. Of course DL — {so} is a TRDS of 1", so
VE(T") < ~E(T)—1. Moreover, any ~.(T")-set may be extended to a £ (T)-set
by adding to it sg, so Y(T") = ¥4(T) — 1. By similar arguments it may be
concluded that v, (T") = 7,.(T) — 1. Hence, 7,.(T") = L(T"). Consequently,
T' is a (7, L)-tree and by induction hypothesis, 7" € 7. As s; is a support
vertex in 7", we deduce that T' may be obtained from 7" by Operation 7;.
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Case 2. dp(s1) = 2. Then Corollary 5 and Lemma 8 imply that
dr(s2) = 2 and s3 is not a support vertex. Moreover, s is a neighbour
of exactly one support vertex, say x.

Suppose that x # s4. Then s4 is not a support vertex, but sy is a
neighbour of exactly one support vertex, say y. Denote A = Np(s3)—{x} —
V(P) and observe that since x is a support vertex, Lemma 8 implies that
AN S(T) = 0. Corollary 9 says that each vertex of A has exactly one
neighbour in S(T'). Let A’ be the set of neighbours of vertices of A which
belong to S(T'). Hence sg, s1, 7,y € DL and s9, 83,84 ¢ DL. Consider the set
D = D! —{sy,y} — A’ U{s3}. It is easy to observe that D is a dominating
set in T and (V(T) — D) does not contain an isolated vertex. Hence D is
a RDS of T. Moreover |D| < |D.| even when A = (), which implies that
T is not a (,,7%)-tree, a contradiction. Therefore s4 is the unique support
vertex in Np(s3).

Now suppose that dr(s3) > 2. Denote A = Nr(s3) — V(P) and observe
that since dr(s3) > 2, A # (. Moreover, since s4 is a support vertex,
ANS(T) = 0. Let A’ be the set of neighbours of vertices of A which
belong to S(T). Then sg,s1,54 € DL and s9,s3 ¢ D:. Consider the set
D = ((D! —{s1}) — A")U{s3}. It is easy to observe that D is a dominating
set of T and (V(T') — D) does not contain an isolated vertex. Hence D is a
RDS of T. Moreover |D| < |D!|, which implies that T is not a (v,,~!)-tree,
a contradiction. Therefore dr(s3) = 2 and s4 is the unique neighbour of s3
belonging to S(T').

Denote T = T — {sq, s1, 82, 83}. Of course sy and s1 belong to every
VL(T)-set. For this reason, v£(T") < 4L(T) — 2. Since s4 is a support vertex
in T”, any v£(T")-set may be extended to a TRDS of T' by adding to it s¢ and
1, 50 1L(T") = 4L(T) — 2. Further, 7(T") < AL(T") = 4E(T) — 2 = 7 (T) — 2
and any 7, (T")-set may be extended to a RDS of T' by adding to it so and
s3. Hence 7,.(T") = v,(T) — 2 and so 7, (T") = (T"). Consequently, T” is a
(7, YE)-tree and by induction hypothesis, 77 € 7. As s4 is a support vertex
in T, we conclude that T' may be obtained from 7" by Operation 75. [ ]

As an immediate consequence of Lemmas 4 and 11 we have the following

characterization of (v,,~!)-trees.

Theorem 12. A tree T is a (y,,L)-tree if and only if T belongs to the
family T .
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