Magdalena Lemańska, Agnieszka Patyk

WEAKLY CONNECTED DOMINATION CRITICAL GRAPHS

Abstract. A dominating set $D \subset V(G)$ is a weakly connected dominating set in G if the subgraph $G[D]_w = (N_G[D], E_w)$ weakly induced by D is connected, where E_w is the set of all edges with at least one vertex in D. The weakly connected domination number $\gamma_w(G)$ of a graph G is the minimum cardinality among all weakly connected dominating sets in G. The graph is said to be weakly connected domination critical $(\gamma_w$ -critical) if for each $u, v \in V(G)$ with v not adjacent to $u, \gamma_w(G + vu) < \gamma_w(G)$. Further, G is k- γ_w -critical if $\gamma_w(G) = k$ and for each edge $e \notin E(G), \gamma_w(G + e) < k$. In this paper we consider weakly connected domination critical graphs and give some properties of 3- γ_w -critical graphs.

Keywords: weakly connected domination number, tree, critical graphs.

Mathematics Subject Classification: 05C05, 05C69.

1. INTRODUCTION

Let G = (V, E) be a connected simple graph. The neighbourhood $N_G(v)$ of a vertex $v \in V(G)$ is the set of all vertices adjacent to v. For a set $X \subseteq V(G)$, the open neighbourhood $N_G(X)$ is defined to be $\bigcup_{v \in X} N_G(v)$ and the closed neighbourhood is $N_G[X] = N_G(X) \cup X$. We say that a vertex v is a universal vertex of G if it is a neighbour of every other vertex of a graph.

A subset D of V(G) is dominating in G if every vertex of V(G) - D has at least one neighbour in D. Let $\gamma(G)$ be the minimum cardinality among all dominating sets in G. The degree of a vertex v is $d_G(v) = |N_G(v)|$. Further, $D \subseteq V(G)$ is a connected dominating set in G if D is dominating and the subgraph G[D] induced by D in G is connected. The minimum cardinality among all connected dominating sets in G is called connected domination number of G and is denoted $\gamma_G(G)$.

A dominating set $D \subseteq V(G)$ is a weakly connected dominating set in G if the subgraph $G[D]_w = (N_G[D], E_w)$ weakly induced by D is connected, where E_w is the set of all edges with at least one vertex in D. Dunbar et al. [1] defined the weakly connected domination number $\gamma_w(G)$ of a graph G to be the minimum cardinality among all weakly connected dominating sets in G.

We say that a set $D \subseteq V(G)$ has the property \mathcal{F} in G if D contains no end-vertex of G.

We say that two vertices $a, b \in D$ are adjacent in D in a graph G if $ab \in E(G)$ or there is an (a-b)-path P in G such that no vertex $v \in P - \{a,b\}$ belongs to D. We denote by $d_G(a,b)$ the distance between two vertices $a,b \in V(G)$.

Here we consider connected graphs only. If G is a graph, let n = n(G) be the order of G and let $n_1 = n_1(G)$ denote the number of end-vertices of G. The set of all end-vertices in G is denoted by $\Omega(G)$. A vertex v is called a support if it is adjacent to an end-vertex.

A graph G is said to be γ -domination critical, or just γ -critical if $\gamma(G) = \gamma$ and $\gamma(G+e) = \gamma - 1$ for every edge e in the complement G of G. In [2] X.-G. Chen et al. defined the connected domination critical graphs. The graph is said to be connected domination critical in the following sense: for each $u, v \in V(G)$ with v not adjacent to $u, \gamma_c(G + vu) < \gamma_c(G)$. Further, G is $k-\gamma_c$ -critical if $\gamma_c(G) = k$ and for each edge $e \notin E(G), \gamma_c(G+e) < k$.

In this paper we study the weakly connected domination critical graphs. The graph is said to be weakly connected domination critical $(\gamma_w$ -critical) if for each $u, v \in V(G)$ with v not adjacent to $u, \gamma_w(G+vu) < \gamma_w(G)$. Thus, G is $k-\gamma_w$ -critical if $\gamma_w(G) = k$ and for each edge $e \notin E(G)$, $\gamma_w(G+e) < k$.

2. RESULTS

In [4] the following theorem has been proved.

Theorem 1. If G is a connected graph, then for any edge $e \in E(\overline{G})$, $\gamma_w(G) - 1 < 0$ $\gamma_w(G+e) \le \gamma_w(G)$.

Observation 1. If G is a connected graph with at most one cycle and D is a weakly connected dominating set in G, then there are at most two vertices a, b adjacent in D such that $d_G(a,b) > 2$ and then $d_G(a,b) = 3$. Additionally, there exists the unique (a-b)-path P in G whose inner vertices do not belong to D.

The following result is included in [1].

Theorem 2. If T is a tree of order n, then $\gamma_w(T) = n - \beta_0(T)$, where β_0 is the cardinality of maximum independent set of T.

The next observation is the immediate consequence of Theorem 2.

Observation 2. For a path P_n on n vertices, $\gamma_w(P_n) = \lfloor \frac{n}{2} \rfloor$.

Theorem 3. For a cycle C_n , $\gamma_w(C_n) = \lfloor \frac{n}{2} \rfloor$.

Proof. Let $G = C_n$. We may consider a cycle C_n as a path P_n with an added edge v_1v_n , where v_1, v_n are end-vertices of P_n . By Theorem 1 and Observation 2, there is $\gamma_w(C_n) = \gamma_w(P_n + v_1v_n) \le \gamma_w(P_n) = \lfloor \frac{n}{2} \rfloor$. Let D be a minimum weakly connected dominating set with property \mathcal{F} in G. From Observation 1, at least $\lfloor \frac{n}{2} \rfloor$ vertices must be in D and thus $\gamma_w(G) \geq \lfloor \frac{n}{2} \rfloor$. Hence $\gamma_w(G) = \lfloor \frac{n}{2} \rfloor$.

Since $C_n = P_n + v_1 v_n$, where v_1, v_n are end-vertices of P_n , we obtain the following corollary:

Corollary 4. The path P_n is not γ_w -critical.

Theorem 5. The cycle C_n is γ_w -critical if and only if n is even.

Proof. Let $G = C_n + e$, where e is an edge belonging to $\overline{C_n}$. Since it is easy to observe that the result is true for n = 3, we assume $n \ge 4$. We consider two cases.

Case 1. If n is odd, then let (c_1, c_2, \dots, c_n) be the consecutive vertices of C_n , $e = c_1 c_3$ and let D be a minimum weakly connected dominating set of G. Let us denote $P = (c_4, c_5, \dots, c_n)$ and note that P is a path on n-3 vertices.

If both c_1, c_3 belong to D, then D is also a weakly connected dominating set of C_n . Hence $\gamma_w(C_n) \leq |D| = \gamma_w(G)$ and C_n is not γ_w -critical.

If neither c_1 nor c_3 belongs to D, then, since D is dominating, $c_2 \in D$. By Theorem 2, at least $\frac{n-3}{2}$ vertices are needed to dominate P. Thus $\gamma_w(G) \geq \frac{n-3}{2} + 1 = \frac{n-1}{2}$. Since $\gamma_w(C_n) = \lfloor \frac{n}{2} \rfloor$, we have $\gamma_w(G) \geq \gamma_w(C_n)$.

Assume now that (without loss of generality) $c_1 \in D, c_3 \notin D$. By Theorem 2, at least $\frac{n-3}{2}$ vertices are needed to dominate P and thus $\gamma_w(G) = |D| \geq \frac{n-3}{2} + 1 =$ $\frac{n-1}{2} = \left[\frac{n}{2}\right] = \gamma_w(C_n)$. Hence C_n is not γ_w -critical.

Case 2. If n is even, then notice that e is a chord of C_n and e belongs to two chordless cycles of G, denote these cycles C_p and C_m ; $p, m \geq 3$ and denote $e = c_1 c_2$. Let (c_1, c_2, \ldots, c_p) be the consecutive vertices of C_p and $(c_1, c_2, v_3, \ldots, v_m)$ be the consecutive vertices of C_m . Thus n = p + m - 2 and $\gamma_w(C_n) = \lfloor \frac{p+m-2}{2} \rfloor$. Since n is even, both m, p are even or both are odd. Thus $\gamma_w(C_n) = \lfloor \frac{p+m-2}{2} \rfloor = \frac{p+m}{2} - 1$.

If both m, p are even, then $D^{'} = \{c_1, c_2, c_4, \dots, c_{p-2}, v_4, \dots, v_{m-2}\}$ is a weakly connected dominating set of G and $\gamma_w(G) \leq |D^{'}| = 2 + \frac{p-4}{2} + \frac{m-4}{2} = \frac{p+m}{2} - 2$. Hence $\gamma_w(G) < \gamma_w(C_n)$ and C_n is γ_w -critical.

If m, p are odd, then $D'' = \{c_1, c_3, \dots, c_{p-1}, v_4, \dots, v_{m-1}\}$ is a weakly connected dominating set of G and $\gamma_w(G) \le |D'| = 1 + \frac{p-3}{2} + \frac{m-3}{2} = \frac{p+m}{2} - 2$. Hence $\gamma_w(G) < 1$ $\gamma_w(C_n)$ and C_n is γ_w -critical.

Lemma 6. If G is γ_w -critical, then there is no support vertex in G which would be adjacent to two or more end-vertices of G.

Proof. Suppose v is a support vertex which is adjacent to at least two end-vertices, say x, y, of a graph G and let G' = G + xy. Let D' be a minimum weakly connected dominating set of G'.

If neither x nor y belongs to $D^{'}$, then $D^{''} = D^{'} - \{x,y\} \cup \{v\}$ is a weakly connected dominating set of G and $\gamma_w(G) \leq |D''| < |D'| = \gamma_w(G')$, which gives a contradiction.

If both x, y do not belong to D', then $v \in D'$ and D' is a weakly connected dominating set of G, again a contradiction.

Suppose (without loss of generality) $x \in D', y \notin D'$. Then $D'' = (D' - \{x\}) \cup \{v\}$ is a weakly connected dominating set of G, a contradiction.

Lemma 7. If G is γ_w -critical, then no two support vertices are adjacent.

Proof. Suppose that u and v are adjacent support vertices of u' and v', respectively, in a connected γ_w -critical graph G. Consider G' = G + u'v' and let D' be a minimum weakly connected dominating set in G'. We consider three cases.

Case 1. If both u' and v' belong to D', then $D = (D' - \{u', v'\}) \cup \{u, v\}$ is a weakly connected dominating set of G and $\gamma_w(G) \leq |D|$, a contradiction, since |D| = |D'|and G is γ_w -critical.

Case 2. If $u', v' \notin D'$, then $u, v \in D'$. It is immediate that D' is a weakly connected dominating set of G and $\gamma_w(G) \leq |D'|$, a contradiction.

Case 3. Without loss of generality, suppose $u' \in D', v' \notin D'$. Then, since D' is weakly connected, there is $u \in D'$ or $v \in D'$. If both u, v belong to D' or $u \notin D'$ $D', v \in D'$, then D' is a weakly connected dominating set of G and $\gamma_w(G) \leq |D'|$, a contradiction. If $u \in D', v \notin D'$, then $D = (D' - \{u'\}) \cup \{v\}$ is a weakly connected dominating set of G and $\gamma_w(G) \leq |D| = |D'|$, which gives a contradiction.

Lemma 8. If G is γ_w -critical, then for every two supports u, v, there is $d_G(u, v) \geq 3$.

Proof. By Lemma 7, there is $d_G(u,v) > 1$ for every two supports u,v. Suppose that u and v are support vertices in a connected γ_w -critical graph G and $d_G(u,v)=2$. Consider G' = G + uv and let D' be a minimum weakly connected dominating set with property \mathcal{F} in G'. Since D' is a weakly connected dominating set of G, then $\gamma_w(G) \leq |D'| = \gamma_w(G + uv)$, which gives a contradiction.

Theorem 9. No tree is γ_w -critical.

Proof. Suppose T is γ_w -critical and let (v_0, \ldots, v_l) be a longest path in T. By Lemma $8, l \geq 5 \text{ and } d_T(v_1) = d_T(v_2) = d_T(v_{l-2}) = d_T(v_{l-1}) = 2.$ Let D' be a minimum weakly connected dominating set of $G' = T + v_0 v_3$.

If $v_0, v_3 \in D'$, then $D = (D' - \{v_0\}) \cup \{v_1\}$ is a weakly connected dominating set of T and $\gamma_w(T) \leq |D| = |D'| = \gamma_w(G')$, which gives a contradiction. If $v_0, v_3 \notin D'$, then, since D' is dominating, $v_1, v_2 \in D'$ and D' is also a weakly

connected dominating set in T. Thus $\gamma_w(T) \leq |D'| = \gamma_w(G')$, a contradiction.

If $v_0 \in D'$, $v_3 \notin D'$, then if $v_2 \in D'$, D' is a weakly connected dominating set in T, again a contradiction. If $v_2 \notin D'$, then $v_1 \in D'$ and then $D = (D' - \{v_0\}) \cup \{v_3\}$ is a weakly connected dominating set in T, a contradiction.

If $v_0 \notin D', v_3 \in D'$ then if $v_1 \in D', D'$ is a weakly connected dominating set in T, again a contradiction. If $v_1 \notin D'$, then (by Observation 1) $v_2 \in D'$ and then $D = (D' - \{v_2\}) \cup \{v_1\}$ is a weakly connected dominating set in T, a contradiction. Thus T is not γ_w -critical.

Since it is easy to observe ([2]) that a connected graph is $2-\gamma_c$ -critical if and only if it is 2- γ -critical, we also conclude that G is 2- γ_w -critical if and only if it is 2- γ -critical. 2- γ -critical and 2- γ_c -critical graphs are characterized in [3] and [2], respectively; thus, we also obtain a characterization of $2-\gamma_w$ -critical graphs. The situation of k- γ_w -critical graphs with $k \geq 3$ is more complicated. For k = 3 there exist graphs which are $3-\gamma_w$ -critical, not $3-\gamma$ -critical and not $3-\gamma_c$ -critical. For example, graph C_6 is not 3- γ_c -critical, since $\gamma_c(C_6) = 4$ and not 3- γ -critical, since $\gamma(C_6) = 2$.

But it is 3- γ_w -critical, since $\gamma_w(C_6) = 3$ and $\gamma_w(C_6 + uv) = 2$, where u and v are any two vertices for which $d_{C_6}(u, v) = 2$ or $d_{C_6}(u, v) = 3$.

We will now characterize $3-\gamma_w$ -critical graphs. By Theorem 1, if G is $3-\gamma_w$ -critical, then $\gamma_w(G+e)=2$ for any edge $e\in E(G)$.

Lemma 10. If G is $3-\gamma_w$ -critical, then $diam(G) \leq 4$.

Proof. Let G be a connected $3-\gamma_w$ -critical graph and suppose G has diameter at least 5. Let $P = (v_1, \ldots, v_l)$ be a diametrical path in G with the length equal to the diameter of G. Obviously $l \geq 6$. Let D' be a minimum weakly connected dominating set of $G + v_1 v_l$. Since G is a connected 3- γ_w -critical graph, then $\gamma_w(G + v_1 v_l) = 2$ and |D'| = 2. If neither v_1 nor v_l belongs to D', then not all vertices v_2, \ldots, v_{l-2} are dominated; if both v_1, v_l do not belong to D', then, since D' is dominating, $v_2, v_{l-1} \in D'$. But, since $l \geq 6$, D' is not weakly connected, a contradiction.

Thus exactly one of v_1, v_l belongs to D'. Without loss of generality, let $v_1 \in D'$, $v_l \notin D'$. If $v_2 \in D'$ or $v_3 \in D'$ then, since $l \geq 6$, v_{l-1} is not dominated; hence $v_2, v_3 \notin D'$. Since D' is dominating, $v_4 \in D'$. Then D' is not weakly connected, a contradiction. Thus $diam(G) \leq 4$.

Fig. 1. A 3- γ_w -critical graph with diameter equal to 4

The result is best possible. Figure 1 shows an example of a $3-\gamma_w$ -critical graph with diameter 4.

Theorem 11. For any $n \geq 6$ there exists a 3- γ_w -critical graph G with n vertices.

Proof. For $n \geq 6$, we construct G in a following way: we start with a graph K_{n-3} and then obtain a graph H by adding a new vertex v and n-5 edges joining v with any n-5 vertices of K_{n-3} . Finally, to obtain graph G, we add two vertices u, w and edges ua and wb to H, where a and b are vertices of degree n-4 in H.

It is easy to observe that $\{a, b, c\}$, where c is a neighbour of a vertex v, is a minimum weakly connected dominating set of G. We can also find a minimum weakly connected dominating set D of cardinality 2 in G+e for any $e \in \overline{G}$ (for G+uw, there is $D = \{c, w\}$; for G + ub and G + uc there is $D = \{b, c\}$, for G + va there is $D = \{a, b\}$ and for G + uv there is $D = \{v, b\}$. The other graphs G + e are isomorphic to the given above).

REFERENCES

- [1] J. Dunbar, J. Grossman, S.T. Hedetniemi, J.H. Hatting, A. McRae, On weakly-connected domination in graphs, Discrete Mathematics 167–168 (1997), 261–269.
- [2] X-G. Chen, L. Sun, D-X. Ma, Connected domination critical graphs, Applied Mathematics Letters 17 (2004), 503–507.
- [3] D.P. Sumner, P. Blitch, Domination critical graphs, J. Combin. Theory Ser. B 34 (1983), 65 - 76.
- [4] M. Lemańska, Domination numbers in graphs with removed edge or set of edges, Disscussiones Mathematicae Graph Theory ${f 25}$ (2005), 51–56.

Magdalena Lemańska magda@mif.pg.gda.pl

Gdańsk University of Technology Department of Technical Physics and Applied Mathematics Narutowicza 11/12, 80-952 Gdańsk, Poland

Agnieszka Patyk patyk@mif.pg.gda.pl

Gdańsk University of Technology Department of Technical Physics and Applied Mathematics Narutowicza 11/12, 80-952 Gdańsk, Poland

Received: March 12, 2007. Revised: March 5, 2008. Accepted: March 26, 2008.

