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Abstract: The aim of the study is to show a comparison between the nonlinear viscoelastic model and the
Hertzdamp model, both of them considered as Hertz contact law force-based meodels m conjunction with
nonlinear damper. The results for two different impact experiments as well as for shaking table experiments on
pounding between two steel towers excited by harmonic waves are used in this study. In addition, a suit of
thirty ground motion records from thirteen different earthquakes 1s applied to simulate pounding between two
single degree of freedom systems of different period ratios. The results of the study show that the nonlinear
viscoelastic model gives smaller simulation errors in the impact force time histories comparing to the Hertzdamp
model. It also provides smaller displacement and acceleration amplifications of the pounding-mvolved structural
response under earthquake excitation. On the other hand, the Hertzdamp model has been found to be more
accurate than the nonlinear viscoelastic model in simulation of impact velocity for pounding of structures under

harmonic excitation.
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INTRODUCTION

The nonlinear model of impacts based on the Hertz
contact law has been used in numerous studies of
earthquake-induced structural pounding (e.g., Jing and
Young, 1991; Pantelides and Ma, 1998; Chau and Wex,
2001). It simulates the relation between the pounding
force and deformation during impact more realistically
than the linear models (Goldsmith, 1960). However, the
application of the Hertz elastic spring alone prevents us
from simulation of energy dissipation during impact.

Lankaram and Nikravesh (1990) presented an
improved version of the Hertz contact model based on the
Hertz contact law, where a nonlinear damper 1s used along
with the nonlmear spring, to represent the dissipated
energy in impact.

Marhefka and Orn (1999) developed a compliant
contact model with a nonlinear spring m parallel with a
nonlinear damping, in order to overcome problems in the
use of rigid body models with Coulomb friction and to
elimmate the tension forces arising in the Kelvin-Voigt
model.

Muthukumar and DesRoches (2006) and Muthukumar
(2003) used the Hertzdamp model, which 1s equivalent to
the improved version of the Hertz contact law model

(Lankarani and Nikravesh, 1990; Marhefka and Orin, 1999),
to study pounding simulation in structural engmeering.
Two Single Degree Of Freedom (SDOF) systems with
different period ratios and a suit of 27 ground motion
records of different Peak Ground Acceleration (PGA)
levels were used to compare the Hertzdamp, linear spring,
Kelvin, Hertz and stereomechanical models. Numerical
results indicate that the Hertz model provides adequate
results at low PGA levels, while the Hertzdamp model is
recommended at moderate and high PGA levels
(Muthukumar and DesRoches, 2006).

Jankowska (2005b) proposed a nonlinear viscoelastic
model for more precise simulation of structural pounding
based on the Hertz law of contact. This model gave the
smallest simulation errors in the response time histories of
the structural pounding experiments considered in
comparison with the Hertz model and the linear
viscoelastic model introduced by Anagnostopoulos
(1988, 2004). Additionally, this model and the linear
viscoelastic model gave the smallest simulation errors in
the pounding force time histories during contact.

The nonlinear viscoelastic model was used to
mvestigate earthquake induced pounding between two
buildings (Jankowski, 2008) as well as to determine the
pounding force response spectra under ground motion
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excitation (Jankowski, 2005a, 2006b). Numerical results
confirmed the ability of the nonlinear viscoelastic model
to accurately simulate seismic pounding.

Two different models have been considered as
improved versions of the Hertz model by adding a
nonlinear damper. However, no comprehensive
comparison has been given so far. The aim of this study
15 to compare the accuracy of the nonlinear viscoelastic
model and the Hertzdamp model in seismic pounding
analysis. The first comparison uses the results of two
umpact experuments as well as the results of shaking table
experiments on pounding between two steel towers
excited by harmonic waves. The second comparison
applies a suite of thirty ground motion records from
thirteen different earthquakes applied to pounding
between two SDOF systems with varying period ratios.

Fung (2001, 2002) used the differential quadrature
method to solve both dynamic problems governed by
second-order ordmnary differential equations i1 tume and
first order initial value problems. Civalek (2007) used the
method of Harmonic Differential Quadrature (HDQ) for the
nonlinear dynamic response of Multi Degree Of Freedom
(MDOF) systems. In this study, we use Implicit Runge-
Kutta (IRK) methods to solve the system of first order
ordinary differential equations.

HERTZ CONTACT LAW FORCE-BASED MODELS

Hertz model: A nonlinear spring stiffness, depending on
elastic properties of the colliding structures, is used in the
Hertz model to simulate structural pounding. The impact
force between the two structures of masses m, (1 = 1,2)
follows the relation (Goldsmith, 1960; Lankarani and
Nikravesh, 1990, 1994).

Fit) =k, 83 (1);
F=0;

a(t) >0 (1)
a3ty =0

where, & (t) is the relative displacement. Assuming that
the colliding structures are spherical of density p and the
radius R, estimation can be calculated through the
following relation (Goldsmith, 1960):

R— M o2 2
4mp

The nonlinear spring stiffness lg, is linked to the
material properties and the radii of the colliding structures
as stated through the following formula (Goldsmath, 1960):

4 [ RR, T ’ 3)

kK, =—*
® 3n(h, +h))| R +R,

where, h, and h, are the material parameters defined by the
formula (Goeldsmith, 1960):

hjzlﬂ,
nE,

i=12 ()
Here, v, and E, are Poisson's ratio and Young's modulus,
respectively. When R,-e, ie., the second structure
becomes a massive plane surface, the nonlinear spring
stiffness k, 1s defined as (Goldsmith, 1960):

4
k,=— RV (5)
B 3wl +hy)

Since the Hertz model 1s fully elastic (Eq. 1), it does
not allow us to consider the energy dissipation during the
collision.

Hertzdamp model: Hertzdamp model has been considered
by Muthukumar and DesRoches (2006) and Muthukumar
(2003) to study the pounding phenomenon in the field of
structural engineering. The energy loss during impact has
been taken mto account by adding nonlinear damping to
the Hertz model. The pounding force is written as
(Lankarani and Nikravesh, 1990):

Ry =k, 3 (t){l - ;ﬂis(t)}

— a(t) =0

(6)
Fty=0; 3 <0

where, e 15 the coefficient of restitution (Goldsmith, 1960),
8 (t) is the relative velocity during contact and v,~v;, is
the relative approaching velocity prior to contact which
can be expressed in terms of nonlinear spring and
maximum deformation (Lankarani and Nikravesh, 1990):

R ™
Sm,m,

Nonlinear viscoelastic model: Another improved version
of the Hertz model has been introduced by Tankowski
(2005b) by connecting a nonlinear damper in unison with
the nonlinear spring. The contact force for this model 1s
expressed as:

F(t = ES% {0+ T8, 3(t)>0, 8>0  {(approach period)
(8)

() >0, &<0 (restitution period)

Bt <0

F(t) = pa2{t);
FH=0;

where, B is the impact stiffness parameter and
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Tty = 22 BBl e 9

m, +1m,

15 the impact element's damping. Here ¥ 1s an mnpact
damping ratio corresponding to a coefficient of restitution
e which can be defined as Tankowski (2006a):

A SO L (10)
2 e(e(9n-16)+16)
MATERIALS AND METHODS

To investigate the performance of the Hertzdamp and
the nonlinear viscoelastic models in capturing pounding,
three different procedures of comparison are used The
first one is based on two impact experiments conducted
for different types of structural members with various
materials and contact surface geometries. The second
procedure uses the shaking table experiments on
pounding between two steel towers. The accuracy of each
model in the first and second procedure 1s assessed by
calculating the Normalized Error (NE) to mdicate the
difference between the experimental and numerical results
(Jankowski, 2005b).

NE=HF7F|‘-100% (1)

where, F iz the response time history obtained
experimentally, F is the response time history obtained
numerically and || is the Euclidean norm. |F- ¥| and |F|

in case of the time histories given in a discrete form can be

calculated as:
N S IIFH:\/iFf a2

where, n 18 a number of values m the time history record.

The third procedure is based on simulation using
thirty ground motion records from thirteen different
earthquakes of Peal Ground Acceleration (PGA) levels
ranging from 0.1 to 1 (Muthukumar and DesRoches, 2006,
Muthukumar, 2003). The ground motion records were
selected from PEER Strong Motion Database
(http://peer berkely.edu/smeat/). Two Single Degree Of
Freedom (SDOF) systems of structures with equal masses
and three different period ratios are subjected to the
ground motion records. Two cases are considered. In the
first case, the initial separation distance is chosen such
that no pounding takes place. In the second case, the
mnitial separation distance 1s chosen such that pounding

occurs. The performance of the models is evaluated by
comparing the numerically obtained displacement and
acceleration amplifications to each other.

COMPARISON BASED ON CONDUCTED IMPACT
EXPERIMENTS

The results of two unpact experiments are considered
in this study.

Steel-to-steel impact: Goland ef af. (1955) carried out an
experiment to measure load time histories and strain
propagation in a square beam of different dimensions
subjected to sharp lateral 1impactg letting a steel ball with
diameter ranging from g inch, drops onto the
top of the beam from a specified height. A force gauge
was used to measure the force-time history exerted by the

to 33

ball on the beam. The strain gauges were placed at
different locations on the beam to record the strain time
histories at those locations. The dynamic equation of
motion for pounding between a ball of mass m, dropping
onto a beam can be written by drawing the free body
diagram (Jankowski, 2005b) as shown in Fig. 1:

m,u, (£)+ F(t) =m,g (13)

where,

u,(t),

gravitational acceleration and the pounding force,

g and F(t) denote the acceleration,

respectively. The pounding force follows the relations (6)
or (8). Inthe experiment the maximum pounding force was
80.7 N when a ball of diameter % mch fell from a height
of 2 inches (JTankowski, 2005b). As for the stiffness
parameter in the nonlinear viscoelastic model, we set
B = 1.03 10" N/m™ which was determined through an
iterative procedure in order to keep the maximum
pounding force in the numerical analysis and experiment

uy(t)

Fig. 1: Free body diagram of a ball dropping onto a beam
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Steel experiment
—e-mmw-—  Nonlinear viscoelastic model

10
Time (sec) X107

Fig. 2: Pounding force time histories during impact
between falling steel ball and a steel hemisphere
mounted on a beam

to be the same (Tankowski, 2005b). The same procedure is
used to obtain the stiffness parameter of the Hertzdamp
medel, which is found to be k, = 0.60 10" N/m*?. For the
two meoedels, the coefficient of restitution e = 0.6 1s used.
The results from the numerical analysis and the
experiment are shown m Fig. 2. Using Eq. 11 the
normalized errors for pounding force histories are found
to be equal to 21.45% for the nonlinear viscoelastic model
and 24.18% for the Hertzdamp model.

Concrete-to-concrete impact: Van Mier et al (1991)
carried out an experiment on collisions between a
prestressed concrete pile and a concrete striker. The
dynamic equation of motion for pounding between a
striker of mass m, and a prestressed fixed pile can be
written by drawing the free body diagram as shown in
Fig. 3 (Jankowski, 2005b).

(1) + 5, (1) + F1) = 0 (14)

The pounding force F (t) follows the relation (6) for
the Hertzdamp model and relation (8) for the nonlinear
viscoelastic model. The stiffness parameter used for the
nonlinear viscoelastic model is B = 2.75x10° N/m™
(Jankowski, 2005b). For the Hertzdmap model, k, =
1.54%10° N/m™ was found through an iterative procedure
m order to keep the maximum pounding force i the
numerical analysis equals the maximum pounding force of
the experiment as 102.5 N. For the two models, the
coefficient of restitution is e = 0.6. The results from the
numerical computations and the experiment are shown mn
Fig. 4. Tt is found that the normalized error equals 25.04%
for the nonlinear viscoelastic model and 54.01% for the
Hertzdamp model.

| wio) |

Fig. 3: Free body diagram for pounding between a

concrete pendulum  striker

concrete pile

and prestressed

——— Concrete experiment 1 —-—-—- Concrete experiment 2
_____ Hettzdamp model -.--.-... Nonlinear viscoelastic model

0 0.002 0004 0006 0008 0010 0.012
Time (3ec)

Fig. 4: Pounding force time listories during umpact

between a concrete pendulum striker and

prestressed concrete pile

COMPARISON BASED ON SHAKING TABLE
EXPERIMENTS

Chau et al. (2003) carried out shaking table tests to
mvestigate the pounding phenomenon between two steel
towers of different natural frequencies and damping ratios
subject to different combinations of stand-of distance and
seismic excitations. The two Single Degree Of Freedom
(SDOF) buillding systems shown in Fig. 5 were used i the
numerical simulation as a representative for the two
towers. For 1 =1, 2, let m, be the masses, ¢, be the viscous
damping coefficients and k be the stiffness for SDOF 1
and SDOF 2, accordingly. The coupling equation of
motion for two adjacent buildings subjected to horizontal
ground motion u_(t) has the following form:
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u ) u,{t)
m, — m, —
d
& i €
k k,
V///// VL L7777

Fig. 5: Model idealization of adjacent structures

myi, (0 + ¢ 0, (0 +ku (O +F() =-nyii (t) (15)
m, U, (0 + ¢, () + k,u, (0 - F(t) = —m,u _(t)

where, w,(f),u,(t)and u,(t) represent the displacement,
velocity and acceleration of the system, respectively. The
pounding force F (t) follows the relation (6) for Hertzdamp
model and relation (8) for nonlinear viscoelastic model.
The wvalues of stuctural stiffness and damping
coefficients: k, ¢, can be calculated from the formulas
(Harris and Piersol, 2002).

K - 4:rc2m1_,

i 2
T

¢, =2&.fkm, (16)

where, T, £ (1 = 1, 2) denote the natural structural
vibration period and structural damping, respectively. We
solve the equation of motion (15) for the harmonic waves
as excitations and the two different models of pounding
force considered herein. Chau et al. (2003) performed a
series of shaking table experiments forn =1 (1 pounding
per cycle) and n = 2 (1 pounding per 2 cycles) using
various harmonic waves as excitations for the two SDOF
systems shown in Fig. 5. Experimental, numerical and
analytical results of the relative iumpact velocity versus the
excitation frequency had been observed and computed for
the comparison purposes between experiments and
theories. In this study, the results of two different
smusoidal excitations as input are presented. We consider
first the input shaking table 1 t) = 2.6 (2nft) as an
excitation acting on SDOF 1 and SDOF 2 with the
following dynamic characteristics m, = 980 kg, f, =
5.04 Hz & = 7.2%,m, = 146.4kg, £;=2.76 Hz, £,= 1.5%
and a separation distance of 19.8 mm (Chau et al., 2003).
The obtained numerical solutions for the steady state
relative 1mpact velocity using both the nonlnear
viscoelastic model and the Hertzdamp model are compared
with the experimental results which are the average of
10 cycles in the steady state (Chau et al., 2003). The
results from the numerical analysis and the experiment are
shown m Fig. 6. The simulation errors for the obtained

—  Analytical solution (n=1} -.--.. Analytical selution (n =2)
© Experimental results (n = 1) ® Experimental results (n =2)

* Numerical results-Nonlinear viscoelastic

® Numerical results-Hertzdamp

= Iy
=] =
L ]

=
&
)

Relative impact velocity (m sec ')
[
=
1

2.4 26 28 10 32 3.4
Excitation frequency f,(Hz)

Fig. 6: The steady state relative impact velocity versus
the excitation frequency. Numerical results
obtamed by nonlinear viscoelastic and

Hertzdamp models. The input shaking table is
U, = 2.68in(2nf t)

—— Analytical solution (n=1) -----. Analytical solution (o= 2)
o Experimental resulis (n=1) ® Experimental results (n = 2)

* Numerical results-Nonlinear viscoelastic

% Numerical results-Hertzdamp

=
oo
1

=
o
1

Relative impact velocity (m sec ')
s =
8 +

=
o

2.55 2.'65 2.‘5’5 2.&5 2.I95 3.h5 3. i5
Excitation frequency f (Hz)

g
IS
b

Fig. 7: The steady state relative impact velocity versus
the excitation frequency. Numerical results
obtamed by nonlinear viscoelastic and Hertz-

damp models. The mput shaking table is
Ui, =19sin(2nf 1)

numerical impact velocity compared with the experimental
results forn = 1 and n = 2 are 25.46 and 47.25% for the
Hertzdamp model and 31.66 and 51.26% for the nonlinear
viscoelastic model. As a second input shaking table, we
consider the harmonic excitation U,(t =1.9sin(2xf 1) applied
to the SDOF 1 and SDOF 2 with the same dynamic
characteristics and separation distance as used before.
The results
experiment are shown in Fig. 7. The simulation errors for
the obtamned numerical impact velocity compared with the
experimental results forn = 1 and n = 2 are 24.97 and
54.25% for the Hertzdamp model and 33.75 and 59.80% for
the nonlinear viscoelastic model.

from the numerical analysis and the
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COMPARISON BASED ON GROUND MOTION
RECORDS

Muthukumar and DesRoches (2006) and Muthukurnar
(2003) assessed the performance of the Hertzdamp model
by comparing it to the linear spring, Kelvin, Hertz and
stereomechanical models using two Single Degree Of
Freedom (SDOF) building systems shown in Fig. 5 with
the parameters shown in Table 1. The systems were
subjected to a suite of thirty ground motion records
(Muthukumear, 2003) from thirteen different earthquakes
with Peak Ground Accelerations (PGA) levels varying
from 0.1 to 1 which were carefully chosen to fall within
zone I. Three ground motion records were used at each

Table 1: Properties of SDOF systems used for the impact model

Parameters Values
my, 1y, 7.8 kip-s*/in
1.8 5%
T/T, 0.30, 050, 0.70
k,.p 25000 kip-in—*2
0.6
0.5in
__SDOF1
“| -- #--. Hertzdamp model
47 __ Nonlinear viscoelastic model

W
1

06 07 08 09 10

Mean displacement
amplification
i

[=]

1 1 T T
1 02 03 04 05

0
7 20 SDOF 2 PGA (g)
A
5515
EE me
g E 057
=00 T T

00 02 03 04 05 06 07 08 09 10
PGA ()

Fig. 8: Mean displacement amplification for T,/T, = 0.3

. __SDOFI
E g 2| ---#--- Hertzdamp model
g § 4 Nonlinear viscoelastic model
2 39
52 0
oA
E g la_mm.
2 G 1 T T T ) ] T Ll
01 02 03 04 05 06 07 OB 09 10
- SDOF 2 PGA (g)
20
m
EE I-Odw
E 057
O
E O-G T T T T ) 1] ] T
01 02 03 04 05 06 07 OB 09 10

PGA (g)

Fig. 9: Mean displacement amplification for T,/T, =10.5

PGA level In the present study, the performance of the
two models is investigated in the process of studying
buildings pounding. As suggested by Muthukumar and
DesRoches (2006), two cases are considered. First is ano
pounding case where the gap distance d is set to be large
enough to avoid pounding. In the second case, the gap
distance d 1s chosen to be small enough to mduce
pounding. The ratio of the maximum responses obtained
in second case and the first case, called the amplification
response, is used in the analysis. We solve the equation
of motion (15) for the thirty ground motion records and
the three different period ratios. The obtained
amplification factor for displacement and acceleration of
both SDOF 1 and SDOF 2 indicates that the nonlinear
viscoelastic model provides the smallest displacement and
acceleration amplifications for the whole PGA levels and
the different period ratios considered herein as shown in
Fig. 8-13.

SDOF 1
“| - - #--. Hertzdamp model

Nonlinear viscoelastic model

Mean displacement
amplification
(F]
[']

11WW
[y T T T T T T T T
61 02 03 04 05 06 07 08 09 10

PGA ()
- SDOF 2
E 20
Eg 154
S I.U‘W'
E £ 051
2 OIG T ¥ T 1 T T 1 L]
01 02 03 04 05 06 07 083 09 10

PGA (g)

Fig. 10: Mean displacement amplification for T,/T, = 0.7

__SDOF1
“| - ---. Hertzdamp model
H— Nonlinear viscoelastic model

Mean displacement
amplification

01 02 03 04 05 06 07 08 095 10
PGA ()

Fig. 11: Mean acceleration amplification for T,/T, = 0.3
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SDOF 1

- -+ - - Hertzdamp model
——— Nonlinear viscoelastic model &,

-
1
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amplification

[ o

=

=%

=
1

b
sl

Mean displacement
amplification

=]

01 02 03 04 05 06 07 08 08 10
PGA(g)

Fig. 12: Mean acceleration amplification for T /T, = 0.5

SDOF 1
=== - -« Hertzdamp model

L Q
1

[
1
'

Mean acceleration
amplification

o

1 02 03 04 05 06 07 08 09 10
PGA (g)

amplification
i

Mean displacement
a0
L

05 06 07 08 09 10
PGA ()

oﬂ
=
=3
[ =]
(=]
()
(=]
'S

Fig. 13: Mean acceleration amplification for T /T, = 0.7
CONCLUSIONS

The comparison between two nonlinear models for
earthquake-induced  structural pounding, 1.e., the
Hertzdamp model and the nonlinear viscoelastic model,
has been conducted m this research. Both models are
based on the Hertz contact law and incorporate additional
damping in order to simulate the energy dissipation
during impact. First, the numerical results obtained for
each model have been compared with the results of two
impact experiments. Then, the comparison has been
carried out based on the results from the shaking table
experiments. Finally, the investigation has been conduced
for pounding between two single degree of freedom
systems with different period ratios subjected to thirty
ground motion records of different PGA levels. The
effectiveness of two models of pounding has been
assessed by comparing the displacement and acceleration
response amplifications.

The results of the study demonstrate that the use of
the nonlmear viscoelastic model leads to smaller

normalized errors in the impact force time histories
comparing to the Hertzdamp model. This is mainly due to
the fact, that the application of the Hertzdamp model
results in longer time of contact as can be shown in
Fig. 2 and 4. On the other hand, the impact force time
histories obtained for the nonlinear viscoelastic model
show the change of the curvature after passing the peak
force value and this disadvantage 1s related to the
disengagement of the damping term in the restitution
period of impact (Eq. 8).

Studies with the use of the results from the shaking
table experiments showed that the Hertzdamp model gives
smaller normalized error than the nenlinear viscoelastic
model in simulation of impact velocity for pounding
between two steel towers of different dynamics
characteristics subjected to sinusoidal excitations.

The results of further analysis indicate that the
nonlinear  viscoelastic provides
displacement and acceleration amplifications of the
response of colliding single degree of freedom systems
for three different period ratios and PGA levels of ground
motions. This makes the nonlinear viscoelastic model
more convenient in the simulation of earthquake-induced
structural pounding.

Both impact force models considered in this paper
have been found to have some advantages and
disadvantages when used for modeling of structural
pounding. The results of the study indicate that the
accuracy of each of the models depends on the type of
analysis conducted.

model smaller

REMARK 1: IMPLICIT RUNGE-KUTTA (IRK)
METHODS

The differential Eq. 13-15 can be written in a uniform

version
dp{u)
T:f(u), t=0 a7
w(0) =u,

where, u € R*, p: R°~ R" 15 a continuously differentiable
function and I : R" -~ R" 1s a continuous function but not
necessarily differentiable. Problem (17) 1s called a system
of nonsmooth ordinary differential equations of the first
order. Tn order to solve the system (17) efficiently we use
the Implicit Runge-Kutta (TRK) method (Tay, 2000, Chen
and Mahmoud, 2008, Mahmoud and Chen, 2008). One
step of an s-stage Tmplicit Runge-Kutta (TRK) method for
solving (17) has the following version (Jay, 2000):

Given a step size h, a coefficient matrix AcR™ and a
welght vector beR" Let U, = u,. For k>0:
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Step 1: Solve the s x n-dimensional system of nonlinear
equations

PO - pU ) —hY 8, £(x,)
H(x) = : -0 (18)

pGx,)— p(U,) - hY 2 fex)

to get a solution x* = (xf x5 .. x") eR™.

Step 2: Solve the n-dimensional system of nonlinear
equations

HU) = P(U)—P(Uk)—hibjf(xj‘) -0 (19

and let the solution be U,,,.

A practical IRK method can be defined, by choosing
appropriate matrix 4 and vector b, such as coefficients of
Gauss, Radau IA and IIA, Lobatto IIIA, Burrage, etc.
(Jay, 2000, Burrage, 1982). Moreover, we use the slanting
Newton method (Chen ef al., 2000) to solve the system of
nonsmooth equations in each iteration of the TRK method.
Numerical results show that the IRK method with the
slanting Newton method is efficient. Numerical results
reported in this study were obtained by using the two-
stages Burrage TRK method (Burrage, 1982) which has
stable property (Ferracina and Spliker, 2005). No numerical
problems were encountered.

REMARK 2: CONVERGENCE ORDER OF IRK
METHODS

Chen and Mahmoud (2008) studied
convergence order of TRK methods and tested various
IRK methods with the slanting Newton method on
numerous  problems 1n  structural  oscillation  and
pounding. In theory, it can be shown that the order of
convergence is at least one for the Lipschitz continuous
ODEs under mild conditions. Consider the solution u(t) to
(17) m a fixed mterval [0, T] with the number n of step
chosen such thatt, =nh =T. Let

have

e, (h)=U, -u(t,), k=01..n (20

and

E(h) = lﬂf‘ﬁ”ek (h). 21

For simplicity, we consider p (u) = u. Assume that for any
U, there are x*, U,,, such that H(x*) = 0 and A(U,_ =0 Let

%,~U=h3a, f(x)
Gix,U) = : (22)

x,~U-h3a,f(x,)

j=1

Since f 1s Lipschitz continuous, the function G 1s
Lipschitz continuous. By the Rademacher theorem, G is
differentiable almost everywhere. Hence, we can define
the Clarke generalized JTacobian as G (x,U) (Clarke, 1983).
By the implicit function theorem for Lipschitz continuous
function (Clarke, 1983), for small h, there exist a
neighborhood u, of U, and a Lispchitz function
w,(:hyiu, = R™ such that x* =y (U;h) and for every
Ueu,, G (U (U, h), U) = 0. Therefore, we can write

Uy = Uy +hY by, (Uyh)) = U, +ho, (U,chy  (23)

j=1

Tt is easy to verify that ¢, (;h): R* » R*is a locally
Lipschitz continuous function.

Theorem 1: Chen and Mahmoud (2008) suppose that
there are positive constants K, and K, such that:

[ty 1h) - g (U <K, Juit,) - U, | (24)
by Cutt, ih) — ') < Koh (25)

Then, there i1s a constant ¢ > 0 such that
E(h) < ch. (26)

Figure 14 shows the convergence of TRK methods
with different coefficient versus the Explicit Runge-Kutta

0
lo —0— ERK4 -0 - IRK burrage coefficient
104 --#-- JRK radau IA cocfficient
=== [RK radau IIA coeflicient
g 1074
2 10y %
%
& 10 LeBTE
lo_l. o~ "‘.’.’:.E.-.
T
w
i =
10 - L —1
Step size h,

Fig. 14: Convergence of ERK method of fourth order and
Burrage and Radau coefficients of the IRK
method with various constant step sizes ki
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(ERK) methods of order four in computation of the
response for the collapse of the Tacoma Narrows
suspension bridge. The numerical experiments were
performed using MATLAB 7.0 on a Dell PC with 2MB
memory and 800 MHZ..
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