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in comparison with the PML technique and eliminates all its disadvantages.
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1. Introduction

The finite difference (FD) technique is one of the most versatile methods of computational
electromagnetics and as such it is often used to investigate propagation characteristics of open
waveguides [1, 2, 3]. In order for the method to deal with the radiation effects two main cate-
gories of techniques can be distinguished. The first one involves transparent boudary conditions
(TBC) which are based on an approximation of the Sommerfeld radiation condition (Bayliss-
Turkel, Mur, Higdon schemes [4]). The second category (proposed by Berenger [5]) is based
on the termination of a computational domain with the region (filled with a lossy anisotropic
medium) that absorbs outgoing waves. Since then many variants of an artificial medium, known
as a perfectly matched layer (PML), have been proposed [4]. Nowadays, the PML is the method
of choice for the finite difference analysis of open problems. The popularity of PML comes from
the fact that it gives more accurate results. Numerical tests show that the reflection coefficient
on the boundary (obtained from finite difference time domain simulations [4]) is about −40dB
for TBC and about−120dB for PML. However, TBC are still applied in other techniques (beam
propagation method [6] or finite element method [7]).

Despite its immense popularity, PML has several obvious disadvantages when it comes to the
analysis of guidance properties of radiating structures. Firstly, PML enlarges the computational
domain, secondly the results are sensitive to the selection of parameters such as conductivity
profile, permittivity permeability, thickness of the layer and a distance to the structure. Finally,
artificial Berenger modes appear in the numerical solution and their identification can be very
difficult [8, 9].

In this paper we propose a new radiation boundary condition that eliminates all of the above
disadvantages. The new approach involves only points located on the outer structures boundary
and therefore its application leads to smaller matrix eigenvalue problem than PML technique.
The algorithm is based on the idea introduced in our earlier paper [3], but it is applicable to
Yee’s mesh in rectangular coordinates and relies on rigorous rather than approximate relation-
ships for the outgoing waves.

2. Formulation

In order to present the main idea of the proposed algorithm one-dimensional structures are
considered first. For most of them analytical solutions are known and can be used for the first
verification of the accuracy of the new technique.

2.1. One dimensional propagation problems

Let us consider a planar slab dielectric waveguide, parallel to yz plane, characterized by per-
mittivity ε(x). Assuming that the fields variation along the z direction is represented by a term
e−γz and there is no variation in the y direction, Maxwell’s equations can be separated into two
independent systems for TE x and TMx modes.

Let us consider the equation for TE x modes{ ∂Ey
∂x = −jωμ0Hz

− ∂Hz
∂x =

(
− γ2

jωμ0
+ jωε

)
Ey.

(1)

According to the assumptions of FD method [4], differential equations (1) are approximated by{ em+1−em
Δx = −jωμ0hm

− hm−hm−1
Δx =

(
− γ2

jωμ0
+ jωεm

)
em

(2)
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where em = Ey(mΔx), hm = Hz((m+ 1
2)Δx), εm = ε(mΔx) and Δx denotes the discretization step

(see fig. 1).

Fig. 1. A cross section of the slab dielectric waveguide covered with Yee’s mesh.

In a matrix notation, from the above relations we get an eigenvalue problem for a propagation
constant: [

R(h)
yz R(e)

zy −ωμ0ε
]

e = γ2e (3)

where R(e)
zy , R(h)

yz and ε are square M×M matrices

[
R(e)

zy

]
m,n

= Δx−1

⎧⎨
⎩

−1, m = n
1, m = n+1
0, otherwise

, (4)

[
R(h)

yz

]
m,n

= Δx−1

⎧⎨
⎩

−1, m = n
1, m = n−1
0, otherwise

, (5)

[ε]m,n =
{

εm, m = n
0, otherwise

, (6)

and e = [e1,e2, · · · ,eM]T , h = [h1,h2, · · · ,hM]T .

2.2. Boundary conditions for 1D analysis

Without losing generality, we can assume that a three layered structure (see fig. 1) represents
any planar slab dielectric waveguide ( ε2 = ε2(x)).

The field shape in region 1 and 3 is known

Ey(x) = A−eκ1x, x < −b/2

Ey(x) = A+e−κ3x, x > b/2 (7)

where κi = [−γ2−k2
0εi]1/2, k0 = ω(μ0ε0)1/2 and A−, A+ are unknown coefficients. For evanes-

cent modes κi is real and grater than zero, however for leaky modes κ i is complex and the
proper sheet of the Riemann surface must be chosen to satisfy the Sommerfeld radiation condi-
tion [10].

Expressions (7) determine the relations between the field samples at the boundary of the
computational domain

e1 = a−e2 eM = a+eM−1, (8)

where a− = e−κ1Δx and a+ = e−κ3Δx.
Let us rewrite problem (3) in a simple form

Ae = γ2e, (9)
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where A = R(h)
yz R(e)

zy −ωμ0ε , then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1,1e1 +A1,2e2 + · · ·+A1,M−1eM−1 +A1,MeM = γ2e1

A2,1e1 +A2,2e2 + · · ·+A2,M−1eM−1 +A2,MeM = γ2e2

A3,1e1 +A3,2e2 + · · ·+A3,M−1eM−1 +A3,MeM = γ2e3
...
AM−2,1e1 +AM−2,2e2 + · · ·+AM−2,M−1eM−1 +AM−2,MeM = γ2eM−2

AM−1,1e1 +AM−1,2e2 + · · ·+AM−1,M−1eM−1 +AM−1,MeM = γ2eM−1

AM,1e1 +AM,2e2 + · · ·+AM,M−1eM−1 +AM,MeM = γ2eM.

(10)

Applying relations (8) to equations system (10) we get a new eigen problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(A2,1a− +A2,2)e2 + · · ·+(A2,M−1 +A2,Ma+)eM−1 = γ2e2

(A3,1a− +A3,2)e2 + · · ·+(A3,M−1 +A3,Ma+)eM−1 = γ2e3
...
(AM−2,1a− +AM−2,2)e2 + · · ·+(AM−2,M−1 +AM−2,Ma+)eM−1 = γ2eM−2

(AM−1,1a− +AM−1,2)e2 + · · ·+(AM−1,M−1 +AM−1,Ma+)eM−1 = γ2eM−1.

(11)

However, since a− and a+ are the functions of γ above problem becomes nonlinear

Ã(γ)ẽ = γ2ẽ. (12)

The most straightforward technique of solving nonlinear problems is a simple iteration
method. In the first step we have to solve a regular eigenvalue problem for the initial value
γ0 and denote the solution as γ1:

Ã(γi)ẽ = γ2
i+1ẽ i = 0,1, . . . (13)

In the next step we have to solve the linear problem (13) for γ 2, substituting γ1 into operator
Ã. The procedure should be repeated until the difference between two sequential values of γ is
less than the assumed error.

In general, there is no proof of convergence of that algorithm, so it may happens that the
process starts to diverge. If this occurs the convergence can be restored by considering a func-
tion F(γ) = γ − γ̂ , where γ̂ is an eigenvalue of the problem Ã(γ)ẽ = γ̂2ẽ. A zero of this function
is simultaneously the solution of eigenproblem (12). Since complex plane of γ can be replaced
by two dimensional real space and function F(γ) by log |F(γ)| solving of (12) transforms to a
problem of finding the minimum of the function.

For this purpose we have selected 3-point simplex method, but any other technique of finding
minimum or zero can be applied. Since minimalization is time consuming it is used only to
restore the convergence of (13).

2.3. Boundary conditions for 2D analysis

In practice one has to use numerical analysis for more complex waveguides. For this purpose
let us consider a cross section of open waveguide in a computational domain covered with
rectangular Yee’s mesh. The finite difference method gives a matrix eigenvalue problem in
terms of transverse electric field [1, 2]:

AEt = γ2Et . (14)

The boundary condition is derived based on an analytical representation of outgoing waves.
In a homogeneous region, assuming variation along the z direction in a form e −γz the electric
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and magnetic field can be expressed by only two components E z(ρ ,ϕ ,z) and Hz(ρ ,ϕ ,z). The
other components are unambiguously defined by the relations:

Eρ(ρ ,ϕ ,z) = − γ
κ2

∂Ez(ρ ,ϕ ,z)
∂ρ

− jωμ
ρκ2

∂Hz(ρ ,ϕ ,z)
∂ϕ

, (15)

Eϕ(ρ ,ϕ ,z) = − γ
ρκ2

∂Ez(ρ ,ϕ ,z)
∂ϕ

+
jωμ
κ2

∂Hz(ρ ,ϕ ,z)
∂ρ

, (16)

Hρ(ρ ,ϕ ,z) =
jωε
ρκ2

∂Ez(ρ ,ϕ ,z)
∂ϕ

− γ
κ2

∂Hz(ρ ,ϕ ,z)
∂ρ

, (17)

Hϕ(ρ ,ϕ ,z) = − jωε
κ2

∂Ez(ρ ,ϕ ,z)
∂ρ

− γ
ρκ2

∂Hz(ρ ,ϕ ,z)
∂ϕ

. (18)

According to the Sommerfeld radiation condition, any outgoing electromagnetic field, can
be expressed by the series

Ez(ρ ,ϕ ,z) =
∞

∑
m=0

[
AmH(2)

m (κρ)sin(mϕ)+BmH(2)
m (κρ)cos(mϕ)

]
e−γz, (19)

Hz(ρ ,ϕ ,z) =
∞

∑
m=0

j
η

[
CmH(2)

m (κρ)sin(mϕ)+DmH(2)
m (κρ)cos(mϕ)

]
e−γz, (20)

where H (2)
m (·) is a Hankel function of the second kind, κ = [γ 2 + k2

0με]1/2, η = (μ/ε)1/2 and
Am, Bm, Cm, Dm are arbitrary coefficients. In practice we have to reduce the series to a finite
number of terms, so let us assume that m = 0,1, ...,Q.

Because the mesh is rectangular, the fields should be expressed in the Cartesian coordinate
system. Only Ex(x,y,z) and Ey(x,y,z) are needed, hence

Ex(x,y,z) = Eρ(ρ ,ϕ ,z)cos(ϕ)−Eϕ(ρ ,ϕ ,z)sin(ϕ) (21)

and
Ey(x,y,z) = Eρ(ρ ,ϕ ,z)sin(ϕ)+Eϕ(ρ ,ϕ ,z)cos(ϕ), (22)

where x = ρ cos(ϕ) and y = ρ sin(ϕ).
Substituting the above relations and taking z = 0, we get

Ex(x,y,0)

=
Q

∑
m=0

{
Am

γ
κ

[
m

ρκ H(2)
m (κρ)cos(mϕ)sin(ϕ)−H ′(2)

m (κρ)sin(mϕ)cos(ϕ)
]

−Bm
γ
κ

[
m

ρκ H(2)
m (κρ)sin(mϕ)sin(ϕ)+H ′(2)

m (κρ)cos(mϕ)cos(ϕ)
]

+Cm
ωμ
κη

[
m

ρκ H(2)
m (κρ)cos(mϕ)cos(ϕ)+H ′(2)

m (κρ)sin(mϕ)sin(ϕ)
]

−Dm
ωμ
κη

[
m

ρκ H(2)
m (κρ)sin(mϕ)cos(ϕ)−H ′(2)

m (κρ)cos(mϕ)sin(ϕ)
]}

(23)
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and

Ey(x,y,0)

=
Q

∑
m=0

{
Am

γ
κ

[
− m

ρκ H(2)
m (κρ)cos(mϕ)cos(ϕ)−H ′(2)

m (κρ)sin(mϕ)sin(ϕ)
]

−Bm
γ
κ

[
− m

ρκ H(2)
m (κρ)sin(mϕ)cos(ϕ)+H ′(2)

m (κρ)cos(mϕ)sin(ϕ)
]

+Cm
ωμ
κη

[
m

ρκ H(2)
m (κρ)cos(mϕ)sin(ϕ)−H ′(2)

m (κρ)sin(mϕ)cos(ϕ)
]

−Dm
ωμ
κη

[
m

ρκ H(2)
m (κρ)sin(mϕ)sin(ϕ)+H ′(2)

m (κρ)cos(mϕ)cos(ϕ)
] }

. (24)

Using the above series one can find the relation between the field samples outside and inside
the computational domain.

inside region

boundary

outside region

y

x

x x x x

x x x x

x

x x

x

x x

x set S
B

set S
C

Fig. 2. Tangential electric field of Yee’s mesh. A fragment of the computational domain in
a neighborhood of the boundary.

Let SC be a set of points of Yee’s mesh (where tangential electric field is defined) inside the
computational domain close to the boundary (white circles in fig. 2 ) and S B be a set of points
on the boundary (crosses in fig. 2). Let us denote by E C

t and EB
t the field values from set SC and

SB, respectively. From relations (23) and (24) we get

EC
t = MCC (25)

and
EB

t = MBC (26)

where vector C = [A0, . . . ,AQ,B0, . . . ,BQ,C0, . . . ,CQ,D0, . . . ,DQ]T . The relation between field
values on the boundary and inside the computational domain is

EB
t = MBM(inv)

C EC
t (27)

where M(inv)
C = M−1

C if the number of the SC elements is equal to the size of C vector, oth-
erwise to invert MC the singular value decomposition (SVD) algorithm must be applied [11]

(M(inv)
C MC = I).
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A relation (27) can be used to modify operator A in eigenvalue problem (14). The new prob-
lem involves only fields located inside the structure - all points outside (and on) the boundary
can be neglected.

Since the boundary condition matrices M B and M(inv)
C are functions of γ , we get a nonlinear

eigenvalue problem similar to (12). Again simple iteration is in most cases enough to reach
the solution, but if this fails the convergence is restored by applying minimalization procedure
described in the previous paragraph.

3. Numerical results

For numerical tests we have selected a few types of structures, for which analytical or quasi
analytical solutions are known. To emphasize the differences between the proposed approach
and standard techniques all of the structures were also analysed using an anisotropic PML with
10 layers (parameters set to the optimal values: σ = 0.8(m+1)

120πΔn where m = 4, n is a refractive
background index and Δ is a step of the discretization [2, 4]). To refractive index averaging, in
cells with an interface between different media, the method presented by Kaneda, Houshmand
and Itoh [12] was used.

The effective indices
ne f f =

γ
jk0

(28)

for the first three modes of a 1D structure with parameters ε r1 = εr3 = 1.21, εr2 = 1, b = 1nm,
λ0 = 0.2nm are presented in Table 1 (corresponding fields distributions are shown in fig. 3 – 5).

−1 0 1

x 10
−6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

[m]

[V
/m

]

 

 
Re(Ey)
Im(Ey)

−1 0 1

x 10
−6

−3

−2

−1

0

1

2

3
x 10

−4

[m]

[A
/m

]

 

 
Re(Hz)
Im(Hz)

Fig. 3. The field distribution for ne f f = 0.99526−0.00134 j.

Also in structures with larger contrast good agreement was achieved. The results for ε r1 =
εr3 = 9, εr2 = 1, b = 1nm, λ0 = 1.5nm are collected in Table 2.

Since PML is designed for absorbing plane waves, the results obtained for 1D are in good
agreement with the theoretical values. However, the convergence and accuracy of PML algo-
rithm is worse than for our formulation especially for high contrast structure. Note that for
coarse mesh the percentage error in the value of imaginary part of n e f f exceeds 10% and is at
least two orders of manitude greater than for the new technique.

It must be emphasized that contrary to the PML the proposed technique does not enlarge
the computational domain. The results remain unchanged even when the distance between the
boundary and the structure is reduced to two cells (for guided as well as for leaky modes).
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Table 1. The results obtained for a structure with parameters εr1 = εr3 = 1.21, εr2 = 1,
b = 1nm, λ0 = 0.2nm. The percentage error of the real and imaginary part is given in
brackets.

analytical current work PML technique M

0.99526−0.00134 j 0.99559−0.00114 j 50
[0.00000,0.00000] [0.03316,14.92537]

0.99526−0.00134 j 0.99526−0.00134 j 0.99526−0.00132 j 100
[0.00000,0.00000] [0.00000,1.49254]

0.99526−0.00134 j 0.99526−0.00133 j 200
[0.00000,0.00000] [0.00000,0.74627]

0.98086−0.00533 j 0.98223−0.00449 j 50
[0.00000,0.00000] [0.13967,15.75985]

0.98086−0.00533 j 0.98087−0.00534 j 0.98559−0.00526 j 100
[0.00102,0.18762] [0.48223,1.31332]

0.98086−0.00533 j 0.98086−0.00531 j 200
[0.00000,0.00000] [0.00000,0.37523]

0.95628−0.01194 j 0.95961−0.00987 j 50
[0.00732,0.16722] [0.35557,17.47492]

0.95621−0.01196 j 0.95625−0.01199 j 0.95624−0.01174 j 100
[0.00418,0.25084] [0.00314,1.83946]

0.95621−0.01196 j 0.95621−0.01191 j 200
[0.00000,0.00000] [0.00000,0.41806]
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Fig. 4. The field distribution for ne f f = 0.98086−0.00533 j.
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Fig. 5. The field distribution for ne f f = 0.95621−0.01196 j.

Table 2. The results obtained for a structure with parameters εr1 = εr3 = 9, εr2 = 1, b = 1nm
for λ0 = 1.5nm. The percentage error of the real and imaginary part is given in brackets.

analytical current work PML technique M

0.70554−0.12640 j 0.72638−0.10629 j 50
[0.00567,0.11881] [2.94793,15.80990]

0.70558−0.12625 j 0.70554−0.12644 j 0.70507−0.10902 j 100
[0.00567,0.15050] [0.07228,13.64752]

0.70559−0.12626 j 0.70546−0.12604 j 200
[0.00142,0.00792] [0.01701,0.16634]

0.31946−1.09016 j 0.29452−1.01450 j 50
[0.01565,0.05043] [7.79249,6.98719]

0.31941−1.09071 j 0.32002−1.09037 j 0.31630−1.09020 j 100
[0.19098,0.03117] [0.97367,0.04676]

0.31942−1.09067 j 0.31863−1.09059 j 200
[0.00313,0.00367] [0.24420,0.01100]

0.38343−1.96942 j 0.34093−1.87166 j 50
[0.12243,0.12475] [11.19302,5.08246]

0.38390−1.97188 j 0.38460−1.97090 j 0.37840−1.96999 j 100
[0.18234,0.04970] [1.43266,0.09585]

0.38388−1.97172 j 0.38252−1.97138 j 200
[0.00521,0.00811] [0.35947,0.02536]
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Moreover, the numerical solution obtained in the simulation gives the possibility of the field
evaluation in any point outside the computational domain: (7) in 1D and (19-24) in 2D.

To investigate the performance of the new boundary condition for 2D structures we shall
consider a simple optical fiber [9]. The radius of the fiber is R = 0.5μm, the core index n c = 2.9,
the background index nbg = 1.55 and λ0 = 1μm. The discretization assumed in PML simulation
was 200× 200 cells (80,000 of variables) and the domain size was 2μm× 2μm. The PML
region was placed 40 cells from the core. This was necessary since a smaller distance to PML
results in a significant increase of the simulation error. The alternative analysis was carried out
with the same discretization and the proposed boundary condition (Q = 20). The number of
variables was only about 20,000, because the boundary condition was imposed very close to
the structure RB = 0.55μm (see fig. 6). All numerical results are collected and compared with
the theoretical values in Table 3. A significant inaccuracy of the imaginary part of the effective
index obtained from PML technique is shown, especially for guided modes.

Fig. 6. The computational domain for PML technique - left hand side and for analytical
boundary conditions (ABC) - right hand side.

The numerical tests were also carried out for two different types of the microstructures shown
in fig. 7. The first example (fig. 7a) is a photonic crystal fiber with six circular holes arranged in

air

silica

�

air

silica

�

Fig. 7. Two different types of a microstructured optical fibers.

a hexagonal setting. The radius of the holes is r = 2.5μm and the pitch length is Λ = 6.75μm.
The refractive index of the background material is n bg = 1.45 and na = 1 for holes. The vacuum
wavelength used in calculation is λ = 1.45μm. The radius of the computation domain is R =
9.5μm, but due to the symmetry of the structure only a quarter of the circle has to be analysed.
The boundary conditions consist of a perfect electric and/or magnetic conductor at the structure
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Table 3. The results obtained for an analysis of the optical fiber. The percentage error of
the real and imaginary part is given in brackets.

analytical current work PML technique

2.15308 2.15125 2.14311−8.28E −8i
[0.08499] [0.46306]

2.65420 2.65478 2.65227−2.96E −8i
[0.02185] [0.07271]

2.81169 2.81167 2.81077−7.95E −10i
[0.00071] [0.03272]

2.50289 2.50269 2.49796−1.90E −7i
[0.00799] [0.19697]

2.39189 2.39195 2.38779−1.00E −7i
[0.00251] [0.17141]

1.74755 1.74735 1.73356−1.92E −4i
[0.01144] [0.80055]

1.61112 1.61268 1.60910−2.13E −3i
[0.09683] [0.12538]

1.58141−2.22E −2i 1.58238−2.18E −2i 1.58160−4.30E −2i
[0.06134,1.80180] [0.01201,93.69369]

2.06607−8.93E −5i 2.06724−9.20E −5i 2.02932−2.10E −6i
[0.05663,3.02352] [1.77874,97.64838]

2.31309−5.19E −6i 2.31614−5.42E −6i 2.31309−1.00E −7i
[0.13186,4.43160] [0.00000,98.07322]

symmetry planes and the radiation condition presented in section 2 at the curved boundary. The
discretization assumed in simulation is 150× 150 cells. The PML approach requires 45,000
variables (the domain is a square 11μm× 11μm). The new boundary condition allows one to
fit a boundary to the contour, which reduces the number of variables by 33% to 30,000.

The comparison of the results obtained by the presented technique with the results of other
methods is shown in Table 4 and 5. The agreement with the other methods is very good. The
results for quasi analytical Multipole Method (MM) [13] are used as a reference.

Since MM provides very accurate values, it is seen that the new boundary condition is more
accurate in comparison to PML (an order of magnitude accuracy improvement for the imagi-
nary part).

The last example is a microstructured fiber with non-circular shapes, presented in fig. 7b.
The angular-shaped holes have the inner radius r 1 = 1μm, the outer radius r2 = 2μm and the
angular width of 108o. The refractive index of the background material is n bg = 1.44402362.
The vacuum wavelength is λ = 1.55μm. This time, the computational domain is a half-circle
with a radius R = 2.25μm. The discretization was 300×150 cells and the size of the operator
was reduced to about 60,000 from 90,000 used in simulation with PML technique (with a
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Table 4. The real part of the effective indices of the structure with 6 circular holes ob-
tained by different methods. The percentage error (in brackets) is calculated in reference to
Multipole Method (MM) [13] (10 multipole moments).

mode MM [13] FDM-ABC[14] current work FDFD with PML

HE11 - like 1.445395 1.445395 1.445394 1.445361
[0.0] [6.9E−05] [2.4E−3]

TE01 - like 1.438584 1.438589 1.438579 1.438494
[3.5E−04] [3.5E−04] [6.3E−03]

HE21 - like 1.438445 1.438444 1.438445 1.438364
[7.0E−05] [0.0] [5.6E−03]

EH11 - like 1.429957 1.429942 1.429792
[1.1E−03] [1.2E−02]

HE31 - like 1.429248 1.429262 1.429132
[9.8E−04] [8.1E−03]

Table 5. The imaginary part of the effective indices of the structure with 6 circular holes
obtained by different methods. The percentage error (in brackets) is calculated in reference
to Multipole Method.

mode MM[13] FDM-ABC[14] current work FDFD with PML

HE11 - like 3.19E −08 3.07E −08 3.19E −08 3.56E −08
[3.76] [0.00] [11.60]

TE01 - like 5.31E −07 5.43E −07 5.32E −07 4.72E −07
[2.26] [0.18] [11.11]

HE21 - like 9.73E −07 9.62E −07 9.51E −07 1.07E −06
[1.13] [2.26] [9.97]

EH11 - like 1.59E −05 1.55E −05 1.42E −05
[2.52] [10.69]

HE31 - like 8.73E −06 8.69E −06 9.52E −06
[0.46] [9.05]

rectangular domain 5μm×2.5μm).
Since the Multipole Method can not handle the fiber under investigation table 6 and 7 com-

pare the obtained results with the Vector FDM-ABC scheme [14] (with the resolution: 800 in
radial and the 180 in angular direction).

The results obtained from the new method remain in good agreement with the reference data
both for the real and imaginary part. Note that for PML technique the error of the imaginary
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Table 6. The real part of the effective indices of the structure with 3 angular-shaped holes
obtained by different methods. The percentage error (in brackets) is calculated in reference
to Vector FDM-ABC Scheme (70 Azimuthal, 54 radial terms) [14].

mode FDM-ABC[14] current work FDFD with PML

HE11 - like 1.35584 1.35588 1.35457
[2.9E−03] [9.3E−02]

HE21 - like 1.21476 1.21516 1.21378
[3.3E−02] [8.1E−02]

Table 7. The imaginary part of the effective indices of the structure with 3 angular-shaped
holes obtained by different methods. The percentage error (in brackets) is calculated in
reference to FDM-ABC method.

mode FDM-ABC[14] current work FDFD with PML

HE11 - like 5.00E −05 4.98E −05 5.56E −5
[0.4] [11.2]

HE21 - like 1.25E −03 1.23E −03 1.93E −3
[1.3] [54.4]

Table 8. The convergence of the fundamental mode for structure presented in fig. 7a.

iteration number ℜ(ne f f ) −ℑ(ne f f )

0 1.440000000 0.000E-00
1 1.445393660 3.293E-08
2 1.445393676 3.190E-08
3 1.445393676 3.190E-08

part of the effective index is extremely high (54.4%) for the HE 21 - like mode.
The proposed approach leads to the nonlinear eigenvalue problem so it may appear that the

method is much more time consuming than PML technique. However, a significant reduction of
the problem size makes them comparable. For example, a single eigen solution for the optical
fiber lasts about 120s for PML and 30s for the proposed algorithm (on a standard 2.8GHz
desktop). For the microstructured fibers (only partial use of boundary conditions) the difference
was smaller (70s versus 40s and 140s vs. 90s).

All the results (except a few modes of optical fibers) were obtained in simple iterations with
a fast convergence. For example, the convergence process of the fundamental mode of the first
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Fig. 8. Berenger and leaky modes for structure presented in fig. 7a. Leaky modes are sur-
rounded by a circle.

microstructure is presented in Table 8
Finally, the presented approach is by far much more effective than some other numerical

methods offering high accuracy results (e.g. the Vector FDM-ABC scheme requires approxi-
mately 6h on a 1GHz desktop [14]).

It has to be underlined that in proposed technique each mode is analysed separately. However,
in practice also in standard PML approach situation is similar. The huge number of artificial
(Berenger) modes obtained in simulations with PML causes that solvers are often not able
to find more than one proper solution at a single run. Another important problem of PML is
a separation of the artificial modes (such modes do not appear in proposed algorithm). The
problem occurs even for a homogeneous circular fiber, especially for lower modes [9]. The part
of the spectrum obtained in the PML analysis for the first of the microstructures is depicted
in fig. 8 (Berenger and leaky modes have similar values and may become indistinguishable in
some cases).

4. Conclusions

We have presented a new radiation boundary condition for one- and two-dimensional FD eigen-
value problem. The new algorithm was tested for different types of the structures and high ac-
curacy of the results was achieved for all cases. Most of the disadvantages of PML techniques
were eliminated.
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