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Abstract

In certain applications of nonstationary system identification the model-based decisions can be postponed, i.e. executed with
a delay. This allows one to incorporate in the identification process not only the currently available information, but also a
number of “future” data points. The resulting estimation schemes, which involve smoothing, are not causal. Assuming that
the infinite observation history is available, the paper establishes the lower steady-state estimation bound for any noncausal
estimator applied to a linear system with randomly drifting coefficients (under Gaussian assumptions). This lower bound
complements the currently available one, which is restricted to causal estimators.
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1 Introduction
Consider the problem of identification of a linear time-
varying system governed by

y(t) = ϕT(t)θ(t) + v(t) (1)

θ(t) = θ(t− 1) + w(t) (2)

where y(t) denotes the system output, ϕ(t) = [ϕ1(t), . . . ,
ϕn(t)]T is a known regression vector, v(t) denotes white
measurement noise, θ(t) = [θ1(t), . . . , θn(t)]T is the vec-
tor of unknown and time-varying system coefficients and
w(t) stands for the one-step parameter change.
In this paper we will focus on systems with randomly
drifting parameters, namely we will assume that {w(t)}
is a white noise sequance. Under such assumption (2)
becomes the so-called random-walk (RW) model. Sys-
tems with RW parameter changes have been extensively
studied in the literature on identification of nonstation-
ary processes as they allow one to arrive at analytical
results. Therefore, even though from the practical view-
point the RW model may be criticized as “unrealistic”,
it is widely used as a benchmark for evaluation and com-
parison of tracking performance of different identifica-
tion schemes, such as Kalman filter based (KF) algo-
rithms, exponentially weighted least squares (EWLS) al-
gorithms and least mean squares (LMS) algorithms – see
e.g. (Guo & Ljung, 1995),(Macchi, 1995), (Haykin, 1996)
and (Niedźwiecki, 2000). Naturally, evaluation of uni-
versal estimation bounds for such a benchmark problem
is interesting from the theoretical viewpoint.
Under Gaussian assumptions the steady-state value

of the Cramér-Rao type lower estimation bound, for
the system (1) - (2) with parameters evolving accord-
ing to the RW model, was established in the paper of
(Ravikanth & Meyn, 1999). Since the bound derived
there was restricted to causal estimation schemes, used
for parameter tracking, it will be further referred to as
lower tracking bound (LTB). By causal we mean esti-
mators that specify θ̂(t) in terms of the current and
past data only: y(s),ϕ(s), s ≤ t. While in the adaptive
prediction and control problems, studied in (Ravikanth
& Meyn, 1999), causality is an obvious requirement,
there are some other important applications, such as
adaptive noise canceling or adaptive channel equal-
ization, where the parameter-based decisions can be
executed with a delay of a certain number of sampling
intervals. In cases like this, the estimate of θ(t) can be
based not only on all past, but also on a number of
future data points: y(s),ϕ(s), s > t. Since estimation
accuracy of such noncausal estimation schemes, which
incorporate smoothing, exceeds accuracy of their causal
counterparts, it is important to know what is the pos-
sible margin of improvement. To address this problem,
we will derive expression for the steady-state value of
the lower smoothing bound (LSB). Since LSB specifies
the best achievable accuracy of any parameter estima-
tion scheme (whether causal or not) for a time-varying
system at hand, in some sense it may be considered a
more fundamental limitation than LTB.
The paper is organized as follows. Section 2 summarizes
the current state of knowledge about estimation bounds
applicable to time-varying systems. Section 3 presents
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the optimal noncausal estimation scheme for identifica-
tion of linear systems with parameters drifting according
to the random walk model. The lower smoothing bound
for such systems is established in Section 4. Section 5 de-
scribes a computationally inexpensive smoothing proce-
dure with sub-LTB performance. Finally, Section 6 con-
cludes.

2 Estimation bounds in identification of time-
varying systems

When the system is time-invariant, i.e. θ(t) = θ, ∀t
(or equivalently w(t) ≡ 0) and when the probabil-
ity density function of v(t) obeys some regularity
conditions, the best achievable accuracy of any un-
biased estimator θ̂(N) of θ, based on the data set
Z = {y(1),ϕ(1), . . . , y(N), ϕ(N)}, is determined by the
celebrated Cramér-Rao inequality:

cov[θ̂(N)|Z] = E
[
(θ̂(N)− θ)(θ̂(N)− θ)T|Z

]
≥ F−1

N

(3)
where

FN = −E
[

∂2

∂θ∂θT
L(θ;Z)

]

is the Fisher information matrix (assumed to be nonsin-
gular), L(θ;Z) = log p(Z|θ) denotes the log-likelihood
function and averaging is carried over all realizations of
the measurement noise sequence V = {v(t), 1 ≤ t ≤ N}.
Finally, ≥ denotes partial ordering among nonnegative-
definite matrices. The matrix F−1

N is referred to as the
Cramér-Rao (lower) bound (CRB).
Suppose that

(A1) The noise process {v(t)} is an independent and
identically distributed (i.i.d.) sequence with Gaussian
probability density function N (0, σ2

v).

Under (A1) the Cramér-Rao inequality for the time-
invariant system takes the form

cov[θ̂(N)|Z] ≥ σ2
v

[
N∑

t=1

ϕ(t)ϕT(t)

]−1

(4)

The derivation of CRB (4) is based on the assumption
that θ is an unknown deterministic variable and that
{ϕ(1), . . . , ϕ(N)} is a known deterministic sequence
(e.g. a particular realization of a stochastic process).
We will further assume that

(A2) The regression vector process {ϕ(t)}, indepen-
dent of {v(t)}, is stationary and ergodic with covari-
ance matrix E[ϕ(t)ϕT(t)] = Φ > 0.

When {ϕ(t)} is a stochastic process and when averaging
is extended to all possible realizations of φ = {ϕ(t), 1 ≤
t ≤ N}, one obtains the following result

cov[θ̂(N)] ≥ E
[
F−1

N

] ≥ [ E[FN ] ]−1 = BMCRB (5)

which stems from the Jensen’s inequality for matrices –
see (Olkin & Pratt, 1958).
For the time-invariant system obeying (A1) and (A2)
one obtains

cov[θ̂(N)] ≥ σ2
v

(
E

[
N∑

t=1

ϕ(t)ϕT(t)

])−1

=
σ2

vΦ
−1

N

(6)
Remark

The matrix BMCRB in (5) minorizes, i.e. bounds from be-
low, the mean Cramér-Rao bound E

[
F−1

N

]
. Evaluation

of the exact expression for the mean CRB is usually not
possible. As an interesting special case, where this can
be done, consider the situation where {ϕ(t)} is an i.i.d.
Gaussian sequence. Since under such assumption the re-
gression matrix

∑N
t=1 ϕ(t)ϕT(t) is Wishart-distributed

with N degrees of freedom, from the properties of the
inverted Wishart distribution it stems that

σ2
vE




(
N∑

t=1

ϕ(t)ϕT(t)

)−1

 =

σ2
vΦ

−1

N − n− 1

Note that in this case the actual mean Cramér-Rao
bound E

[
F−1

N

]
differs from [E[FN ] ]−1 by terms of or-

der o(1/N), i.e. the approximation is tight.

For time-invariant systems CRB decays to zero as the
number of data points N increases to infinity. This is
understandable since with growing N the amount of in-
formation about θ, gathered in the data set Z, increases.
For time-varying systems the situation is more compli-
cated. First, one should realize that certain classes of
time-varying systems can be reduced to time-invariant
ones, i.e. they can be described, in the entire time do-
main, by models with constant coefficients. Consider, for
example, the system (1) - (2) with constant one-step pa-
rameter changes: w(t) ≡ wo. Note that in this case the
vector θ(t) can be written down in the form

θ(t) = wot + w1

i.e. it can be parameterized in terms of time-invariant
coefficients wo and w1. Defining the generalized regres-
sion vector ψ(t) = [t ϕT(t), ϕT(t)]T and a new (time-
invariant) parameter vector α = [wT

o ,wT
1 ]T one can ex-

press system equation (1) in the form

y(t) = ψT(t)α + v(t)

which falls into the analysis framework described earlier.
After determining the lower bound for α̂(N) =
[ŵT

o (N), ŵT
1 (N)]T

cov[α̂(N)] ≥ σ2
v

(
E

[
N∑

t=1

ψ(t)ψT(t)

])−1
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=
2σ2

v

N(N − 1)

[
6Φ−1/(N + 1) −3Φ−1

−3Φ−1 (2N + 1)Φ−1

]
= AN

one can easily compute the analogous bound for
θ̂(t|N) = ŵo(N)t + ŵ1(N), 1 ≤ t ≤ N :

cov[θ̂(t|N)] ≥ GT
t ANGt = Ht|N

where Gt = [tIn|In]T, In denotes the n × n identity
matrix and

Ht|N =
2[6t2 − 6t(N + 1) + (N + 1)(2N + 1)]σ2

v

N(N − 1)(N + 1)
Φ−1

Denote by On the n × n zero matrix. Observe that,
as in the constant parameter case, it holds that
limN 7→∞Ht|N = On, ∀t ∈ [1, N ], i.e. the more data is
available, the more accurate the parameter estimates.
Time-varying systems that cannot be “reduced” to time-
invariant ones will be called irreducible. Quite obviously,
all systems with random coefficients fall into this cate-
gory. When the parameter vector θ(t) in (2) is a stochas-
tic variable, the classical Cramér-Rao inequality does
not apply. A bound that is similar to CRB, but can be
applied to signals/systems with random coefficients, was
derived by van Trees (van Trees, 1968); later on it was
called posterior Cramér-Rao (lower) bound (PCRB) in
(Tichavský, 1995) and (Tichavský, Muravchik & Neho-
rai, 1998).
Not getting into details, we will remark that PCRB can
be expressed as an inverse of a posterior Fisher matrix –
the sum of the expected value of the standard Fisher in-
formation matrix (averaging being carried over different
realizations of Θ = {θ(t), 1 ≤ t ≤ N}, i.e. over different
realizations of W = {w(t), 1 ≤ t ≤ N} and θ(0)), and
another matrix, which represents the a priori informa-
tion about the evolution of θ(t). While CRB deals with
unbiased estimates and depends on the likelihood func-
tion p(Z|θ), PCRB applies to biased estimates (under
some mild regularity conditions imposed on the bias)
and depends on the joint probability density function
p(Z,θ).
Unlike the time-invariant and reducible time-varying
system cases, discussed earlier, when θ(t) is a nondeter-
ministic stochastic process, the posterior Cramér-Rao
bound does not decay to zero as the number of data
points grows to infinity. This means that no matter
how large the data size and no matter the identifica-
tion technique, the parameter estimates derived for an
irreducible nonstationary process will never actually
converge to their true values; instead they will follow
parameter changes with some finite accuracy limited by
PCRB.
The stochastic version of the Cramér-Rao inequality,
derived by van Trees, was successfully used to deter-
mine lower bounds for some nonlinear estimation prob-
lems, such as tracking of quasi-periodically varying sig-
nals (Tichavský, 1995), (Tichavský, Muravchik & Ne-

horai, 1998) and systems (Niedźwiecki & Kaczmarek,
2006). For a linear system (1) - (2) subject to Gaussian
assumptions, the minimum mean-square causal estima-
tor of θ(t), i.e. the one that actually attains the poste-
rior Cramér-Rao bound, can be expressed in a recursive
form known as the Kalman filter. This fact was taken
advantage of in (Ravikanth & Meyn, 1999), where the
lower bound on the steady-state value of the PCRB was
derived by means of bounding the error covariance ma-
trices, recursively updated by the Kalman filtering al-
gorithm. We will extend these results to the Kalman
smoother which, under the same assumptions, is known
to be the optimal noncausal estimator of θ(t).
Since the measurement matrix in the state-space sys-
tem description (1) – (2), equal to ϕ(t), is time-varying
and data-dependent, the corresponding Cramér-Rao
filtering/smoothing bounds cannot be expressed in a
closed form – they have to be computed recursively us-
ing the Kalman filter/smoother covariance relationships
(see (Šimandl, Královec & Tichavský, 2001) for their
extension of Kalman covariance recursions to nonlinear
systems). In contrast with this, the lower estimation
bounds presented in (Ravikanth & Meyn, 1999) and
derived below, are time-invariant and data-independent
and hence they allow one to explicitly relate the limit-
ing estimation accuracy to the second-order statistics
of {v(t)}, {ϕ(t)} and {w(t)}.
3 Optimal noncausal estimator
Consider any instant t ∈ [1, N ] and denote by
Z−(t) = {y(1), ϕ(1), . . . , y(t), ϕ(t)} ⊂ Z and Z+(t) =
{y(t),ϕ(t), . . . , y(N),ϕ(N)} ⊂ Z the sets of “past and
current” and “current and future” measurements, re-
spectively. It is well known, cf. (Lewis, 1986), that the
optimal, in the mean-square sense, estimator of θ(t) has
the form

θ̂(t) = E[θ(t)|Z] (7)
where averaging is carried over different realizations of
V, W and θ(0).
Suppose that

(A3) The process of one-step parameter changes
{w(t)}, independent of {v(t)} and {ϕ(t)}, is an
i.i.d. sequence with Gaussian probability function
N (0,W); the initial parameter vector θ(0) is a
random variable, independent of {v(t)}, {w(t)}
and {ϕ(t)}, with Gaussian prior density function
N (θo,Po).

Under (A1) - (A3) the conditional mean estimator (7)
can be expressed in the form (Lewis, 1986)

θ̂(t) = P(t)
[
P−1
− (t|t)θ̂−(t|t) + P−1

+ (t|t + 1)θ̂+(t|t + 1)
]

= P(t)
[
P−1
− (t|t− 1)θ̂−(t|t− 1) + P−1

+ (t|t)θ̂+(t|t)
]

(8)

P(t) = cov[θ̂(t)|Z] =
[
P−1
− (t|t) + P−1

+ (t|t + 1)
]−1

=
[
P−1
− (t|t− 1) + P−1

+ (t|t)]−1
(9)
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where θ̂±(t|t) = E[θ(t)|Z±(t)] and θ̂±(t|t ± 1) =
E[θ(t)|Z±(t ± 1)] are the parameter estimates/predic-
tions based on the past (−) and future (+) measure-
ments, respectively, and P±(t|t), P±(t|t± 1) denote the
corresponding error covariance matrices.
All quantities needed to evaluate (8) can be computed re-
cursively using two Kalman filters: one running forward
in time (−) and another one, designed for the reverse-
time system model, running backward in time (+). Both
filters can be compactly written down in the form

P±(t|t± 1) = P±(t± 1|t± 1) + W

θ̂±(t|t± 1) = θ̂±(t± 1|t± 1)

k±(t) =
P±(t|t± 1)ϕ(t)

σ2
v + ϕT(t)P±(t|t± 1)ϕ(t)

P±(t|t) = P±(t|t± 1)

− P±(t|t± 1)ϕ(t)ϕT(t)P±(t|t± 1)
σ2

v + ϕT(t)P±(t|t± 1)ϕ(t)

ε±(t) = y(t)−ϕT(t)θ̂±(t|t± 1)

θ̂±(t|t) = θ̂±(t|t± 1) + k±(t)ε±(t) (10)

The initial conditions should be set to θ̂−(0|0) = θo,
P−(0|0) = Po – for the forward filter, and θ̂+(N |N) =
0, P−1

+ (N |N) = On – for the backward filter. According
to (10) the optimal parameter estimate θ̂(t) can be ob-
tained as a linear combination of the estimates yielded
by the forward Kalman filter θ̂−(t|t) and the backward
Kalman predictor θ̂+(t|t + 1), or equivalently, by com-
bining results provided by the forward Kalman predictor
θ̂−(t|t− 1) and the backward Kalman filter θ̂+(t|t).

4 Lower smoothing bound

Since θ̂(t), given by (8), is the optimal estimator, the
minimum attainable error covariance matrix is equal to
E[P(t)], where averaging is carried over different real-
izations of φ. To arrive at steady-state expressions we
will assume that an infinite observation history is avail-
able, incorporating all past and all future data samples,
i.e. that: Z = {y(s),ϕ(s),−∞ < s < ∞}, Z−(t) =
{y(s),ϕ(s),−∞ < s < t} and Z+(t) = {y(s), ϕ(s), t <
s < ∞}. The corresponding steady-state expectation
will be denoted by E∞.
To arrive at the expression for the steady-state lower
estimation bound we will exploit results derived in
(Ravikanth & Meyn, 1999) for causal estimators. Given
that the infinite observation history is available, these
results hold for both forward and backward Kalman fil-
ters. Following Ravikanth & Meyn we will assume that

(A4) The sequences of covariance matrices {P±(t|t)}
and {P±(t|t± 1)} are asymptotically stationary.

As pointed out in (Ravikanth & Meyn, 1999), station-
arity of {P±(t|t)} and {P±(t|t ± 1)} is warranted if, in
addition to (A2), some stochastic persistence of excita-

tion conditions are imposed on {ϕ(t)}, such as condi-
tions formulated in (Guo, 1990), for example.
Let P∞ = E∞ [P±(t|t± 1)], P∗∞ = E∞ [P±(t|t)], Q∞ =
E∞

[
P−1
± (t|t± 1)

]
and Q∗

∞ = E∞
[
P−1
± (t|t)]. According

to (Ravikanth & Meyn, 1999), under (A1) – (A4) it holds
that

P∞ ≥ Q−1
∞ ≥ X−1

∞ (11)
where X∞ is the positive definite matrix satisfying the
equation

X∞WX∞ =
1
σ2

v

Φ (12)

Since P−(t|t− 1) = P−(t− 1|t− 1) + W, one arrives at

P∗∞ = P∞ −W ≥ X−1
∞ −W

This means that for any causal estimator of θ(t) the ma-
trix that minorizes the steady-state Cramér-Rao track-
ing (lower) bound can be written down in the form

BLTB = X−1
∞ −W (13)

As demonstrated in (Ravikanth & Meyn, 1999), the
above bound is tight when system parameters change
slowly with time and when {ϕ(t)} is a weakly dependent
sequence.
To arrive at the analogous smoothing bound note that,
according to (9) and Jensen’s inequality, it holds that

E∞[P(t)] = E∞
{[

P−1
− (t|t− 1) + P−1

+ (t|t) ]−1
}

≥ [
E∞[P−1

− (t|t− 1)] + E∞[P−1
+ (t|t)] ]−1

(14)
From (11) it follows that

E∞[P−1
− (t|t− 1)] = Q∞ ≤ X∞ (15)

Using the matrix inversion lemma (Söderström & Stoica,
1988) one can rewrite the covariance update equation

P+(t|t) = P+(t|t + 1)

− P+(t|t + 1)ϕ(t)ϕT(t)P+(t|t + 1)
σ2

v + ϕT(t)P+(t|t + 1)ϕ(t)

in the form P−1
+ (t|t) = P−1

+ (t|t + 1) + 1
σ2

v
ϕ(t)ϕT(t),

leading to

E∞[P−1
+ (t|t)] = Q∗

∞ = Q∞+
1
σ2

v

Φ ≤ X∞+
1
σ2

v

Φ (16)

Combining (9), (14), (15) and (16) one arrives at the fol-
lowing inequality, which establishes the lower smooth-
ing bound for all estimators of θ(t), including noncausal
ones

E
[
(θ̂(t)− θ(t))(θ̂(t)− θ(t))T

]

≥
[
2X∞ +

1
σ2

v

Φ
]−1

= BLSB (17)
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When system parameters change sufficiently slowly with
time, namely

W ¿ X−1
∞ (18)

it holds that BLTB
∼= X−1

∞ . Similarly, since the condition
(18) entails X∞WX∞ ¿ X∞ and consequently (cf.
(12)) (1/σ2

v)Φ ¿ X∞, one obtains BLSB
∼= (1/2)X−1

∞ .
Hence, under the slow variation condition one arrives at

BLSB
∼= 1

2
BLTB (19)

Remark 1

The model of parameter variation adopted in (Ravikanth
& Meyn, 1999) has the form θ(t) = fθ(t − 1) + w(t),
0 < f ≤ 1, i.e. it is more general than (2). Since the
reverse-time model for such a Markov process is θ(t−1)
= f?θ(t)+w?(t), where w?(t) = w(t)/f and f? = 1/f ≥
1, only the RW case (f = f? = 1) can be analyzed in the
way described above. According to (19), when f = 1, in-
corporation of future measurements allows one to halve
the lower estimation bound. This means that inclusion
of future measurements effectively doubles information
content of the analyzed data, i.e. there is as much new
information about θ(t) in the future observation history
as in the past. Generally, one can expect that the mar-
gin of improvement should decrease along with f – when
the coefficient f is small, i.e. when the sequence {θ(t)}
is rapidly mixing, the improvement achievable by means
of smoothing may be negligible.

Remark 2

Let ∆y(t) = ϕT(t)(θ(t) − θ(t − 1)) = ϕT(t)w(t). The
scalar coefficient

η(t) =

√
E[(∆y(t))2]

σ2
v

was proposed in (Macchi, 1995) as a measure of nonsta-
tionarity of the system governed by (1) - (2). Accord-
ing to Macchi, a system can be regarded as slowly time-
varying if it obeys the condition η(t) ¿ 1, ∀t. Note that
in the case considered this condition is equivalent to

η =

√
tr{ΦW}

σ2
v

¿ 1 (20)

It is straightforward to show that when either Φ or W
are similar to identity matrices, the condition (20) en-
tails (18). Suppose, for example, that W = σ2

wIn which
means that system coefficients evolve independently of
each other, with the same mean-square rate of change.
Note that in this special case equation (12) can be easily
solved for X∞

X∞ =
1

σwσv
Φ1/2

where the positive definite matrix Φ1/2, obeying
Φ1/2Φ1/2=Φ is the (unique) square-root of Φ. Condi-
tion (18) is then equivalent to σ2

wIn ¿ σwσvΦ−1/2, i.e.
to (σw/σv)Φ1/2 ¿ In. Denote by λmax(Φ) the maxi-
mum eigenvalue of Φ. Since Φ1/2 ≤

√
λmax(Φ) In <√

tr{Φ} In, a sufficient condition for (18) to hold is
(σw/σv)

√
tr{Φ} ¿ 1, which in the case considered is

identical with (20).
The case where Φ = σ2

ϕIn, i.e.

X∞ =
σϕ

σv
W−1/2

can be handled in an analogous way.

5 Some practical issues
The lower smoothing bound (17) was derived for an
infinite-lag smoother which is not realizable. In prac-
tice, instead of θ̂(t) = E[θ(t)|Z], one can use a fixed-lag
smoother θ̂(t− τ |t) = E[θ(t− τ)|Z−(t)], where τ is the
permissible decision delay. It can be shown that

cov[θ̂(t− τ |t)] ≤ cov[θ̂(t− τ |t− τ)], ∀τ ≥ 0

Fixed-lag smoothing can be realized using a Kalman fil-
tering algorithm designed for an augmented state space
model of parameter variation (Lewis, 1986). Denote by
θa(t) = [θT(t), . . . , θT(t−τ)]T the augmented state vec-
tor. Note that

θ̂a(t|t) = E[θa(t)|Z−(t)] = [θ̂T(t|t), . . . , θ̂T(t− τ |t)]T

which means that the smoothed estimate θ̂(t− τ |t) can
be “extracted” from the augmented parameter estimate
yielded by the Kalman filter designed to track θa(t). Al-
though conceptually very simple, the fixed-lag smoother
described above may be computationally very demand-
ing, even for moderate values of τ .
As pointed out in the classical paper of Hedelin
(Hedelin, 1977), delaying the state estimates provided
by the Kalman filter can be often regarded a subop-
timal form of smoothing. We will show that the same
“trick” can be used to obtain computationally attractive
smoothing procedures for identification of time-varying
systems.
As an example consider the following two-tap finite im-
pulse response (FIR) system, inspired by channel equal-
ization applications

y(t) = θ1(t)u(t) + θ2(t)u(t− 1) + v(t)
θ1(t) = θ1(t− 1) + w1(t)
θ2(t) = θ2(t− 1) + w2(t)

where v(t) ∼ N (0, σ2
v), [w1(t), w2(t)]T ∼ N (0, σ2

wI2)
and {u(t)} is a pseudo-random binary input sequence
(PRBS): u(t) = ±1, σ2

u = 1. Note that in this case
θ(t) = [θ1(t), θ2(t)]T and ϕ(t) = [u(t), u(t− 1)]T.
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E[J(τ)]
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Fig. 1. Dependence of the value of the parameter match-
ing error E[J(τ)] on the delay τ . The limiting values of the
mean-square parameter estimation errors, which follow from
the lower tracking bound (LTB) and from the lower smooth-
ing bound (LSB), are indicated by horizontal lines.

To check how well the estimated parameter trajectory
{θ̂−(t|t)}, yielded by the forward Kalman filter, matches
the delayed true parameter trajectory {θ(t − τ)}, the
following index was computed

J(τ) =
1

1000

3000∑
t=2001

|| θ̂−(t|t)− θ(t− τ) ||2 (21)

and averaged over 1000 different realizations of
{u(t), v(t), w(t)}. Note that summation in (21) starts at
the instant t = 2001, large enough to guarantee that the
KF algorithm reaches the steady-state behavior before
its performance is evaluated.
Figure 1 shows how the average value of J(τ) depends on
the delay τ in the case where σ2

v = 1 and σ2
w = 0.0025.

It is straightforward to check that in the case considered
BLTB

∼= (σwσv/σu)I2 = 0.05I2 and hence, according to
(17), it holds that

E[J(0)] = E[|| θ̂−(t|t)− θ(t) ||2] ≥ tr{BLTB} ∼= 0.1

The analogous bound for noncausal estimators, includ-
ing all fixed-lag smoothers θ̂(t − τ |t), τ > 0, is equal to
tr{BLSB} ∼= 0.05.
According to Figure 1, to achieve the sub-LTB perfor-
mance in a computationally cheap way it is sufficient to
regard θ̂−(t|t) as an estimate of the past parameter value
θ(t− τ), rather than as an estimate of its current value
θ(t), where τ is a judiciously chosen delay which must
be incorporated in the decision loop. More sophisticated
“cheap smoothing” identification schemes were recently
proposed in (Niedźwiecki, 2007).

6 Conclusion
We have considered the problem of identification of a
linear time-varying system with randomly drifting co-
efficients and we have established the Cramér-Rao type
lower estimation bound (LSB), which limits accuracy
of any estimator of system parameters, including non-
causal estimators. The obtained results complement
those derived earlier for causal estimation schemes
(LTB). Additionally, we have shown that the sub-LTB
performance can be achieved in a very simple way by
means of delaying parameter estimates yielded by the
Kalman filter based tracker.
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Niedźwiecki, M. & P. Kaczmarek (2006). Tracking analysis of
generalized adaptive notch filters. IEEE Trans. on Signal
Processing, vol. 54, 304–314.
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