
TASK QUARTERLY 11 No 4, 439–447

THE CFD MODELING

IN BIOREACTOR TRACER STUDIES

PIOTR ZIMA

Gdansk University of Technology,

Faculty of Civil and Environmental Engineering,

Narutowicza 11/12, 80-952 Gdansk, Poland

pzim@pg.gda.pl

(Received 15 July 2007)

Abstract: This paper presents the effects of dispersion on predicting longitudinal tracer concen-

tration profiles in an activated sludge bioreactor located at the Wschód Waste-Water Treatment

Plant in Gdansk. The aim of this study has been to use the one-dimensional advection-dispersion

equation to simulate a non-active substance flow (based on the measured tracer concentration). The

simulation results were compared with those obtained in the traditional tanks-in-series approach,

commonly used in designing biological reactors. The dispersion coefficient was calculated from a sta-

tistical formula based on differences in the tracer concentration distributions at two sampling points.

The study has shown that the numerical simulation using the one-dimensional tracer migration

equation yields better results than the tanks-in-series model in predicting longitudinal tracer con-

centration profiles. This paper is an introduction to the study of reactive substances in activated

sludge bioreactors.

Keywords: mathematical modelling, pollutant migration, reactor hydraulics, advection-dispersion

equation, tracer studies

1. Introduction

Longitudinal concentration profiles of continuous flow activated sludge reactors

can be solved numerically with the advection-dispersion equation (ADE). Several

numerical techniques for solving ADE have been successfully applied [1, 2], usually

based on the finite difference method (FDM), the finite element method (FEM) or the

finite volume method (FVM). The aim of this study, carried out at the Wschód Waste-

Water Treatment Plant (WWTP) in Gdansk, was to apply ADE in simulation of flow

conditions (based on tracer concentrations at selected points). The results obtained

from the simulations were compared with those based on the traditional tanks-in-

series approach, commonly used in designing biological reactors.
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2. Mathematical models of dissolved matter migration

In general, transport of dissolved matter, defined as concentration, ci, can be

described as follows [3]:

∂ci
∂t
+(u∇)ci=DTi∆ci+

m
∑

j=1

Sij , (1)

where:

ci – inert tracer concentration (i – dissolved matter, M
1L−3),

t – time (T 1),

u – the vector of velocity (L1T−1),

∇ – the nabla operator (L−1),

DTi – the effective diffusion coefficient of substance i (L
2T−1),

∆ – the Laplace operator (L−2),
∑m
j=1Sij – the sum of m source terms (M

1L−3T−1).

2.1. One-dimensional model

The equation describing the transport of dissolved matter in an activated sludge

reactor is a one-dimensional (1D) ADE:

∂ci
∂t
+
1

A
·
∂(u ·A ·ci)

∂x
=
1

A
·
∂

∂x

(

A ·DTL ·
∂ci
∂x

)

+

m
∑

j=1

Sij , (2)

where:

A – the reactor’s cross-section area (L2),

u – velocity along the reactor (L1T−1),

x – distance along the reactor’s axis (L1),

DTL – the longitudinal dispersion coefficient (variable along the reactor, L
2T−1).

If the sum of source terms
∑m
i=1Sii = 0, Equation (2) describes the transport

of a tracer.

At the same time, the complete-mix and plug-flow model of reactors is the

most commonly used in wastewater treatment [4]. In this model, the concentration,

ci, of a non-reactive tracer is distributed uniformly across the cross-sectional area of

the control volume. The material balance of this approach for the differential volume

element can be written as follows:
∂ci
∂t
∆V =Qci|x−Qci|x+∆x, (3)

where:

∆V – a differential volume element (L3),

Q – the volumetric flow rate (L3T−1),

x – a point along the reactor’s length (L1),

∆x – differential distance (L1).

By substituting the differential form for the Qci|x and Qci|x+∆x terms and

substituting A∆x for ∆V , we obtain Equation (3) in the following form:

∂ci
∂t
=−
Q

A

∆ci
∆x
. (4)

Equation (4) describes the change of tracer concentration in a single tank about

length ∆x and volume ∆V . In practice, tanks are used in series (effluent of signal ci
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from the previous tank is the influent to the next tank). This model is known in the

literature as the tanks-in-series or TIS model. The TIS model is characteristic for fully

mixed flows with Poisson distribution.

3. Numerical methods

Equations (2) and (4) were solved using FVM. As finite volume methods

are closely related to finite difference methods, FVM can be interpreted as a finite

difference approximation to a differential equation. In one-dimension space, FVM

is based on subdividing the domain into intervals (finite volumes, grid cells) and

approximation to the integral of unknown function ci(x,t) over each of these volumes.

The values of ci (notated as C) are updated using approximations to the flux through

cell edges (see Figure 1).

Figure 1. FVM for updating the cell average by fluxes at cell edges

In general, the value of C in FVM [2] can be computed as follows:

Cn+1j =Cnj −
∆t

∆x

[

Fnj+1/2−F
n
j−1/2

]

, (5)

where:

∆x, ∆t – space and time steps,

n – the time level (n+1= tn+1= tn+∆t),

Fnj+1/2, F
n
j−1/2 – approximations to the average flux of the ci value along x=xj+1/2

and x=xj−1/2:

Fnj−1/2≈
1

∆t

∫ tn+1

tn

f
(

ci(xj−1/2,t)
)

dt, (6)

Fnj+1/2≈
1

∆t

∫ tn+1

tn

f
(

ci(xj+1/2,t)
)

dt. (7)

We can consider the flux to depend on derivatives of the solution as ∂ci∂x :

f

(

∂ci
∂x
,x

)

=−β(x)
∂ci
∂x
, (8)

where β – a proportional coefficient.

Given two cell averages, Cj−1 and Cj , the flux at the cell interface between

them can be defined as

Fnj−1/2≈−
1

∆t

∫ tn+1

tn

[

βj−1/2

(

∂ci
∂x

)

j−1/2

]

dt. (9)

Equation (9) is a macroscopic version of the first Fick law and β (referred to as the

proportional coefficient above), measuring the dispersity between neighboring cells.

tq411j-e/441 30IX2008 BOP s.c., http://www.bop.com.pl

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


442 P. Zima

There are numerous ways in which Equation (3) can be implemented for

fluxes (6), (7) and (9) in numerical practice. Equation (2) can be solved using the

splitting technique algorithm, a method assuming splitting the problem into two

simple, autonomous tasks. In practice, it is often the simplest and most efficient to

use different methods for the advection and dispersion parts [2].

In this paper, the two-step Lax-Wendroff method (LWM2), Figure 2, is used

for the hyperbolic problem, i.e. advection Equation (4) and advection part of

Equation (2). One approach is to first approximate ci at the midpoint in time and

evaluate the flux at this point. The LWM2 is of this form with fluxes:

Fnj−1/2= f
(

C
n+1/2
j−1/2

)

, (10)

Fnj+1/2= f
(

C
n+1/2
j+1/2

)

, (11)

where:

n – the time level (n+1/2= tn+1/2= tn+0.5∆t),

C
n+1/2
j−1/2 , C

n+1/2
j+1/2 – the value of ci at the midpoint of a time step,

C
n+1/2
j−1/2 =

1

2

(

Cnj−1+C
n
j

)

−
∆t

2∆x

[

Fnj −F
n
j−1

]

, (12)

C
n+1/2
j+1/2 =

1

2

(

Cnj +C
n
j+1

)

−
∆t

2∆x

[

Fnj+1−F
n
j

]

, (13)

and, finally, the main LWM2 formula is as follows:

Cn+1j =Cnj −
∆t

∆x

[

F
n+1/2
j+1/2 −F

n+1/2
j−1/2

]

. (14)

Figure 2. The two-step Lax-Wendroff method approach

This scheme enables achievement of second-order accuracy in approximation

to integral (3) [2, 5]. Stability analysis leads to the Courant-Friedrichs-Lewy (CFL)

necessary stability condition:

ν≡

∣

∣

∣

∣

ū∆t

∆x

∣

∣

∣

∣

≤ 1, (15)

where:

ū – the average velocity,

ν – a ratio referred to as the Courant or CFL number.
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As the second step of the splitting technique algorithm, the parabolic problem

(dispersion equation) is solved using the implicit Crank-Nicholson Method (CNM). In

this scheme, fluxes (9) will be as follows [5]:

Fnj−1/2=−
1

2∆x

[

βj−1/2(C
n
j −C

n
j−1)+βj−1/2(C

n+1
j −Cn+1j−1 )

]

, (16)

Fnj+1/2=−
1

2∆x

[

βj+1/2(C
n
j+1−C

n
j )+βj+1/2(C

n+1
j+1 −C

n+1
j )
]

. (17)

Formulas (16) and (17) are natural approximations to the time-averaged flux (9)

and make scheme second-order accurate and unconditionally stable [5].

4. Site measurements

Site measurements were carried out at the Gdansk Waste-Water Treatment

Plant (WWTP). The bioreactors in the Gdansk WWTP work in the Modified Univer-

sity of Cape Town (MUCT) process configuration with an additional deoxic zone in

the internal recirculation line from the aerobic zone to the anoxic zone (see Figure 3).

The volume of a single bioreactor is 26350m3, of which the aerobic zone occupies

11700m3. During the measurements, the influent flow rate varied within the 1249–

1580m3/h range, while the mixed liquor and returned activated sludge recirculations

remained constant at 4694m3/h and 838m3/h, respectively. This data was used to

determine the average velocity along the reactor chamber.

Tracer studies were carried out in the bioreactor aerobic zone at the Wschód

WWTP using Rhodamine WT 20% (RWT) as a fluorescent tracer. The zone was

designed as a plug flow reactor with the width of 8m, height of 5.5m and total length

of 252m. The dye samples were analyzed on-site with a Turner Designs Aquafluor

handheld fluorometer. After background fluorescence analysis of mixed liquor samples,

1.0dm3 of the RWT was injected at the aeration zone’s inlet. Mixed liquor samples

(V =3cm3) were taken for fluorescence measurements at three points located at the

zone’s inlet (sampling point SP0, x= 0), in its middle (SP1, x= 130m) and at the

outflow (SP2, x=252m). Samples were withdrawn with frequencies of 5–20min. The

fluorometer was calibrated before each run of the fluorescence measurements.

During the tracer study, the dispersion coefficient, DTL, was determined. The

value of the dispersion coefficient was estimated using the statistical method of

Fischer et al. [6] based on data series at two sampling points:

DTL=

(

q
A

)2
(σ22−σ

2
1)

2∆T
, (18)

where:

q – the flow rate (L3T−1),

A – cross-section area (L2),

σ2i – standard deviation of i series (T
2),

∆T – time interval between series peaks (T 1).
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444 P. Zima

Figure 3. Layout of the aerated zone of the activated sludge bioreactor at the Wschód WWTP

in Gdansk (black arrows indicate the sampling points, SP)

The standard deviation of i series is estimated from the following formula:

σ2i =
M2i
M0i
−µ2i (i=1,2), (19)

where µi – i series’ mean value,

µi=
M1i
M0i
, (20)

where, in turn, Mji – i series’ moment distribution (j=0, 1, 2):

M0i=

∫

∞

−∞

ci(x= SPi,t)dt, (21)

M1i=

∫

∞

−∞

tci(x= SPi,t)dt, (22)

M2i=

∫

∞

−∞

t2ci(x= SPi,t)dt. (23)

Using the tracer concentrations measured at the sampling points, marked as SP

in Figure 3, values of the dispersion coefficient, DTL, were calculated to be different in

the different aerobic zones. Due to differences in mixing intensity between the aerobic

zone’s compartments, it was necessary to use different values of DTL at the sampling

points (compartments 1–3 and compartments 4–6):

• DTL=0.47m
2/s in the first section (from x=0 to x=130m) and

• DTL=0.37m
2/s in the second section (from x=130m to x=252m).

5. Numerical calculations and discussion of results

The mathematical model described by Equation (2) was used to simulate

a tracer flow in the GdanskWWTP’s bioreactor. The flow parameters were steady and

the advection part of Equation (2) assumed its standard hyperbolic form. In order to

apply methods described in Section 3, the 1D domain x (the axis of symmetry of the
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Figure 4. Dimensions of the activated sludge reactor located at the Wschód WWTP (in cm)

Figure 5. Discretization of the one-dimensional domain

bioreactor’s compartments, see Figure 4) was discretized into a set of linear segments

(cells). Each segment was defined by its edge points (cell interfaces, see Figure 5).

The domain’s length (L = 252m) was divided into segments ∆x = 0.1m.

Equation (2) required initial and boundary conditions; the initial ci(x,t = 0) = 0

condition and stability condition (15) were met during simulations and data from the

SP0 point was taken as the left boundary (Dirichlet-type) condition. The Neumann

type of condition
(

∂ci
∂x =0

)

was used as the right boundary.

Figure 6. Measured vs. predicted concentrations of RWT in the aerobic zone of the activated

sludge bioreactor during the tracer study at the Wschód WWTP
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Figure 6 illustrates the simulation results obtained using 1D ADE without the

source terms (Equation (2)). There is good correspondence between the numerical

solution and the measurement data.

In the study next stage, the TIS model was used to numerically simulate tracer

concentration profiles in the activated sludge system (Equation (4)). This model

is the traditional approach, commonly used in designing biological reactors. The

reactor’s domain was partitioned into tanks: six tanks were applied in this approach,

the number assumed on the basis of natural chamber construction. The results of

those simulations, correlated with the ADE solution and the tracer concentrations

at the sampling points, are shown in Figure 7. The hydraulic model (tanks-in-series)

consisted of a series of six completely mixed reactors (without dispersion). In this case,

the peak concentrations were predicted accurately but were shifted in time (10.5 and

22min for SP1 and SP2, respectively).

Figure 7. Concentrations of RWT in the aerobic zone of the activated sludge bioreactor during

the tracer study at the Wschód WWTP: measured vs. predicted by two models

6. Summary and conclusions

The results of tracer studies carried out in the aerobic zone of the Wschód

WWTP bioreactor enabled developing a complex Computational Fluid Dynamics

(CFD) model (advection-dispersion) for predicting longitudinal profiles of non-reactive

pollutant concentrations. The one-dimensional ADE without source terms was used,

solved using FVM. The numerical solution of this model was split into two independent

problems: the hyperbolic advection equation and the parabolic dispersion equation.

The two-step Lax-Wendroff method was used for the hyperbolic problem, while

the dispersion part was approximated using the implicit Crank-Nicholson scheme.

The statistical method was used to estimate the values of the dispersion coefficient,

DTL, which were 0.47 and 0.37m
2/s, respectively, in the bioreactor’s two sections of

different mixing intensities. The obtained numerical simulation results were compared

with the traditional approach (the tanks-in-series model) and site data from the

Gdansk WWTP bioreactors. The numerical simulations demonstrated meaningful
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differences between the traditional and the presented methods of predicting non-

active profile concentrations. The traditional tanks-in-series model was found to

yield an inadequate description of dissolved matter’s migration in reactors with

intensive mixing. Better simulation results for such problems can be ensured using

CFD equations.

The study of reactive substance in activated sludge bioreactors will be con-

tinued.
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