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Abstract

We shall be concerned with the existence of homoclinic solutions for the second order Hamiltonian
system ¢ — V4 (t,q) = f(t), where t € R and ¢ € R". A potential V € C!R x R",R) is T -periodic in ¢,
coercive in ¢ and the integral of V (-, 0) over [0, T] is equal to 0. A function f:R — R" is continuous,
bounded, square integrable and f # 0. We will show that there exists a solution gq such that gg(#) — 0 and
qgo(t) = 0, as t — £oo. Although ¢ = 0 is not a solution of our system, we are to call gg a homoclinic
solution. It is obtained as a limit of 2kT-periodic orbits of a sequence of the second order differential
equations.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Coercive functional; Homoclinic solutions; Hamiltonian systems; Palais—Smale condition

1. Introduction

Let us consider the second order Hamiltonian system

G —Vq(t,q) = f(), (HS)

wheret € R, g €e R" and V:R x R" — R and f:R — R” satisfy the following conditions:
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(A1) VisC 1_smooth, T -periodic with respectto ¢, T > 0,
(A2) there is a constant » > 0 such that for all (t,g) € R x R"

V(t,q) = V(,0) +blg|*,

(A3) fy V(,0)dr =0,
(A4) f #0is a continuous and bounded function such that fR | f()|*dt < o0.

Here and subsequently, | - |:R" — [0, 00) is the norm induced by the standard inner product
(,):R" x R" — R given by

n
(x,y)=2xiyi,
i=1

where x = (x1, ..., Xn), Y =1, .-+, Yn)-

The existence of connecting orbits (homoclinic and heteroclinic orbits) is one of the most im-
portant problems in the theory of Hamiltonian systems. It has been intensively studying by many
mathematicians. Let us only mention here [1,3,4,7,10,12,13]. A lot of papers are concerned with
solutions homoclinic to 0. See for instance [2,6,8,11,14]. In our case, ¢ = 0 is not a solution
of (HS). Thus our Hamiltonian system does not possess a solution homoclinic to 0, in the clas-
sical meaning. However, we can still ask about the existence of solutions emanating from 0 and
terminating at 0.

Definition 1.1. We will say that a solution g:R — R" of (HS) is homoclinic to x € R", if
q(t) = x,ast — £oo.

In this paper we will study the existence of solutions homoclinic to x = 0. Under the com-
paratively general assumptions (A1)—(A4), we will show that the Hamiltonian system (HS) has
a homoclinic solution with an additional regularity property. Our main result states as follows.

Theorem 1.1. If the conditions (A1)—(A4) are satisfied then the system (HS) possesses a homo-
clinic solution q € WL2(R, R") such that q(t)— 0, ast— foo.

At the end of this section, we give the main idea of the proof.
Foreach k e N, let Ej, := Wzlsz (R, R™), the Hilbert space of 2k T -periodic functions from R
into R” under the norm
kT 1

2
gl £ :=( /(|q'(z)|2+|q(t)|2)dt> :
—kT

In order to receive a homoclinic solution of (HS), we consider a sequence of systems of
differential equations:

G—Vet,q) = fi@), (HSy)

where for every k € N, f; :R — R" is a 2kT -periodic extension of the restriction of f to the
interval [—kT, kT). Let us remark that f; has not to be continuous at points kT + 2kTj, j € Z.
Our homoclinic solution is a limit in Clloc-topology of a certain sequence of functions gy € Ek.
Each gy is a 2kT -periodic solution of (HS;) obtained via a standard minimizing argument (see

Theorem 2.2).
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The presented method generalizes that of [11]. Paul Rabinowitz obtained a homoclinic so-
lution of a Hamiltonian system ¢ + V,(f,¢) = 0 as a limit of its periodic solutions. We adapt
his method to the system (HS) by introducing an approximative sequence of differential equa-
tions (HSy).

2. Proof of Theorem 1.1

For each k € N, let L%kT(R, R"™) denote the Hilbert space of 2kT -periodic functions on R
with values in R” under the norm

kT %
lallz,, :=( f!q(r)ﬁdt) :

—kT
Let Iy : Ex — R be defined by
kT !
Ir(q) == f (5|c}(t)|2+V(t,q(t))+(fk(t),q(t)))dt. (1)
—kT

Then I € C'(E, R) and one can easily check that
kT
Li(q)v = / [(g®). 0@®) + (V4 (t,q(®), v®)) + (fu (@), v(1))] dt. )
—kT

Furthermore, critical points of I} are classical 2k T -periodic solutions of (HSy).
We have divided the proof of Theorem 1.1 into a sequence of lemmas.

Lemma 2.1. If V and f satisfy (A1)—(A4) then for every k € N the system (HSy) possesses a
2kT -periodic solution.

We will obtain a critical point of I; by the use of a standard minimizing argument, i.e. the
following

Theorem 2.2. (See [9, Theorem 4.4].) Let E be a Banach space, I : E — R a functional bounded
from below and differentiable on E. If I satisfies the Palais—Smale condition then I has a mini-
mum on E.

Let us remind that / satisfies the Palais—Smale condition if every sequence {u};en in E
such that {/(u;)} jen is bounded in R and I/(uj) — 0in E*, as j — oo, contains a convergent

subsequence.

Proof of Lemma 2.1. Set
. 2 :
B :=min{l, 2b}, M:=</|f(t)| dt) .
R

From (A4), M is finite. Moreover, we have

I fellyg,, <M. 3)
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Applying (Aj) and (A3z), for g € Ej, we receive

kT
1
Ii(g) > / (§|5](t)|2+V(t,o)+b}Q(1)|2+(fk(l)s61(f)))dt
—kT
kT
1,. 2 2
= [ (5|61(f)| +blg@)| +(fk(t),q(t))>dt
—kT
kT
>§||q||%k+ f (fe@), q@) dt
—kT
> Phar — 1 fell2 gl
/ZQEk kL%kTqu.
From this and (3) we get
I(q) > gnquék e 4

Consequently, I is a functional bounded from below.

We now show that I satisfies the Palais—Smale condition. Assume that {u;};en in Ej is a
sequence such that {/;(u;)};en is bounded and I,g(uj) — 0, as j — oo. Then there is Cy > 0
such that

[Tk (uj)| < Cr S
for each j € N. Combining (5) with (4) we receive
Bllujllg, —2M |lujl g, —2Ck <O0. (6)

Since B > 0, by (6) we conclude that {u;};en is a bounded sequence in Ej. Therefore it pos-
sesses a weakly convergent subsequence. Without loss of generality, we can assume that there
is u € Ey such that u; — u, as j — oo, which implies u; — u uniformly on [—kT,kT]. Thus
lluj — u||L%kT — 0, I; (u)(uj —u) — 0 and

kT

/ (Vg (t,uj (@) = Vg (t,u()), uj(t) —u())dt — 0,

—kT
as j — oo. Moreover, since I,é(uj) — 0, as j — o0, we have
(@ —w)| < [ plluj —ulg — 0.
Finally, using (2) we get
iy =il = (H ) = @) ) = w)
kT

— /(Vq(t,uj(t))—Vq(t,u(t)),uj(t)—u(t))dt.
—kT

Hence ||u; — ﬂ||L%kT — 0, and, in consequence, ||u; — ullg, — 0, as j — oo.
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By Theorem 2.2 we conclude that for every k € N there exists gx € Ey such that
Ii(qr) = inf Ii(q), (k) = 0. )
qEEL

Set

M+ M?*+28
p

Let us notice that o is independent of k. By (A3), for every k € N, we have I (0) = 0. Therefore
It (gx) < 0. Furthermore, from (4) it follows that for every k € N, if ||g| g, > o then Ix(g) > 1.
Hence, for each k € N,

0= > 0.

lgrlle, <o O ®)

Remark. From the inequality (4) we conclude that for each k € N, I is coercive. Applying some
elementary arguments we are able to prove that every [ is weakly lower semicontinuous. In this
way we also get a critical point of I (see [5, Theorem 1] and [9, Theorem 1.1]).

For every p € NU {0}, let Cl‘zC (R, R™) denote the space of C”-smooth functions on R with
values in R” under the topology of almost uniformly convergence of functions and all derivatives

up to the order p.

Lemma 2.3. Let {gi}ren be the sequence defined by (7). Then there exists a subsequence
{qk;}jen convergent to a certain qq in CllOC (R, R™).

To prove this lemma we need the estimation made by Rabinowitz in [11].
Let L3, (R, R") be a space of 2kT-periodic essentially bounded measurable functions from
R into R" under the norm

lgllLge, == esssup{|q(n)|: t € [=kT,kT1}.

Fact 2.4. (See (2.18) in [11].) There exists C > 0 such that for each k € N and for each q € Ey,
lgllege, < Cliglle,- )

Proof of Lemma 2.3. First, we will show that {g}ren, {Gk}ken and {Gk}xen are equibounded
sequences.
Combining (8) with (9), for each k € N, we get

larlizse, < Cligrle, < Ceo. (10)

2kT

Since g is a 2k T -periodic solution of (HSy), for every t € [—kT,kT)
Gi(t) = Vo (t. qr(®)) + fi(0).
From this and (Ag)
x| < |Va (£, ac )| + | | = |V (£, ac )] + | F D]
|Va(t,ac )| + sulg}f(t)}
te

NN

forke Nandt € [—kT,kT). By (10) and (A1) we conclude that there exists a constant M| > 0
independent of k such that

lGrllLse, < M. (1)

2kT


http://mostwiedzy.pl

A\ MOST

1124 M. Izydorek, J. Janczewska / J. Math. Anal. Appl. 335 (2007) 1119-1127

Finally, for each k € N and ¢t € R, there is #; € [t — 1, ¢] such that
t
a0 = [ @) =0 - autt — 1
1—1
and

t
(1) = / G () ds + i (t0).
I

Thus

t
| < [ o)l ds + o) - aute = 1]

1—1
Consequently, for each k € N,

lgklirge, < Mi+2Co= M. (12)

2kT

To finish the proof it is sufficient to remark that {gi}xen and {gi}xen are equicontinuous.
Indeed, for every k € N and for all 7, s € R, we have

t

/iik(f)df

N

t

/\q'k(r)!dr

|k () — g (s)| = < < Myt —s|.

Similarly,
|9k (1) = qu(s)| < Malt = s1.
Applying now the Arzela—Ascoli lemma, we receive the claim.

Lemma 2.5. Let go: R — R” be a function determined by Lemma 2.3. Then qq is a solution of
(HS) such that qo(t) — 0 and go(t) — 0, as t — Fo00.

The proof of this lemma is based on two simple facts.

Fact 2.6. Let g : R — R" be a continuous map. If ¢ : R — R" is continuous at to then

lim 40 —4(0)
m ——————-=
t—1p t—1

q(to).

Fact 2.7. Let g : R — R" be a continuous map such that q is locally square integrable. Then

t+1 1

2
lg@)) <ﬁ< /(|q<s>|2+|c;<s>}2)ds) (13)

1
=3

foreveryt e R.
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The elementary proofs of these two facts can be found in [8, pp. 385-386]. Let us also remark
that from (13) we immediately obtain (9). In particular, if 7 > % then one can choose C = /2.

Proof of Lemma 2.5. First, we will show that g satisfies (HS).
By Lemmas 2.1 and 2.3, we have gk; —> 40 in CIIOC(IR, R"™), as j — 00, and
Gy (1) = Vg (2, qr; () + fi; (1)

forevery j e Nand r € [—k;T,k;T). Take a, b € R such that a < b. There exists jo € N such
that for all j > jy and for every ¢ € [a, b] we have

G (1) =V (1, qr; () + f(0).

In consequence, for j > jo, Ejkj is continuous in [a, b] and c'jkj () = V4(t,qo(t)) + f(t) uni-
formly on [a, b]. From Fact 2.6 it follows that 'q'kj is a classical derivative of c}kj in (a, b) for
each j > jo. Moreover, since q'kj — o uniformly on [a, b], we get

Vo (1. q0(0) + £() = Go(t)

for every t € (a, b). Since a and b are arbitrary, we conclude that g satisfies (HS).
In the next step we will prove that go(¢) — 0, as t — Fo0.
Remark that for every [ € N there is jy € N such that for j > jy, we have

IT
2 . 2
/ (la; O + la, ) dr < llgws I, < 0*
—IT
From this and Lemma 2.3 it follows that for each / € N,
IT
2 . 2 2
/ (lao®]" + |go®|") dr < 0.
—IT
Letting / — oo, we obtain

o]

f (a0 + |go®)]*) dr < .

Hence
/(|610(t)|2+|éo(t)}2)dt—>0, (14)
[t|=>r

as r — 00. By (13) and (14), we get go(t) — 0, as t — £oo.
Finally, we will show that go(¢) — 0, as t — £o0.
Applying (13), we receive

t+3 1
2
|qo<r)|<¢§< f(|qo(s)|2+|éo<s>|2)ds)

=3
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for every ¢ € R. From (14), we have
t+3
[ |c}0(s)|2ds — 0,
as t — Fo00. Therefore, it suffices to observe that
t+2
/ |q0(s)’ ds — 0,
=3

as t — *o0. Since g is a solution of (HS), we have

t+3 t+1 t+4
/|q0(s)| ds_/|Vq(s qo(s) | ds+/|f(s)| ds
-3 =3 -3

t+3

+2 | (Vg(s.q0()), f(9))ds

t

|
D=

and so

t+2 t+2 l‘+2

/|q0(s)| ds < /|Vq(s qo(s) i ds+/|f(s)| ds

I—l

Nl
I\)I

t+3 1 t+3

(/|v 5.009)| ds) (/|f<s>| ds) .

I—*

I\J\

(A4) implies that
1+3%
/ |f(s)|2ds — 0,
ast — Foo.
Take & > 0. By (Az), V,;(¢,0) =0 for each t € R. From (Ay), there is § > 0 such that for
teRand |g| <4, |V,(t, q)| < &. Moreover, there is » > 0 such that if [¢| > r, then |go(?)| < 5.
Hence, if || > r + 1,

t+2

/|V s, qo(s))| ds < &*

N\

which completes the proof. O
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