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Abstract—This paper presents a new approach to rejection of
sinusoidal disturbances acting at the output of a discrete-time
linear stable plant with unknown dynamics. It is assumed that
the frequency of the sinusoidal disturbance is known, and that
the output signal is contaminated with wideband measurement
noise. The proposed controller, called SONIC (Self-Optimizing
Narrowband noIse Canceller), combines the coefficient fixing
technique, used to “robustify” self-tuning minimum-variance reg-
ulators, with automatic adaptation gain tuning. Both theoretical
analysis and computer simulations confirm that, under Gaussian
assumptions, the closed-loop system converges (locally) in mean
to the optimal solution.

Index Terms—Adaptive control, disturbance rejection, system
identification.

I. INTRODUCTION

CONSIDER the problem of cancellation of a narrowband

disturbance d(t), with known normalized (dimensionles)

angular frequency ω0 ∈ (0, π], corrupting the output of

a discrete-time, stable linear plant of unknown dynamics,

governed by

y(t) = K0(q
−1)u(t− 1) + d(t) + v(t) (1)

where t = . . . ,−1, 0, 1, . . . denotes normalized time, q−1

is the backward shift operator, y(t) is the system output,

K0(q
−1) denotes unknown transfer function of the controlled

plant, u(t) is the system input, and v(t) denotes a wideband

measurement noise.

We will assume that the disturbance signal can be modeled

as

d(t) = a1(t) sinω0t+ a2(t) cosω0t = α
T (t)f(t) (2)

α(t) = [a1(t), a2(t)]
T , f(t) = [sinω0t, cosω0t]

T

where a1(t) and a2(t) denote slowly-varying weighting coef-

ficients.

narrowband disturbances are usually generated by rotating

elements of electro-mechanical systems and their elimination

may be a very important control task, determining quality

of the underlying technological processes such as turning,

milling, grinding etc..

The problem of narrowband disturbance rejection was con-

sidered by many authors under different methodologies, such

as internal model principle or the phase-locked loop based

approach – see e.g. the recent work of Bodson and co-workers

[1], [2], [3], [4], and Landau and co-workers [5], [6]. For an

overview of different approaches see e.g. a tutorial paper [6].

An entirely new approach to cancellation of narrowband

disturbances, based on coefficient fixing and automatic gain
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tuning, was proposed and analyzed in [7], [8]. The new method

was developed for complex-valued systems, i.e., for systems

where y(t), u(t), d(t) and v(t) are complex-valued signals. In

particular, it was assumed that disturbance has the form

d(t) = a(t)ejω0t (3)

which can be considered a complex-valued counterpart of (2).

The main purpose of this paper is to extend the results

presented in [7] to systems with real-valued input/output

signals. This is a nontrivial task. We will show that for real-

valued systems the analysis can be performed in a similar

but not identical way as that carried for complex-valued

systems. Such analysis requires different tools and leads

to different quantitative results than those presented in [7].

Despite some obvious qualitative similarities, the disturbance

canceling control algorithm for real-valued systems can’t be

obtained by transforming the analogous algorithm derived for

complex-valued systems (and vice versa). This means that

the investigation presented below is not a special case of the

analysis carried in [7] – as a matter of fact the real-valued case

is considerably more difficult to analyze than the complex-

valued case.

The paper is organized as follows. Section II presents analy-

sis of the open-loop disturbance rejection problem. The closed-

loop problem is studied in Section III. The proposed self-

optimizing disturbance rejection scheme, called SONIC (Self-

Optimizing Narrowband noIse Canceller), is presented in

Section IV. Section V presents results of the mean convergence

analysis of the closed-loop system and Section VI describes

several safety measures that increase robustness of the adaptive

regulator. Extensions to multiharmonic disturbances and to

plants with an extra transport delay are discussed in Section

VII. Section VIII shows the results of simulation experiments.

Finally, Section IX concludes.

II. OPEN-LOOP CASE

Since the control loop incorporates a transport delay of one

sampling interval, when shaping the input signal at instant t,
one needs an accurate one-step-ahead prediction of d(t + 1),
further denoted by d̂(t + 1|t). Similarly as in the complex-

valued case, we will base structure of the closed-loop predictor

on the form of its open-loop analog.

Consider the problem of one-step-ahead prediction/compen-

sation of a signal governed by

s(t) = d(t) + v(t) (4)

where d(t) is a harmonic disturbance, described by (2), and

v(t) denotes white measurement noise obeying

(A1) {v(t)} is a sequence of uncorrelated, normally distributed

random variables with zero mean and variance σ2
v : v(t) ∼

N (0, σ2
v).

Postprint of: Niedzwiecki M., Meller M., Self-Optimizing Adaptive Vibration Controller, IEEE Transactions on Automatic Control, Vol. 54, 
Iss. 9 (2009), pp. 2087-2099, DOI: 10.1109/TAC.2009.2026931
© 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

https://ieeexplore.ieee.org/document/5210130


2

To proceed further we will have to make some assumptions on

the way the weighting coefficients a1(t) and a2(t), appearing

in (2), vary with time. We will assume that both coefficients

evolve, independently of each other, according to the random-

walk (RW) model, namely1

α(t) = α(t− 1) +w(t) (5)

where

(A2) {w(t)}, independent of {v(t)}, is a sequence of un-

correlated, normally distributed random variables with

zero mean and covariance matrix W = σ2
wI: w(t) ∼

N (0, σ2
wI).

and I denotes a 2× 2 identity matrix.

Even though pretty naı̀ve from a practical viewpoint, such

a model of variation will allow us to determine the lower

bound on the mean-squared cancellation error, and hence

to evaluate statistical efficiency of the proposed disturbance

rejection scheme in absolute terms, rather than relative terms

(e.g. by comparing it with one of the existing schemes).

Combining (2), (4) and (5), one arrives at the following

state-space equations

α(t) = α(t− 1) +w(t)

s(t) = α
T(t)f(t) + v(t). (6)

Denote by S(t) = {s(1), . . . , s(t)} the set of measurements

available at instant t. The optimal, in the mean-square sense,

one-step-ahead predictor of s(t) has the form [9]

ŝ(t|t− 1) = E[s(t)|S(t − 1)] = d̂(t|t− 1) = α̂
T(t|t− 1)f(t)

where α̂(t|t − 1) = E[α(t)|S(t − 1)] is a one-step-ahead

predictor of α(t). The mean-squared prediction error can be

expressed in the form

E{[s(t)− ŝ(t|t− 1)]2} = E[c2(t)] + σ2
v

where c(t) = d(t)− d̂(t|t−1) = [α(t)− α̂(t|t−1)]Tf(t) will

be further called cancellation error.

Under assumptions (A1) and (A2) the optimal estimates of

α(t) can be computed recursively using the celebrated Kalman

filtering (KF) algorithm

α̂(t|t) = α̂(t|t− 1) + g(t)ε(t)

α̂(t|t− 1) = α̂(t− 1|t− 1)

ε(t) = s(t)− α̂
T(t|t− 1)f(t)

g(t) =
P(t|t− 1)f(t)

σ2
v + fT(t)P(t|t − 1)f(t)

P(t|t− 1) = P(t− 1|t− 1) + σ2
wI

P(t|t) = P(t|t− 1)− P(t|t− 1)f(t)fT(t)P(t|t − 1)

σ2
v + fT(t)P(t|t − 1)f(t)

(7)

where α̂(t|t) = E[α(t)|S(t)] denotes the filtered estimate of

α(t), while P(t|t − 1) and P(t|t) are the a priori and a

posteriori error covariance matrices, respectively.

1It is interesting to notice that when α(t) obeys (5) the ratio a1(t)/a2(t)
slowly changes with time, which means that, strictly speaking, the instanta-
neous frequency of d(t) is not constant but slowly varies around ω0.

Let ξ = σ2
w/σ

2
v . When the vector α(t) changes sufficiently

slowly, namely when

√
ξ =

σw

σv

≪ 1 (8)

and when the “period” of d(t), equal to T0 = 2π/ω0, is

sufficiently small (see Remark at the end of this section), the

matrix P(t|t− 1) is in steady state approximately constant

E∞{[α(t)− α̂(t|t− 1)][α(t)− α̂(t|t− 1)]T}
= lim

t7→∞
P(t|t− 1) ∼= P∞

where E∞ denotes the steady-state expectation: E∞[x(t)] =
limt7→∞ E[x(t)] (whenever it exists). The limiting value of

this matrix, denoted by P∞, can be determined analytically

using the deterministic averaging approach [10]. First, when

condition (8) is fulfilled, it can be shown that for large values

of t it holds that [11]

fT(t)P(t|t − 1)f(t) ≪ σ2
v

leading to the following approximate relationship [cf. (7)]

P(t+ 1|t) ∼= P(t|t− 1)

− 1

σ2
v

P(t|t− 1)f(t)fT(t)P(t|t − 1) + σ2
wI.

(9)

Second, since under the conditions specified above, variations

in the covariance matrix P(t|t − 1) are much slower than in

the “regression” vector f(t), one can set

P(t+ 1|t) ∼= P(t|t− 1) ∼= . . .P(t− T |t− T − 1) (10)

where T denotes the width of the local averaging window.

Combining (9) with (10), one obtains

P(t|t− 1)
〈
f(t)fT(t)

〉
T
P(t|t− 1) ∼= σ2

vσ
2
wI (11)

where
〈
f(t)fT(t)

〉
T
=

1

T

t∑

i=t−T+1

f(i)fT(i).

Note that

lim
T 7→∞

〈
f(t)fT(t)

〉
T
=

〈
f(t)fT(t)

〉
∞

=
1

2
I (12)

and that
〈
f(t)fT(t)

〉
T

can be closely approximated by〈
f(t)fT(t)

〉
∞

when T ≫ T0. This allows one to rewrite (11)

in the form

P(t|t− 1)P(t|t− 1) ∼= P∞P∞
∼= 2 σ2

vσ
2
wI

leading to

P∞
∼=

√
2σvσwI

and to the following steady-state recursive estimation formula

α̂(t+ 1|t) = α̂(t|t− 1) + h∞f(t)ε(t) (13)

where h∞ =
√
2σw/σv =

√
2ξ.

In an analogous way, assuming that the quantities α(t) and

α̂(t|t− 1) change slowly compared to f(t), one can compute
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Fig. 1. Block diagram of the disturbance rejection system.

the steady-state mean-squared cancellation error yielded by the

KF algorithm

E∞[
〈
c2(t)

〉
∞
] ∼= tr{P∞

〈
f(t)fT(t)

〉
∞
}

=
1

2
tr{P∞} =

√
2σvσw. (14)

Since Kalman filter is the optimal estimation algorithm, the

right-hand side of (14) determines the lowest achievable value

of the mean-squared cancellation error for the problem at

hand, sometimes referred to as the Bayesian Cramér-Rao

bound [12] (the classical Cramér-Rao bound does not apply

to systems/signals with random parameters).

Remark: For small values of ξ the time T over which the

covariance matrix P(t|t − 1) can be considered constant [cf.

(10)] roughly corresponds to the equivalent estimation memory

of the KF algorithm which, in the case considered, can be

expressed in the form (see [13], Ch. 7 for more details)

l∞ =
2
√
2√
ξ
.

Requiring that T = l∞ ≫ T0, one arrives at the conditions

T0 ≪
√

8

ξ
, ω0 ≫ π

√
ξ

2
(15)

that must be fulfilled for our asymptotic analysis, based on

averaging, to be valid.

Note that ω0 = 2πf0/fs ∈ (0, π], where f0 is the

frequency (measured in Hertz) of the real-world, continuous-

time disturbance and fs denotes sampling frequency. Hence,

the condition (15) can be always enforced by choosing an

appropriately small sampling rate. When this is not feasible

– by decreasing sampling frequency, one increases latency

of the resulting discrete-time control system – one can treat

disturbance d(t), that does not fulfill (15), as a slowly-varying

aperiodic signal: d(t) = a(t), where a(t) evolves according to

the random-walk model. The algorithm (7) can still be used

to compensate d(t), provided that the quantities α(t) and f(t)
(this time both scalar) are set to a(t) and 1, respectively.

III. ADAPTIVE FEEDBACK CONTROLLER

We will look for the control signal that minimizes the mean-

squared cancellation error for the system described by (1) –

see Fig. 1. We will assume that the controlled plant is stable

and has nonzero gain at frequency ω0:

(A3) K0(q
−1) =

∑∞
i=0 fiq

−i,
∑∞

i=0 | fi| < ∞,

K0(e
−jω0) 6= 0

but we will not assume that its transfer function K0(q
−1) is

known.

A. Adaptive control rule

Vaguely speaking, to cancel sinusoidal disturbance d(t), one

should generate such sinusoidal input signal u(t) which, after

passing through the plant, will have the same shape as d(t)
but opposite polarity. Note that the steady-state response of a

linear system to the sinusoidal input signal u(t) = α
Tf(t) can

be written in the form

K0(q
−1)αTf(t) = α

TK0f(t) (16)

where

K0 =

[
Re{K0(e

−jω0)} Im{K0(e
−jω0)}

−Im{K0(e
−jω0)} Re{K0(e

−jω0)}

]

= k0

[
cosφ0 sinφ0

− sinφ0 cosφ0

]
.

The quantities k0 = |K0(e
−jω0)| and φ0 = arg[K0(e

−jω0)]
can be recognized as a true plant gain at frequency ω0 and its

true phase shift, respectively.

Therefore, had the matrix K0 been known, the following

disturbance rejection rule could have been used

u(t) = −α̂
T(t+ 1|t)K−1

0 f(t+ 1).

According to (16), for such control signal the cancellation

error can be approximately expressed in the form2

c(t) = K0(q
−1)u(t− 1) + d(t)

∼= d(t)− α̂
T(t|t− 1)K−1

0 K0f(t)

= d(t)− α̂
T(t|t− 1)f(t) = [α(t)− α̂(t|t− 1)]Tf(t)

which is identical with an analogous expression derived in

the open-loop case. Since the transfer function K0(q
−1) is

unknown, the actual control rule will have the form

u(t) = −α̂
T(t+ 1|t)K−1

n f(t+ 1) (17)

where

Kn =

[
Re{Kn(e

−jω0)} Im{Kn(e
−jω0)}

−Im{Kn(e
−jω0)} Re{Kn(e

−jω0)}

]

= kn

[
cosφn sinφn

− sinφn cosφn

]

kn = |Kn(e
−jω0)| , φn = arg[Kn(e

−jω0)]

and Kn(q
−1) denotes the nominal (assumed) transfer function

of the plant. Similarly as in [7], we will design the one-step-

ahead predictor d̂(t + 1|t) = α̂
T(t + 1|t)f(t + 1) in such a

way that will guarantee automatic compensation of modeling

errors. For this reason the nominal gain kn and nominal phase

φn will be considered nothing more than a convenient starting

point for the adaptive control algorithm.

2For some further comments on this approximation see Remark 2 at the
end of this section
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Under (17) the output of the system can be approximately

written down in the form

y(t) ∼= c(t) + v(t) (18)

where

c(t) = [α(t)−BT
α̂(t|t− 1)]Tf(t)

and

B = K−1
n K0 =

[
Re{β} Im{β}

−Im{β} Re{β}

]
, β =

K0(e
−jω0)

Kn(e−jω0)
.

Note that the quantity |β| = k0/kn is the gain modeling error,

and the quantity argβ = φ0 − φn = ∆φ constitutes the phase

error.

The one-step-ahead predictor of α(t) will be computed

recursively using

α̂(t+ 1|t) = α̂(t|t− 1) +Mf(t)y(t) (19)

where

M =

[
Re{µ} −Im{µ}
Im{µ} Re{µ}

]

and µ denotes a complex-valued adaptation gain. For the

real-valued adaptation gain (Im{µ} = 0) the second term

on the right-hand side of (19) takes the form µf(t)y(t) and

resembles the analogous term in (13). Later on we will show

that application of a complex-valued gain is crucial as it allows

one to compensate phase errors.

B. Tracking analysis

Substituting the right-hand side of (18) into (19), one

obtains

α̂(t+ 1|t) = α̂(t|t− 1) +Mf(t)fT(t)[α(t)

− BT
α̂(t|t− 1)] +Mf(t)v(t). (20)

Let

∆α̂(t) = α(t) −BT
α̂(t|t− 1).

Combining (5) and (20), one arrives at

∆α̂(t+ 1) = (I−BTMf(t)fT(t))∆α̂(t)

−BTMf(t)v(t) +w(t+ 1) (21)

∼= (I−BTM/2)∆α̂(t)−BTMf(t)v(t) +w(t+ 1)

where, similarly to Section II, the approximation stems from

the averaging theory. This leads to

E[∆α̂(t+ 1)] = (I−BTM/2)E[∆α̂(t)]. (22)

Note that the matrix BTM can be expressed in the form

BTM =

[
Re{βµ} −Im{βµ}
Im{βµ} Re{βµ}

]
.

When µ ∈ Ωs, where

Ωs =

{
µ :

(
1− Re{βµ}

2

)2

+

(
Im{βµ}

2

)2

< 1

}
(23)

both eigenvalues of the matrix I−BTM/2 lie inside the unit

circle in complex plane, leading to

E[∆α̂(t)] 7−→
t7→∞

0

which entails E∞[c(t)] = 0. This means that when µ lies

in the stability area Ωs, the steady-state mean value of the

cancellation error is zero even if β 6= 1, i.e., even if the

assumed values of the gain and phase shift differ from the

true values.

We will derive expression for the mean-squared cancelling

error. Observe that

E∞[
〈
c2(t)

〉
∞
] = E∞[∆α̂

T(t)
〈
f(t)fT(t)

〉
∞

∆α̂(t)]

= E∞[||∆α̂(t)||2]/2. (24)

Due to mutual orthogonality of ∆α̂(t), v(t) and w(t + 1),
after squaring both sides of (21) and taking expectations, one

obtains

E[||∆α̂(t+ 1)||2 = E[∆α̂
T(t)(I − f(t)fT(t)MTB)×

× (I−BTMf(t)fT(t))∆α̂(t)]

+ fT(t)MTBBTMf(t)E[v2(t)] + E[||w(t+ 1)||2]. (25)

Since BBT = |β|2I, MMT = |µ|2I, fT(t)f(t) ≡ 1 and

MTB+BTM = (βµ+β∗µ∗)I = 2Re[βµ]I, where ∗ denotes

complex conjugation, one obtains

fT(t)MTBBTMf(t) = |βµ|2
Σ(t) = (I− f(t)fT(t)MTB)(I−BTMf(t)fT(t))

= I− f(t)fT(t)MTB−BTMf(t)fT(t)

+ |βµ|2f(t)fT(t)
and, using averaging

E[∆α̂
T(t)Σ(t)∆α̂(t)] ∼= E[∆α̂

T(t) < Σ(t) >∞ ∆α̂(t)]

∼= {1− Re[βµ] + |βµ|2/2}E[||∆α̂(t)||2] .
This leads to the following steady-state relationship

E∞[||∆α̂(t)||2] = {1− Re[βµ] + |βµ|2/2}E∞[||∆α̂(t)||2]
+ |βµ|2σ2

v + 2σ2
w.

Finally, solving the above equation with respect to

E∞[||∆α̂(t)||2], one arrives at [cf. (24)]

E∞[
〈
c2(t)

〉
∞
] = E∞[||∆α̂(t)||2]/2

=
σ2
w + |βµ|2σ2

v/2

Re[βµ]− |βµ|2/2 . (26)

Denote by µopt the gain that minimizes the mean-squared

cancellation error. Straightforward calculations lead to

µopt = arg min
µ∈Ωs

E∞[
〈
c2(t)

〉
∞
] =

1

β

[
−ξ +

√
ξ2 + 2ξ

]
.

(27)

When the slow variation condition (8) is fulfilled, one obtains

µopt
∼=

√
2ξ/β = h∞/β and

E∞[
〈
c2(t)

〉
∞

|µ = µopt] ∼=
√
2 σvσw. (28)

Note that the right-hand side of (28) coincides with the right-

hand side of (14). This means that, no matter how large the

gain and phase mismatch, one can always choose such value of

the adaptation gain µ that will make the disturbance rejection

scheme statistically efficient. In next section we will propose

a method for automatic adjustment of the adaptation gain µ.
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Remark 1: Suppose that, analogously as in the Kalman

filter algorithm (13), a scalar, real-valued gain µ > 0 is used

in (19) instead of the matrix gain M, i.e., that M = µI. Then,

under (8), it holds that

µ′
opt = arg min

µ∈R+

E∞[
〈
c2(t)

〉
∞
] ∼=

√
2ξ / |β|

and

E∞[
〈
c2(t)

〉
∞

|µ = µ′
opt]

∼=
√
2σvσw

cos∆φ
(29)

where ∆φ = argβ, which means that even if µ is chosen

in the optimal way, for large phase errors one may face sub-

stantial losses in rejection efficiency. Application of a matrix

gain is therefore a necessary condition for compensation of

phase modeling errors. It allows one to avoid performance

degradation.

Remark 2: When deriving the expression (26), describing

dependence of the mean-squared cancellation error on µ, we

have exploited the steady-state approximation (16), stemming

from the fact that linear systems basically scale and shift

in phase sinusoidal inputs. Another source of approximation

errors is due to averaging. A special simulation experiment was

arranged to check how well the resulting theoretical formula

fits the true error values. The simulated discrete-time plant

K0(z) = 0.0952/(1− 0.9048z−1) (30)

was adopted from [4] and corresponds to a continuous-

time plant with transfer function P (s) = 1/(1 + 0.01s)
sampled at the rate of 1 kHz. Simulations were carried for

σv = 0.1 and for 4 different rates of amplitude variation

σw ∈ {0.0001, 0.0005, 0.001, 0.005}, in the absence of mod-

eling errors (β = 1). For each (σw, µ) pair the experiment,

covering 20000 time-steps, was repeated 500 times for differ-

ent realizations of {v(t)} and {w(t)}. In all cases α(0) was

set to [1, 1]T and α̂(0) was set to [0, 0]T.

The results, summarized in Fig. 2, were obtained by means

of combined ensemble and time averaging, after discarding

the first 10000 samples (to ensure that the steady-state condi-

tions are reached). Note the good agreement of experimental

values with theoretical expectations for the considered (and

practically meaningful) range of adaptation gains.

IV. SELF-OPTIMIZING CONTROLLER

In this section we will design an adaptive algorithm for

on-line tuning of a complex-valued adaptation gain µ. We

will adjust µ recursively by minimizing the following local

measure of fit, made up of exponentially weighted system

outputs

V (t;µ) =
1

2

t∑

i=1

ρt−iy2(i;µ).

The forgetting constant ρ (0 < ρ < 1) determines the

effective averaging range. To evaluate the estimate µ̂(t) =
argminµ∈C V (t;µ) we will use the recursive prediction error

(RPE) approach [14]

µ̂(t) = µ̂(t− 1)− [V ′′(t; µ̂(t− 1))]
−1

V ′(t; µ̂(t− 1))
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Fig. 2. Comparison of theoretical values of the mean-squared cancellation
error, obtained using the steady-state plant approximation (solid line), with
the experimental values (crosses).

where

V ′(t; µ̂(t− 1)) ∼=
(
∂y(t; µ̂(t− 1))

∂µ

)∗

y(t; µ̂(t− 1))

V ′′(t; µ̂(t− 1)) ∼= ρV ′′(t− 1; µ̂(t− 2)) +

∣∣∣∣
∂y(t; µ̂(t− 1))

∂µ

∣∣∣∣
2

and the operator of symbolic differentiation with respect to

a complex variable, known also as Wirtinger derivative, is

defined as [15]

∂

∂µ
=

1

2

[
∂

∂Re[µ]
− j

∂

∂Im[µ]

]
.

Using Wirtinger calculus, one obtains

∂y(t)

∂µ
= − fT(t)BT ∂α̂(t|t− 1)

∂µ

∂α̂(t+ 1|t)
∂µ

=
∂α̂(t|t− 1)

∂µ
+Mf(t)

∂y(t)

∂µ

+
∂M

∂µ
f(t)y(t). (31)

Note that

∂M

∂µ
=

1

2

[
1 j

−j 1

]
= H. (32)

Since the matrix B is not known, the obtained recursive

formulas can’t be used in their present form. To circumvent

this problem we will use the coefficient fixing technique

introduced in [7], namely we will set β = cµ/µ, where cµ
denotes a small positive constant. This leads to3

BT = cµM
−1 (33)

3According to (27), for the optimal choice of µ the matrix gain MB
T =

BM
T, determining properties of the closed-loop system, reduces to h∞I.

Note that (33), which entails MB
T = cµI, preserves structure of the optimal

solution.
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and results in the following modified recursions

∂y(t)

∂µ
= −cµf

T(t)M−1 ∂α̂(t|t− 1)

∂µ

∂α̂(t+ 1|t)
∂µ

=
∂α̂(t|t− 1)

∂µ
+Mf(t)

∂y(t)

∂µ

+Hf(t)y(t). (34)

Using averaging the second recursion in (34) can be rewritten

in the following approximate form

∂α̂(t+ 1|t)
∂µ

= (I− cµMf(t)fT(t)M−1)
∂α̂(t|t− 1)

∂µ

+Hf(t)y(t)

∼= (1− |µ|/2)∂α̂(t|t− 1)

∂µ
+Hf(t)y(t)

Hence, to guarantee stable operation of (34), one must request

that |1 − cµ/2| < 1 which is equivalent to cµ < 4. Note that

the stability condition does not put any constraint on the phase

of µ.

Let r(t) = V ′′(t; µ̂(t−1)), zy(t) = ∂y(t; µ̂(t− 1))/∂µ and

zα(t) = ∂α̂(t+ 1|t; µ̂(t− 1))/∂µ. Then SONIC algorithm

can be summarized as follows

zy(t) = −cµf
T(t)M̂−1(t− 1)zα(t− 1)

zα(t) = zα(t− 1) + M̂(t− 1)f(t)zy(t) +Hf(t)y(t)

r(t) = ρr(t− 1) + |zy(t)|2

µ̂(t) = µ̂(t− 1)− z∗y(t)y(t)

r(t)

M̂(t) =

[
Re{µ̂(t)} −Im{µ̂(t)}
Im{µ̂(t)} Re{µ̂(t)}

]

α̂(t+ 1|t) = α̂(t|t− 1) + M̂(t)f(t)y(t)

u(t) = − α̂
T(t+ 1|t)K−1

n f(t+ 1) (35)

Remark: The control rule (17) was based on an implicit

assumption that Kn = K0, i.e., that β = 1. A similar

technique, called coefficient fixing, is often used to “robustify”

self-tuning minimum-variance regulators [16], [17]. In both

cases, under certain conditions, the modeling biases are auto-

matically compensated when estimation is carried in a closed

loop. Substitution β = cµ/µ can be considered a modified

version of the coefficient fixing technique. In Section VI we

will show that even though the assumed value of β usually

differes from the true one, the values of µ̂(t), computed using

the algorithm (35), converge in mean to the optimal value

µopt. One can show that, similarly as in the case of complex-

valued systems, the substitution β = 1 (which might look as

a more “natural” choice) does not allow one to compensate

phase modeling errors greater than π/2 – see [7] for more

details.

V. MEAN CONVERGENCE ANALYSIS

Consider the simplified version of the algorithm (35), ob-

tained by setting

µ̂(t) = µ̂(t− 1)− crz
∗
y(t)y(t) (36)

where cr denotes a small positive constant. The introduced

modification – replacement of the time-varying gain 1/r(t), in

the fourth recursion of (35),with a constant gain cr – turns the

RPE-based control algorithm into a gradient-based algorithm,

which is easier to analyze.

According to [11], [18], for sufficiently small values of cr,

the estimates µ̂(t) wander around µ0 – the stable “equilibrium

point” of the ordinary differential equation (ODE) associated

with the algorithm (36). Such stable equilibrium point must

obey the following conditions:4

g(µ0) = 0 , Re[g′(µ0)] > 0 (37)

where

g(µ) = E[y(t;µ)z∗y(t;µ)] , g′(µ) = ∂g(µ)/∂µ

and {y(t;µ)}, {zy(t;µ)} are stationary processes that “settle

down” in the closed-loop system for a constant value of µ:

µ̂(t) ≡ µ ∈ Ωs.

In Appendix we prove the following

Proposition 1: Under assumptions (A1)–(A3) it holds that

µ0 = µopt . (38)

Then, under some additional regularity conditions, stated in

[18], one arrives at the following result (which is a speciali-

sation of Theorem 3 in [18]):

Proposition 2: For cr sufficiently small and ǫ > 0, there

exists a constant D(cr) such that

lim sup
t7→∞

P{|µ̂(t)− µ0| > ǫ} ≤ D(cr)

where D(cr) tends to zero as cr tends to zero.

The last two results mean that the proposed adaptive regulator

converges (locally) in mean to the optimal regulator, i.e., the

initial modeling errors are compensated by feedback.

Careful examination of the derivation presented in the

Appendix leads to the conclusion that both propositions remain

valid for the original (unmodified) RPE algorithm (35).

Comments: 1) It should be stressed that Proposition

2 is not a stochastic stability result. This is because the

ODE-based analysis does not cover phenomena called large

deviations or rare events. In fact, one of important technical

assumptions made in [18] says that µ̂(t) should at all times

remain in Ω0 – the domain of attraction of µ0 (which, in

general, is a subset of Ωs, centered around µ0).5 Since the

difference µ̂(t) − µ0 cannot be claimed uniform along the

whole trajectory, corresponding to a given realization of noise,

the estimator µ̂(t) may eventually escape from Ω0. According

to Proposition 2 the probability of such an event goes to zero

as cr becomes small. Outside the domain Ω0 the Markov

chain, representing the “state” of the analyzed algorithm, is

no longer recurrent but transient, and in general explosive.

4Under the assumption that g†(µo) = 0, g†(µ) = ∂g(µ)/∂µ∗ , which can
be easily verified in the case considered – see Appendix B

5The ODE associated with (35) has the form: µ̇ = g(µ). The domain of
attraction Ω0 is the set of initial conditions which guarantee that solution of
this equation converges to µ0.
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Fig. 3. Stability (Ωs) and attraction (Ω0) domains for different values of
modeling errors (β = 1 corresponds to exact knowledge of the plant’s gain).

Therefore, some extra precautions are needed to guarantee

system stability – see next comment.

2) We have a rich simulation evidence suggesting that the

proposed regulator has the so-called self-stabilization property.

This means that the algorithm leaves the explosive zone of

its own accord. The self-stabilization mechanism is typical

of adaptive minimum-variance regulators: when instability

occurs, it causes rapid growth of the output signal, which in

turn speeds up convergence of µ̂ to a new stabilizing value.

In this way, after a short burst observed at the system output,

the closed-loop stability is regained – see Section VII-B for

more comments on this issue. Unfortunately, no mathematical

analysis of this phenomenon can be presented at the moment.

3) To avoid bursting behavior in the initial phase of conver-

gence, one should pick µ̂(0) ∈ Ω0. However, since the domain

of attraction Ω0 depends on the modeling error β (which

is unknown), this may be difficult to accomplish. Vaguely

speaking, the domain Ω0 “shrinks” as the magnitude and phase

components of the modeling error grow – see Fig. 3. Therefore

it is certainly beneficial to have a good prior knowledge of the

true plant response K0 at the initial stage of adaptation. Our

practical recommendation is to set µ̂(0) to a small real number,

e.g. in all numerical experiments described in Section VII we

have adopted µ̂(0) = 0.02.

VI. SAFEGUARDS

Following [7] we will propose modifications increasing

robustness of the proposed disturbance rejection scheme.

First, to avoid erratic behavior of the algorithm during

startup/transient periods, it is advisable to set the maximum

allowable values for |µ̂(t)| , |µ̂(t)− µ̂(t−1)| and r(t), further

denoted by µmax, ∆µmax and rmax, respectively. These are

typical “safety valves” used in adaptive control.

Second, instead of a constant forgetting factor ρ, one can

use in (35) a time-varying factor dependent on the current

value of µ
ρ(t) = 1− cρ| µ̂(t− 1)|

where 0 < cρ ≪ 1. This ensures that 1−ρ will be at all times

much smaller than µ̂, which is required for the overall system

to work correctly [8].

Denote by sat(x, a), x ∈ C, a ∈ R+, a complex-valued

saturation function

sat(x, a) =

{
x, if |x| ≤ a

a
x

|x| , if |x| > a .

Then the modified SONIC algorithm, that combines all “fixes”

described above, can be summarized as follows

zy(t) = −cµf
T(t)M̂−1(t− 1)zα(t− 1)

zα(t) = zα(t− 1) + M̂(t− 1)f(t)zy(t) +Hf(t)y(t)

ρ(t) = 1− cρ|µ̂(t− 1)|
r̃(t) = ρ(t)r(t − 1) + |zy(t)|2
r(t) = min(r̃(t), rmax)

∆µ(t) = sat
(
z∗y(t)y(t)/r(t),∆µmax

)

µ̃(t) = µ̂(t− 1)−∆µ(t)

µ̂(t) = sat(µ̃(t), µmax)

M̂(t) =

[
Re{µ̂(t)} −Im{µ̂(t)}
Im{µ̂(t)} Re{µ̂(t)}

]

α̂(t+ 1|t) = α̂(t|t− 1) + M̂(t)f(t)y(t)

u(t) = − α̂
T(t+ 1|t)K−1

n f(t+ 1) (39)

VII. EXTENSIONS

We will describe two extensions of the proposed control

scheme: to systems with multiharmonic disturbances and to

systems with an extra transport delay.

A. Multiharmonic disturbances

Sinusoidal disturbances that occur in vibrating systems often

consist of the fundamental (with frequency ω0) and several

harmonics (with frequencies 2ω0, 3ω0 etc.). Suppose that m
such components, with slowly-varying amplitudes, are present:

d(t) =

m∑

i=1

di(t)

di(t) = α
T
i (t)fi(t), fi(t) = [sinω0it, cosω0it]

T

αi(t) = [a1i(t), a2i(t)]
T, αi(t) = αi(t− 1) +wi(t)

where {wi(t)}, i = 1, . . . ,m, are mutually independent

white noise sequences with covariance matrices σ2
1I, . . . , σ

2
mI,

respectively.

Rejection of a multiharmonic disturbance can be achieved

by employing a parallel estimation algorithm made up of m
subalgorithms, of the form described in the previous section,

designed to eliminate different components of d(t)

α̂i(t+ 1|t) = α̂i(t|t− 1) +Mifi(t)y(t)

i = 1, . . . ,m

u(t) = −
m∑

i=1

α̂
T
i (t+ 1|t)K−1

i fi(t+ 1) (40)

where K1,K2, . . . ,Km denote the nominal plant gain matri-

ces (evaluated at the frequencies ω0, 2ω0, . . . ,mω0) and

Mi =

[
Re{µi} −Im{µi}
Im{µi} Re{µi}

]
, i = 1, . . . ,m
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are the adaptation gain matrices – see [7] for further justifi-

cation of the structure of (40). The estimates of the complex-

valued adaptation gain coefficients µi can be computed re-

cursively (independently of one another) using the algorithm

designed for the single frequency case.

B. Additional transport delay

Suppose that the plant is governed by

y(t) = K0(q
−1)u(t− τ) + d(t) + v(t)

where τ denotes transport delay. So far we have considered

the unit delay case. Some modifications are needed to cope

with τ > 1.

First, the control rule (17) should be replaced with

u(t) = −α̂
T(t+ τ |t)K−1

n f(t+ τ) (41)

where

α̂(t+ τ |t) = α̂(t+ τ − 1|t− 1) +Mf(t)y(t). (42)

Second, since in the case considered

y(t) ∼= d(t)− fT(t)BT
α̂(t|t− τ) + v(t)

one should replace (31) with

∂y(t)

∂µ
= − fT(t)BT ∂α̂(t|t− τ)

∂µ
∂α̂(t+ τ |t)

∂µ
=

∂α̂(t+ τ − 1|t− 1)

∂µ
+Mf(t)

∂y(t)

∂µ

+
∂M

∂µ
f(t)y(t). (43)

Finally, after incorporating (32) and (33), one arrives at

∂y(t)

∂µ
= −cµf

T(t)M−1 ∂α̂(t|t− τ)

∂µ
∂α̂(t+ τ |t)

∂µ
=

∂α̂(t+ τ − 1|t− 1)

∂µ
+Mf(t)

∂y(t)

∂µ

+Hf(t)y(t). (44)

When incorporating (44) into the adaptive control algorithm

analogous to (35) or (39), one should replace M−1, appearing

in the first recursion of (44), with M̂−1(t − τ), and replace

M with M̂(t− 1) in the second recursion.

VIII. SIMULATION RESULTS

To enable comparison with the results obtained for complex-

valued input/output signals, all simulation experiments pre-

sented below are identical with those described in [7].

A. Steady-state performance

The purpose of this experiment was to examine the steady-

state error compensation capabilities of the algorithm (35).

None of the proposed safety jacketing measures was applied.

The only user-dependent tuning “knob” ρ was set to 0.9999.

Simulations were carried for the Guo&Bodson plant (30) with

the following measurement noise and sinusoidal disturbance

settings: σv = 0.1, σw = 0.001/
√
2, cµ = 0.02 ω0 = 0.1,

α(0) = [0.5, 0.5]T . In the absence of modeling errors the

optimal value of µ is under such conditions equal to µopt =
h∞ = 0.01.

Tables I and II show the mean-squared output errors (Table

I) and mean-squared cancellation errors (Table II) observed

for different values of β (12 selections, characterized in terms

of magnitude and phase errors). All numbers were obtained

by means of combined ensemble (100 realizations of {v(t)}
and {w(t)}) and time (t ∈ [10001, 40000]) averaging, after

the algorithm has reached its steady-state behavior.

argβ[ ˚ ] |β| = 0.25 |β| = 1 |β| = 4

0 1.0118 1.0119 1.0120

60 1.0118 1.0119 1.0120

120 1.0118 1.0119 1.0120

180 1.0118 1.0119 1.0120

TABLE I
STEADY-STATE MEAN-SQUARED OUTPUT-ERROR E∞[y2(t)] · 10−2

MEASURED FOR DIFFERENT MAGNITUDE AND PHASE MODELING ERRORS.
THE THEORETICAL LOWER ERROR BOUND IS IN THIS CASE EQUAL TO

1.01·10−2

argβ[ ˚ ] |β| = 0.25 |β| = 1 |β| = 4

0 1.0227 1.0389 1.0551

60 1.0228 1.0390 1.0553

120 1.0228 1.0389 1.0554

180 1.0228 1.0389 1.0553

TABLE II
STEADY-STATE MEAN-SQUARED CANCELLATION ERROR

E∞[
〈

c2(t)
〉

∞
] · 10−4 MEASURED FOR DIFFERENT MAGNITUDE AND

PHASE ERRORS. THE THEORETICAL LOWER BOUND IS IN THIS CASE

EQUAL TO 1.0025 · 10−4

Note that the proposed control scheme is insensitive to phase

errors and almost insensitive to magnitude errors. In all cases

considered the mean-squared output errors are by less than

0.2% larger than the minimum error achievable when µ is

set to its optimal value µopt = h∞/β and not estimated.

The analogous degradation for the mean-squared cancellation

errors does not exceed 6%. This means that the proposed

disturbance rejection scheme is doing a remarkably good job

in compensating modeling errors and optimizing the closed-

loop system performance.

B. Transient performance

The objective of this experiment was to demonstrate the

ability of the proposed algorithm to cope with sudden plant

changes. The plant was changed three times during each

simulation run – see Table III. The corresponding transfer

functions are listed below:

K1(z) =
0.0952

1− 0.9048z−1

K2(z) =
0.0238

1− 0.9762z−1

K3(z) =
0.2

1− 0.8z−1

K4(z) =
−0.1 + 0.14z−1

1− 1.8391z−1 + 0.8649z−2
.
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At all times the nominal plant gain was kept at the constant

level Kn = I. While the first two changes (from K1(z) to

K2(z) at instant t = 15000 and from K2(z) to K3(z) at

instant t = 30000) were confined to plant parameters, the last

one was more substantial: at instant t = 45000 the first-order

inertial system K3(z) with a single real pole was switched

to the second-order nonminimum phase system K4(z) with

a pair of complex poles. Since the phase shift introduced by

K4(z) at frequency ω0 differs from the analogous shift of

K3(z) by more than π/2 [which means that the stabilizing

gain µ̂ for K3(z) does not stabilize K4(z)], the last change

causes temporal instability of the closed-loop system, making

the task of disturbance rejection even harder.

Time interval Plant |β| argβ[˚]

0 < t < 15000 K1(z) 0.708 -42.2

15000 ≤ t < 30000 K2(z) 0.234 -73.6

30000 ≤ t < 45000 K3(z) 0.913 -21.4

45000 ≤ t ≤ 60000 K4(z) 1.960 126.8

TABLE III
PLANT SWITCHING SCHEDULE IN THE TRANSIENT BEHAVIOR

EXPERIMENT AND THE CORRESPONDING MODELING ERRORS.

Fig. 3 shows the results of a typical simulation run obtained

for the algorithm (39) with the following settings: cρ = 0.05,

cµ = 0.005, µmax = 0.05, ∆µmax(t) = µ̂(t− 1)/50,

rmax = 2000. The “cold start” procedure was used, i.e., the

adaptation process was started from scratch at instant t = 1
using the following initial conditions: r(0) = 100, zα(0) = 0,

µ̂(0) = 0.02. The algorithm dealt favorably with both the

initial convergence problem and with abrupt plant changes.

When the experiment was started or when a change to the

plant dynamics occurred, the magnitude of the adaptation

gain µ̂(t) temporarily increased to quickly compensate large

initial modeling errors; later on it gradually decayed to settle

down around its optimal steady-state value. Note very quick

response to phase errors and (usually) much slower response

to magnitude errors – the effect caused by diverse sensitivity

of system output to two types of modeling errors.

Simulation experiments confirm that the proposed control

scheme has the self-stabilization property. Note how stability,

lost at instant t = 45000, is quickly regained after a short

burst observed at the system output. We have found out

experimentally, that this burst can be reduced, both in size and

duration, if a very simple stability safeguard is added to (39),

namely if the sign of the adaptation gain is changed when the

magnitude of the output signal exceeds its maximum allowable

value

µ̂(t) = −µ̂(t− 1) if | y(t)| > ymax. (45)

When polarity of µ̂ is changed, the sensitivity derivative

zα(t) should be set to zero. Additionally, to avoid multiple

sign changes, after each intervention the stability enforcement

mechanism (45) should be temporarily switched off. Selection

of ymax should be done with caution and usually requires some

prior knowledge about the plant and/or disturbance – too small

values of ymax may trigger the stability rescue mechanism
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Fig. 4. Transient behavior of the disturbance rejection algorithm (results of a
typical simulation run). Solid lines – estimated values, dotted lines – optimal
steady-state values.
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Fig. 5. Transient behavior of the disturbance rejection algorithm equipped
with a stability safeguard (results of a typical simulation run). Solid lines –
estimated values, dotted lines – optimal steady-state values.

when such intervention is not really needed, e.g. when large

values of y(t) are not caused by system instability.

Fig. 5 (illustrating typical behavior) and Fig. 6 (illustrating

mean behavior) show results obtained when the stability

enforcement mechanism, described above, was applied with

ymax = 5. After a sign change this mechanism was blocked

until ȳ(t) = max{ |y(t − i + 1)| , i = 1, . . . , [T0]} dropped

below 1. Note that the burst at the system output at instant

t = 45000 was reduced to an acceptable level.

Three close-up views of the plots shown in Fig. 6 are

presented in Fig. 7. In all cases the mean transient response is

shorter than 500 samples, i.e., it lasts for less than 8 periods of

the disturbance (T0 = 2π/ω0
∼= 63). For less significant plant

changes the length of the transient period is usually much

shorter, often taking the values smaller than T0.

C. Multiharmonic disturbance

In our third experiment the output of the Guo&Bodson

plant was corrupted with a sinusoidal signal consisting of the
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Fig. 6. Mean transient behavior of the disturbance rejection algorithm
(average of 100 simulation runs). Solid lines – ensemble averages of the
estimated values, dotted lines – optimal steady-state values.
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Fig. 7. Mean transient behavior of the disturbance rejection algorithm
(average of 100 simulation runs) – close-up views of three plant switching
areas. Solid lines – ensemble averages of the estimated values, dotted lines –
optimal steady-state values.

first and third harmonics

d(t) = d1(t) + d3(t)

d1(t) = α
T
1 (t)f1(t), d3(t) = α

T
3 (t)f3(t)

f1(t) = [sinω0t, cosω0t], f3(t) = [sin 3ω0t, cos 3ω0t]

where ω0 = 0.1 and α1(t), α3(t) changed according to the

random-walk model: σ1 = σ3 = 0.001/
√
2, α1(0) = [1, 1]T,

α3(0) = [0.5, 0.5]T. The measurement noise variance was

equal to σ2
v = 0.01. The decentralized adaptive controller (40)

was applied, combining two algorithms of the form (39) with

identical settings: cρ,1 = cρ,3 = 0.05, cµ,1 = cµ,3 = 0.005,

rmax,1 = rmax,3 = 1600, ∆µmax,1(t) = µ̂1(t − 1)/50,

∆µmax,3(t) = µ̂3(t − 1)/50, µmax,1 = µmax,3 = 0.05.

The initial conditions were set to α̂1(0) = α̂3(0) = [0, 0]T

and µ̂1(0) = µ̂3(0) = 0.02. Finally, the nominal plant gain

matrices were set to K1 = K3 = I, which resulted in the
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Fig. 8. Rejection of a multiharmonic disturbance (average of 100 simulation
runs). Solid lines – ensemble averages of estimated values, dotted lines –
optimal steady-state values.

following modeling errors: |β1| = 0.708, argβ1 = 42.2 ˚ ,

|β3| = 0.318, argβ3 = 74.6 ˚ .

This time a somewhat more cautious initialization scheme

was used. During the first 300 time-steps the quantities zα,1(t),
r1(t) and zα,3(t), r3(t) were evaluated but the adaptation gains

µ̂1(t), µ̂3(t) were kept at their starting values µ̂1(0), µ̂3(0) and

not updated. Then, at the instant t = 301, the adaptation lock

was released.

Fig. 8 shows the results of a typical simulation run. Simi-

larly as in the previous experiment, at the beginning of each

transient phase the magnitudes of adaptation gains µ̂1(t) and

µ̂3(t) took large values. Later on they slowly approached their

steady-state optimal levels. In contrast with this, response to

phase errors was pretty quick.

D. Additional transport delay

The transient behavior experiment, reported in Section VIII-

B, was repeated with an extra transport delay, equal to 5

sampling intervals (τ = 6), added to all plants. The algorithm

(41)–(44) was used, equipped with the safety and stability

enforcement mechanisms described earlier. The adaptation was

started at instant t = 1 in an analogous way as described in

Section VIII-B. The assumed nominal gain Kn was equal to

I.

Fig. 9 shows the results of a typical simulation run. Note

that these results are comparable with those presented in Fig. 5

for a plant with unit delay (in both cases the same realizations

of {w(t)} and {v(t)} were used).

IX. CONCLUSION

The problem of elimination of a sinusoidal disturbance of

known frequency, acting at the output of an unknown linear

stable plant was considered. The proposed solution is based on

coefficient fixing – the technique originally developed for the

purpose of adaptive minimum-variance control – combined

with automatic adaptation gain adjustment. Both theoretical

analysis and computer simulations confirm that when the
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Fig. 9. Transient behavior of the disturbance rejection algorithm for a plant
with extra transport delay (results of a typical simulation run). Solid lines –
estimated values, dotted lines – optimal steady-state values.

amplitudes of the disturbance evolve according to the random-

walk model, the resulting regulator converges (locally) in mean

to the optimal regulator. To the best of our knowledge it is

the first adaptive vibration controller with self-optimization

capability.
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[16] K. Åström, U. Borisson, L. Ljung, and B. Wittenmark, “Theory and
applications of self-tuning regulators,” Automatica, vol. 13, pp. 457–
476, Sept. 1977.
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APPENDIX

PROOF OF PROPOSITION 1

A. Equilibrium point

First, we will derive the closed-form expression for g(µ) =
E[y(t)z∗y(t)] (for the sake of brevity dependence of y(t), zy(t),
α̂(t) etc. on µ will be temporarily dropped). Observe that

y(t) = ∆α̂
T(t)f(t)+v(t) and zy(t) = −cµf

T(t)M−1 zα(t−
1) which leads to

E[y(t)z∗y(t)] = − cµE[∆α̂
T(t)f(t)fT(t)M−1z∗α(t− 1)]

− cµE[v(t)f
T(t)M−1z∗α(t− 1)] .

Note that the second term on the right-hand side of the last

equation is zero due to orthogonality of v(t) and z∗α(t − 1).
Applying averaging to the first term, one arrives at [cf. (12)]

E[y(t)z∗y(t)]
∼= − cµ

2
E[∆α̂

T(t)M−1z∗α(t− 1)] .

Using the relationships

∆α̂
T(t) = ∆α̂

T(t− 1)[ I− f(t− 1)fT(t− 1)MTB ]

− fT(t− 1)MTBv(t− 1) +wT(t)

z∗α(t− 1) = [ I− cµMf(t− 1)fT(t− 1)M−1 ]z∗α(t− 2)

+H∗f(t− 1)fT(t− 1)∆α̂(t− 1)

+H∗f(t− 1)v(t− 1)

and dropping all terms that are zero due to orthogonality, one

obtains

J(t) = E{∆α̂
T(t)M−1z∗α(t− 1)} = J1(t) + J2(t) + J3(t)

where

J1(t) = E{∆α̂
T(t− 1)A1(t)z

∗
α(t− 2)}

J2(t) = E{∆α̂
T(t− 1)A2(t)∆α̂(t− 1)}

J3(t) = −E{fT(t− 1)MTBM−1H∗f(t− 1)v2(t− 1)}
and the time-varying matrices A1(t), A2(t) are as follows

A1(t) = [I− f(t− 1)fT(t− 1)MTB] M−1

× [I− cµMf(t− 1)fT(t− 1)M−1]

A2(t) = [I− f(t− 1)fT(t− 1)MTB]

×M−1H∗f(t− 1)fT(t− 1).

One can check that fT(t−1)MTBf(t−1) = Re{βµ}, which

leads to

A1(t) = [I− f(t− 1)fT(t− 1)MTB− cµf(t− 1)fT(t− 1)

+ cµRe{βµ}f(t− 1)fT(t− 1)] M−1

and

< A1(t) >∞ = [1− cµ/2 + cµRe{βµ}/2] M−1

−MTBM−1/2 .
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Hence

J1(t) ∼= E{∆α̂
T(t− 1) < A1(t) >∞ z∗α(t− 2)}

= [1− cµ/2 + cµRe{βµ}/2] J(t− 1)

− E{∆α̂
T(t− 1)MTBM−1z∗α(t− 2)}/2 .

To further simplify J1(t) note that for small values of cµ it

holds that (after averaging)

zα(t) = (1− cµ/2)zα(t− 1) +Hf(t)y(t) .

Since

Hf(t) =
1

2

[
1 j

−j 1

] [
sinω0t
cosω0t

]
=

e−jω0t

2

[
j
1

]

one arrives at

zα(t) = [zα1(t), zα1(t)]
T , zα1(t) = jzα2(t) .

It is straightforward to check that under the constraint derived

above it holds that

M−1z∗α(t) =
z∗α(t)

µ∗
, MTBz∗α(t) = βµz∗α(t)

which leads to

∆α̂
T(t− 1)MTBM−1z∗α(t− 2) = βµJ(t − 1) .

Combining this with the earlier result, one obtains

J1(t) = [1− cµ/2 + cµRe{βµ}/2− βµ/2]J(t− 1) .

To evaluate J2(t) note that

M−1H∗ =
1

µ∗
H∗

fT(t− 1)MTBM−1H∗f(t− 1) =
βµ

2µ∗

which leads to

A2(t) =
1

µ∗
[H∗ − βµI/2] f(t− 1)fT(t− 1)

<A2(t) >∞=
1

2µ∗
H∗ − βµ

4µ∗
I .

Finally, exploiting the fact that ∆α̂
T(t − 1)H∗∆α̂(t − 1) =

||∆α̂(t−1)||2/2 and ∆α̂
T(t−1)∆α̂(t−1) = ||∆α̂(t−1)||2,

one arrives at

J2(t) ∼= E{∆α̂
T(t− 1) < A2(t) >∞ ∆α̂(t− 1)}

=
1− βµ

4µ∗
E{ ||∆α̂(t− 1)||2} .

Evaluation of the term J3(t) is relatively easy

J3(t) = − βµ

2µ∗
σ2
v .

After combining all partial results derived so far, equation

J(t) = J1(t) + J2(t) + J3(t) constitutes a recursive formula

for evaluation of J(t) = E{∆α̂
T(t)M−1z∗α(t− 1)}

J(t) ∼= [1− cµ/2 + cµRe{βµ}/2− βµ/2] J(t− 1)

+
1− βµ

4µ∗
E{ ||∆α̂(t− 1)||2} − βµ

2µ∗
σ2
v

the steady-state solution of which (under suitable stability

conditions) can be obtained in the form

J(∞) = E∞{∆α̂
T(t)M−1z∗α(t− 1)}

∼= (1 − βµ)E∞{ ||∆α̂(t)||2}/2− βµσ2
v

µ∗[ cµ + βµ− cµRe{βµ} ]
=

N(µ)

D(µ)
.

To determine the equilibrium point µ0 we shall require that

g(µ0) = E∞{y(t;µ0)z
∗
y(t;µ0)} = −cµ

2
J(∞) = 0

which is equivalent to N(µ0) = 0. Using (26) the latter

condition can be rewritten as

(1− βµ0)[ ξ + |βµ0|2/2 ]
βµ0[ Re{βµ0} − |βµ0|2/2 ]

= 1 .

Since βµ0 must be a positive real number, one finally obtains

βµ0 = −ξ +
√
ξ2 + 2ξ

which, according to (27), means that µ0 = µopt.

B. Local stability

Since N(µ0) = 0, one obtains

g′(µ0) = −cµ
2

· N
′(µ0)

D(µ0)
.

Furthermore, since µ0 minimizes E∞{ ||∆α̂(t;µ)||2}, it holds

that E′
∞{ ||∆α̂(t;µ0)||2} = 0, where the derivative is taken

with respect to µ. Combining these results, one arrives at

g′(µ0) =
cµβµ0[ E∞{ ||∆α̂(t;µ0)||2}/2 + σ2

v ]

2|µ0|2[ cµ + (1 − cµ)βµ0 ]
> 0 .

In an analogous way one can show that g†(µo) =
−N †(µo)/D(µo) = 0.
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