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Abstract—This paper presents a new approach to rejection
of complex-valued sinusoidal disturbances acting at the output
of a discrete-time stable linear plant with unknown dynamics.
It is assumed that the frequency of the sinusoidal disturbance is
known, and that the output signal is contaminated with wideband
measurement noise. The disturbance rejection control rule is first
derived and analyzed for a nominal plant model, different from
the true model. Then a special adaptation mechanism is added,
which is capable of compensating modeling biases (errors in both
magnitude and phase) so that, under Gaussian assumptions, the
closed-loop system can converge in mean to the optimal solution.

Index Terms—Adaptive filtering, system identification, distur-
bance rejection.

I. I NTRODUCTION

CONSIDER the problem of reducing of a complex-valued
narrowband disturbance at the output of a discrete-time

system governed by (see Fig. 1)

y(t) = Kp(q−1)u(t− 1) + d(t) + v(t) (1)

wherey(t) denotes the corrupted complex-valued system out-
put, t = . . . ,−1, 0, 1, . . . denotes normalized time,Kp(q−1)
denotes unknown transfer function of a stable linear single-
input single-output plant,q−1 is the backward shift operator,

d(t) = a(t)ejω0t (2)

is a complex-valued sinusoidal disturbance (cisoid) of known
frequencyω0 and unknown, slowly-varying amplitudea(t),
v(t) is a wideband measurement noise, andu(t) denotes the
input (control) signal.

We will look for a feedback controller allowing for cancella-
tion, or near-cancellation, of the sinusoidal disturbance, i.e., a
controller generating the complex-valued feedback signalu(t)
that minimizes the system output in the mean-squared sense:
E[ | y(t) |2 ] 7−→ min.

The need for vibration control arises in many electro-
mechanical systems, where narrowband disturbances are usu-
ally generated by rotating machinery and their suppression
is necessary to maintain high quality of the underlying tech-
nological process [1]. Similar problems are encountered in
acoustic active noise control systems, where the unwanted
sound is attenuated by a noise-canceling speaker emitting a
sound wave with the same amplitude but opposite polarity
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Fig. 1. Block diagram of the disturbance rejection system.

[2], [3]. Both types of applications fall into a more general
narrowband disturbance rejection category.

The problem of narrowband disturbance rejection was con-
sidered by many authors under different methodologies, such
as filtered-X LMS (FXLMS) compensation [3], [4], internal
model principle [5], [6], and phase-locked loop control [7],
[8].

The proposed self-optimizing narrowband noise canceling
(SONIC) algorithm incorporates two adaptation loops: the
inner control loop, which predicts and cancels the disturbance,
and the outer, self-optimization loop, which automatically ad-
justs the complex-valued adaptation gain (the only parameter
that is estimated) to the unknown, and possibly time-varying,
characteristics of the controlled plant, sinusoidal disturbance,
and/or measurement noise. We prove that, under certain con-
ditions, the resulting controller converges in mean to the
optimal, minimum-variance controller, and we show that it
compares favorably, both in terms of canceling efficiency and
computational complexity, with the very popular (especially in
the signal processing community) FXLMS active noise control
scheme.

Unlike most of the existing contributions, our study will
focus on complex-valued signals. This is a deliberate choice,
motivated by the fact that the analytical results, which can
be derived in such a complex case, are simpler and hence
easier to interpret than the analogous results in the real case.
All qualitative aspects of the disturbance rejection problem,
which are of our main interest here, are in both cases the
same. Of course, most of the signals and systems encountered
in practice are real-valued. Later on we will present a simple
way of extending our algorithms to real-valued signals.

II. A SSUMPTIONS

We will assume that the measurement noise in (1) obeys
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(A1) {v(t)} is a zero-mean circular white sequence with
varianceσ2

v

and that the coefficienta(t) in (2) evolves according to the
random-walk (RW) model

a(t) = a(t− 1) + e(t) (3)

where the sequence of one-step changes obeys

(A2) {e(t)}, independent of{v(t)}, is a zero-mean circular
white sequence with varianceσ2

e .

Even though from a practical viewpoint the RW model can
be criticized as rather naı̀ve, it has two obvious advantages.
First, it allows one to obtain analytical results. Second, and
more importantly, under the random-walk hypothesis, one can
establish a Craḿer-Rao-type estimation bound that limits the
efficiency ofanydisturbance rejection scheme. This will allow
us to evaluate the performance of the proposed algorithms in
absolute, rather than relative, terms. To derive such a bound,
we will need the following additional assumption:

(A3) The sequences{v(t)} and {e(t)} are normally dis-
tributed:v(t) ∼ N (0, σ2

v), e(t) ∼ N (0, σ2
e).

The only assumption that will be made about the unknown
plant is that it is stable and has nonzero gain at the frequency
ω0:

(A4) Kp(q−1) =
∑∞

i=0 kiq
−i,

∑∞
i=0 | ki| < ∞,

Kp(e−jω0) 6= 0.

Although in our primary design we will assume that the
transfer function of the plant is fixed and known, later on
we will propose a special adaptation mechanism capable of
readjusting the control loop so as to make it insensitive to
discrepancy between the nominal (assumed) transfer function
and the true one. Hence, the nominal gain will be considered
only as a convenient starting point for the adaptive regulator.

III. O PEN-LOOP CASE

Consider the problem of one-step-ahead prediction/compen-
sation of a signal governed by

s(t) = d(t) + v(t) (4)

whered(t) is a nonstationary cisoid, described in the previous
section, andv(t) denotes white measurement noise. Combin-
ing (2)–(4), one arrives at the following state-space equations

d(t) = ejω0d(t− 1) + ẽ(t)
s(t) = d(t) + v(t) (5)

where ẽ(t) = ejω0te(t). Under (A2) the sequence{ẽ(t)} is
circular white with varianceσ2

e .
Denote byS(t) = {s(1), . . . , s(t)} the set of measurements

available at instantt. The optimal, in the mean-square sense,
one-step-ahead predictor ofs(t) has the form [9]̂s(t| t−1) =
E[s(t)| S(t−1)] = d̂(t| t−1), whered̂(t| t−1) = E[d(t)|S(t−
1)] is a one-step-ahead predictor ofd(t). The mean-squared
prediction error can be expressed in the formE[| s(t)− ŝ(t| t−
1)|2] = E[| c(t)|2] + σ2

v , wherec(t) = d(t) − d̂(t| t − 1) will
be called the cancellation error.

Under assumptions (A1)–(A3), the optimal estimates ofd(t)
can be computed recursively using the Kalman filter algorithm

d̂(t| t− 1) = ejω0 d̂(t− 1| t− 1)

p(t| t− 1) = p(t− 1| t− 1) + σ2
e

g(t) =
p(t| t− 1)

σ2
v + p(t| t− 1)

ε(t) = s(t)− d̂(t| t− 1)

d̂(t| t) = d̂(t| t− 1) + g(t)ε(t)

p(t| t) = p(t| t− 1)− p2(t| t− 1)
σ2

v + p(t| t− 1)
(6)

where d̂(t| t) = E[d(t)|S(t)] denotes the filtered estimate
of d(t), and p(t| t − 1) = E[| d(t) − d̂(t| t − 1)|2] and
p(t| t) = E[| d(t)− d̂(t| t)|2] are thea priori anda posteriori
error variances, respectively. The steady-state value of the
mean-squared cancellation errorE[| c(t)|2] = p(t| t−1), equal
to p∞ = limt→∞ p(t| t − 1), can be obtained by solving the
associated Riccati equation:p2

∞/(σ2
v + p∞) = σ2

e . This results
in

p∞ =
σ2

e +
√

σ4
e + 4σ2

eσ2
v

2
. (7)

Note that in steady state, the Kalman filter (6) reduces to

d̂(t + 1| t) = ejω0 [ d̂(t| t− 1) + g∞ε(t) ]

ε(t) = s(t)− d̂(t| t− 1) (8)

whereg∞ = limt→∞ g(t) = p∞/(σ2
v + p∞), 0 < g∞ < 1,

is the optimal (real-valued) steady-state gain. Note also that,
under assumptions (A1)–(A3),p∞ is the lower bound on the
mean-squared cancellation error, called the Bayesian Cramér-
Rao bound [10] (the classical Cramér-Rao bound does not
apply to systems/signals with random parameters). This means
that no other compensation scheme can do better than the one
described above.

IV. CLOSED-LOOP CASE– A PRELIMINARY SOLUTION

Consider a system governed by (1). In order to reject the
narrowband disturbanced(t), one should generate another
narrowband signalu(t), which, after passing through the plant,
will have the same amplitude asd(t) but opposite polarity.
Since linear systems basically scale and shift sinusoidal inputs,
the narrowband character ofu(t) justifies the following steady-
state approximation

Kp(q−1)u(t− 1) ∼= kpu(t− 1) (9)

where kp = Kp(e−jω0). Some further comments on this
approximation will be given in Remark 2 at the end of this
section.

To design our feedback controller, we will assume that the
transfer function of the plant is equal to some “nominal”
transfer functionKn(q−1). SinceKp(q−1) is usually unknown
and/or time-varying, in general it will hold thatKn(q−1) 6=
Kp(q−1). Denote bykn = Kn(e−jω0) 6= 0 the nominal plant
gain at the frequencyω0. The proposed control rule has the
form

u(t) = − d̂(t + 1| t)
kn

(10)
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whered̂(t + 1| t) is obtained from

d̂(t + 1| t) = ejω0 [ d̂(t| t− 1) + µy(t) ] (11)

andµ > 0 denotes adaptation gain.
To check performance of the closed-loop system, observe

that

y(t) ∼= kpu(t− 1) + d(t) + v(t)

= d(t)− βd̂(t| t− 1) + v(t) = c(t) + v(t) (12)

where β = kp/kn is the ratio of the true plant gain to its
nominal (assumed) gain andc(t) denotes the cancellation
error. Combining (11) and (12) one obtains

c(t) = ejω0(1− µβ)c(t− 1) + ẽ(t)− µβṽ(t− 1) (13)

whereṽ(t) = ejω0v(t). Note that, similarly to{v(t)}, {ṽ(t)}
is a circular white noise signal with varianceσ2

v .
Observe thatE[c(t)] = ejω0(1− µβ)E[c(t− 1)]. Hence, if

| 1− µβ| < 1 (14)

then limt→∞ E[c(t)] = E∞[c(t)] = 0, which means that the
steady-state mean value of the cancellation error is zero –
even if β 6= 1, i.e., if the true gain of the plant at frequency
ω0 differs from the assumed gain.

Let β = |β|ejφ, where |β| is the magnitude ratio andφ
denotes the phase modeling error. It is straightforward to check
that condition (14) is equivalent to

µ|β| < 2 cos φ (15)

in agreement with [3, sec. 3.3.5].
According to (15), the disturbance rejection scheme (10)–

(11) is unstable ifcosφ < 0, i.e., if the absolute value of the
phase error exceedsπ/2. On the contrary, when|φ| < π/2,
one can always chooseµ so as to satisfy (14) – irrespective of
the magnitude error. When the stability condition is fulfilled,
one can easily derive and minimize the expression for the
steady-state mean-squared cancellation error. Straightforward
calculations lead to

E∞[| c(t)|2] =
σ2

e + |µβ|2σ2
v

1− | 1− µβ|2 (16)

and

µopt = arg min
µ∈R+

E∞[| c(t)|2]

= − ζ

β + β∗
+

√
ζ2

(β + β∗)2
+

ζ

ββ∗
(17)

where
ζ = σ2

e/σ2
v

and∗ denotes complex conjugation. One can check that when
there is no phase error, i.e.,φ = 0, it holds thatµoptβ =
µopt|β| = g∞ and E∞[ | c(t)|2|µ = µopt ] = p∞. Therefore,
no matter how large the magnitude mismatch, one can always
choose an adaptation gainµ that will make the disturbance
rejection scheme statistically efficient (in the Gaussian case).

To see what happens in the presence of phase mismatch,
we will assume that the ratioζ is small (slow variation hy-
pothesis), namelyζ ¿ 4 cos2 φ. In this caseµopt

∼= √
ζ/|β|,

p∞ ∼= σeσv and

E∞[ | c(t)|2|µ = µopt ] ∼= σeσv

cosφ
∼= p∞

cosφ
≥ p∞ (18)

which means that even ifµ is chosen in the optimal way, one
may face substantial losses in rejection efficiency for large
phase errors.

After the discussion presented above, the suggested distur-
bance rejection scheme can be summarized as follows

1) Stability can be achieved for arbitrary magnitude errors
and limited (smaller thanπ/2) phase errors.

2) Statistical efficiency (for arbitrary magnitude errors) is
possible only in the absence of phase errors.

3) The “true” adaptation gain of the algorithm (11), used
for amplitude tracking, is equal toµβ and hence depends
not only onµ but also on modeling errorsβ, e.g., when
β = 0.5 or β = 2, the estimation memory of this
algorithm is effectively doubled or halved, respectively.

4) The optimal value ofµ, guaranteeing the best achievable
performance, depends on the value ofβ, so even if the
characteristics of the disturbance (σ2

e ) and noise (σ2
v) are

known, it is not possible to determineµopt.

In the next section, we will describe an extended disturbance
rejection scheme free of the drawbacks mentioned above.

Remark 1: When deriving the feedback control rule (10),
we have assumed thatβ = 1. This resembles and leads to the
same qualitative results as the coefficient fixing technique used
to “robustify” adaptive minimum-variance (MV) regulators.
The MV control rule is a function of plant parameters. When
these parameters are not knowna priori, or when they vary
with time, adaptive versions of MV regulators can be used,
where the true (unknown) coefficients are replaced with their
current estimates, obtained by means of system identification.
However, since identification is carried in a closed loop,
the input/output data do not contain enough information to
unambiguously estimate all plant parameters – one degree of
freedom is “taken away by the loop.” To avoid identifiability
problems and to prevent parameter estimates from drifting,
one of the system coefficients – call itb0 – is usually fixed at
a preselected, nominal valuebn and not estimated [11].

It can be shown that for a wide range of ratiosb0/bn the
resulting adaptive regulator converges to the optimal (MV)
regulator, which means that the modeling bias is automatically
compensated by feedback. The coefficient fixing technique has
some limitations. First, one should get the sign ofb0/bn right,
namely it should hold thatb0/bn > 0 (note that our condition
|φ| < π/2 can be interpreted as a sign requirement imposed on
the real part ofβ = kp/kn: Re[β] > 0). Second, as shown in
[12], [13], when finite-memory identification is combined with
coefficient fixing, the “closed-loop memory” of the estimator
depends on the ratiob0/bn in a similar way as was observed
for the algorithm (11).

Remark 2: The expression (16), which describes depen-
dence of the mean-squared cancellation error onµ, was based
on the assumption that the plant’s response to narrowband
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Fig. 2. Comparison of theoretical values of the mean-squared cancellation
error, obtained using the steady-state plant approximation (solid line), with
the experimental values (crosses).

excitation can be closely approximated by an analogous re-
sponse of a much simpler “scale and shift” model, based on
frequency-domain concepts. A special simulation experiment
was arranged to check how well the resulting theoretical
formula fits the true error values. The simulated discrete-time
plant (Guo–Bodson)

Kp(q−1) =
0.0952

1− 0.9048q−1
(19)

was adopted from [8] and corresponds to a continuous-
time plant with transfer functionKp(s) = 1/(1 + 0.01s),
sampled at the rate of 1 kHz. Simulations were carried out
for σv = 0.1 and for four different rates of amplitude
variationσe ∈ {0.0001, 0.0005, 0.001, 0.005}, in the absence
of modeling errors (β = 1). For each (σe, µ) pair, the
experiment, covering 100000 time-steps, was repeated 500
times for different realizations of{v(t)} and {e(t)}. In all
cases,d(0) was set to 1 and̂d(0) was set toejω0 .

The results, summarized in Fig. 2, were obtained by means
of combined ensemble and time averaging, after discarding
the first 50000 samples (to ensure that the steady-state condi-
tions are reached). Note the good agreement of experimental
values with theoretical expectations for the considered (and
practically meaningful) range of adaptation gains.

More on the practical side – Fig. 2 clearly shows the benefits
that stem from tuning the adaptation gainµ to the degree of
system nonstationarity, exactly as predicted by theory.

V. CLOSED-LOOP CASE– THE REFINED SOLUTION

To optimize performance of (10)–(11) and, perhaps even
more importantly, to make the proposed disturbance rejection
scheme insensitive to modeling errors, we will equip it with an
automatic adaptation gain tuning mechanism. It is clear from
the discussion in the previous section that in the presence of
phase errors (φ 6= 0), no choice of the real-valued adaptation
gainµ can prevent performance of the rejection algorithm from

degradation. The situation changes if one allowsµ to take
complex values. It is straightforward to check that

µopt = arg min
µ∈C

E∞[| c(t)|2] =
1
β

[
−ζ

2
+

√
ζ2

4
+ ζ

]
=

g∞
β

(20)
andE∞[ | c(t)|2|µ = µopt ] = p∞ for any value ofφ. Having
this in mind, we will design an adaptive algorithm for on-line
tuning of a complex-valued adaptation gainµ.

We adjustµ recursively by minimizing the following local
measure of fit, made up of exponentially weighted squares of
system outputs

V (t, µ) =
t∑

τ=1

ρt−τ | y(τ, µ)|2 (21)

where the forgetting constantρ (0 < ρ < 1) determines the
effective averaging range. To evaluate the estimateµ̂(t) =
arg minµ V (t, µ), we will use the recursive prediction error
(RPE) approach [14]

µ̂(t) = µ̂(t− 1)− {V ′′[t, µ̂(t− 1)]}−1
V ′[t, µ̂(t− 1)] (22)

where

V ′[t, µ̂(t− 1)] ∼=
(

∂y[t, µ̂(t− 1)]
∂µ

)∗
y[t, µ̂(t− 1)]

V ′′[t, µ̂(t− 1)] ∼= ρV ′′[t− 1, µ̂(t− 2)] +
∣∣∣∣
∂y[t, µ̂(t− 1)]

∂µ

∣∣∣∣
2

and
∂

∂µ
=

1
2

[
∂

∂Re[µ]
− j

∂

∂Im[µ]

]

denotes symbolic differentiation with respect to a complex
variableµ. Such an approach, usually referred to as Wirtinger
calculus or CR (complex real) calculus, was introduced in [15].
It is based on the concept of real differentiability of complex
functions and is applicable to nonanalytic functions, such as
(21) – see [16]–[18] for more details.

Applying standard rules of Wirtinger calculus to (11) and
(12), one obtains

∂y(t)
∂µ

= −β
∂d̂(t| t− 1)

∂µ

∂d̂(t + 1| t)
∂µ

= ejω0
∂d̂(t| t− 1)

∂µ
+ ejω0y(t) + µejω0

∂y(t)
∂µ

leading to

∂y(t)
∂µ

= ejω0

[
(1− µβ)

∂y(t− 1)
∂µ

− βy(t− 1)
]

. (23)

Since the value ofβ is not known, the obtained recursive
formula can’t be used in its present form. The way out of
difficulty is to apply once more the gain fixing technique.
Settingβ = 1 in (23), one arrives at

∂y(t)
∂µ

= ejω0

[
(1− µ)

∂y(t− 1)
∂µ

− y(t− 1)
]

. (24)

Note, however, that to guarantee stable operation of (24), one
must have| 1 − µ| < 1, which puts some constraints on the
phase ofµ: Arg[µ] < π/2, whereArg[x] ∈ (−π, π] denotes
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principal argument of a complex numberx. This means that
full correction of phase errors will not be possible using this
approach. To overcome the above-mentioned limitation, one
can setβ = cµ/µ, wherecµ is a small positive constant. This
leads to1

∂y(t)
∂µ

= ejω0

[
(1− cµ)

∂y(t− 1)
∂µ

− cµ

µ
y(t− 1)

]
. (25)

Let r(t) = V ′′[t, µ̂(t − 1)] and z(t) = ∂y[t, µ̂(t− 1)]/∂µ.
Then the proposed SONIC algorithm can be summarized as
follows

z(t) = ejω0

[
(1− cµ )z(t− 1)− cµ

µ̂(t− 1)
y(t− 1)

]

r(t) = ρr(t− 1) + |z(t)|2

µ̂(t) = µ̂(t− 1)− z∗(t)y(t)
r(t)

d̂(t + 1| t) = ejω0 [ d̂(t| t− 1) + µ̂(t)y(t) ]

u(t) = − d̂(t + 1| t)
kn

. (26)

The recommended values ofcµ and ρ are those from the
intervals [0.005,0.05] and [0.999,0.9999], respectively.

The disturbance tracking loop [governed by the fourth
equation of (26)] can be easily recognized as an almost stan-
dard LMS-type recursion, i.e., a general-purpose estimation
algorithm, capable of trackingany types of changes. Its only
nonstandard (but very important) feature is that the step-
size µ is complex-valued and automatically adjusted — this
allows one to account for unknown, and possibly time-varying,
characteristics of the controlled dynamic process. Note also,
that the self-optimizing loop [governed by the first three
equation of (26)], by the very nature of the RPE approach,
will tend to minimize prediction (output) errorsirrespectiveof
their origin, e.g., it should respond adequately to abrupt plant
changes, or to changes in the level of the measurement noise,
even though such forms of nonstationarity were not taken
into consideration when deriving the disturbance canceling
algorithm.

Hence, although obtained under specific, and rather unre-
alistic, assumptions (disturbance changing according to the
RW model, time-invariant plant, white measurement noise of
constant intensity), the algorithm (26) can be safely used under
more realistic conditions that are encountered in practical
applications – some simulation evidence for this robustness
claim will be given in Section X.

VI. T RACKING ANALYSIS

We will show that, under assumptions (A1)–(A4), the pro-
posed adaptive filter converges in mean to the optimal solution

E∞[µ̂(t)] ∼= µopt =
g∞
β

. (27)

We will also shed light on the role played by design variables
ρ andcµ.

1Note that, according to (20), the desired value ofµβ is real. Hence, setting
µβ = cµ is to some extent a natural choice. Note also that as long ascµ < 2
the modified recursion is stable, irrespective of the phase ofµ.

Our tracking analysis will be based on studying the proper-
ties of a stochastic differential equation (SDE) associated with
algorithm (26). Since strict mathematical conditions under
which such an SDE-based approach is applicable are not
specified (one of the prerequisites is stochastic stability of the
analyzed system, which is a difficult problem to resolve on its
own), the “theoretical” results derived below must be carefully
verified experimentally. This will be done in Section X.

To avoid unnecessary complications, we will initially exam-
ine the tracking properties of the simplified (gradient) version
of algorithm (26), obtained by replacing the RPE updates [the
second and third lines of (26)] with

µ̂(t) = µ̂(t− 1)− αy(t)z∗(t) (28)

whereα > 0 denotes a small gain. Later on, we will extend
the results of our analysis to the normalized case, where
the constant gain is replaced with a recursively computed
normalizing factor1/r(t).

It is known that the tracking behavior of constant-gain
(finite-memory) estimation algorithms, such as (28), can be
studied by examining the properties of the associated differ-
ence equations [19], [20]. Denote by{y(t;µ)} and{z(t; µ)}
stationary processes that “settle down” in the closed-loop
system for a constant value ofµ: µ̂(t) ≡ µ ∈ Ωs, where
Ωs is the stability region. Furthermore, letµ0 be the stable
“equilibrium” point of (28) obeying

f(µ0) = 0 (29)

Re[f ′(µ0)] > 0, |f ′(µ0)|2 >
∣∣f†(µ0)

∣∣2 (30)

where

f(µ) = E[y(t;µ)z∗(t;µ)]

and

f ′(µ) = ∂f(µ)/∂µ , f†(µ) = ∂f(µ)/∂µ∗.

According to [19], [20], when the coefficientα is sufficiently
small, the evolution of the estimation errorµ̂(t) − µ0 can be
approximately described by the following linearized stochastic
differential equation (provided that tracking is satisfactory, i.e.,
µ̂(t) remains close toµ0)

dXs = −αf ′(µ0)Xsds− αf†(µ0)X∗
s ds

+ α
√

g(µ0) dWs (31)

Xs
∼= µ̂(t)− µ0 for s = t

wheres denotes continuous time,{Ws} is a standard complex-
valued Wiener process and

g(µ) =
∞∑

τ=−∞
E [ y(τ ; µ)z∗(τ ;µ)y∗(0; µ)z(0; µ) ] (32)

(the series being assumed convergent).
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A. Equilibrium Point

We will show thatµ0 = µopt. For two jointly stationary pro-
cesses{x(t)} and{y(t)}, defineRxy(τ) = E[x(t)y∗(t− τ)].
Note thatf(µ) = Ryz(0; µ). Using the steady-state approxi-
mation [ cf. (11)–(12) ] one arrives at

y(t) = (1−µβ)ejω0y(t−1)+ ẽ(t)+v(t)−ejω0v(t−1) (33)

(for brevity, the dependence onµ is temporarily dropped).
Combining (26) with (33), one obtains

E[y(t)z∗(t)]

= E
{
[(1− µβ)ejω0y(t− 1) + ẽ(t) + v(t)− ejω0v(t− 1)]

× [(1− cµ)e−jω0z∗(t− 1)− cµ

µ∗
e−jω0y∗(t− 1)]}

which, after elimination of cross terms that are zero due to
orthogonality, leads to the following recursive relationship

Ryz(0) = (1− cµ)(1− µβ)Ryz(0)

− cµ

µ∗
(1− µβ)Ryy(0) +

cµ

µ∗
Rvy(0). (34)

In an analogous way, the relationship

E[y(t)y∗(t)] = E{[(1− µβ)ejω0y(t− 1) + ẽ(t) + v(t)

− ejω0v(t− 1)] · [(1− µ∗β∗)e−jω0y∗(t− 1)

+ ẽ ∗(t) + v∗(t)− e−jω0v∗(t− 1)]}
implies

Ryy(0) = |1− µβ|2Ryy(0) + σ2
e + 2σ2

v

− (1− µβ)Ryv(0)− (1− µ∗β∗)Rvy(0). (35)

Note thatRyv(0) = Rvy(0) = σ2
v . Solving (34) and (35) with

respect toRyy(0) andRyz(0), one obtains

Ryy(0) =
σ2

e + |µβ|2σ2
v

1− | 1− µβ|2 + σ2
v (36)

Ryz(0) = − cµ[(1− µβ)Ryy(0)− σ2
v ]

[1− (1− cµ)(1− µβ)]µ∗
. (37)

The equilibrium point µ0 can be determined by solving
f(µ0) = Ryz(0; µ0) = 0 or equivalently

(1− µ0β)Ryy(0; µ0) = σ2
v . (38)

Let x0 = 1−µ0β. Equation (38) can be rewritten in the form
[cf. (36)]

x0

(
ζ + | 1− x0|2

1− |x0|2 + 1
)

= 1. (39)

Since, according to (39),x0 must be a real number, one finally
obtains

x0 = 1 + ζ/2±
√

ζ2/4 + ζ , µ0β = −ζ/2±
√

ζ2/4 + ζ.

To guarantee stability of the closed-loop system, one must
require thatµ0β > 0 which leads to [cf. (20)]µ0β = g∞.
Since

µ0 = arg min
µ∈C

Ryy(0; µ) (40)

the equilibrium point established above corresponds to the
optimal (minimum-variance) control strategy.

B. Local Stability

To prove stability of the equilibrium point, we have
to verify (30). Note thatRyz(0; µ) = − N(µ)/D(µ),
where N(µ) = cµ[(1− µβ)Ryy(0)− σ2

v ] and D(µ) =
[1− (1− cµ)(1− µβ)]µ∗. According to (38), it holds that
N(µ0) = 0. Additionally, since [cf. (40)]R′yy(0; µ0) = 0, one
obtainsN ′(µ0) = −cµβRyy(0; µ0). Combining these results
one arrives at

f ′(µ0) = R′yz(0; µ0) = − N ′(µ0)
D(µ0)

=
cµg∞Ryy(0; µ0)

|µ0|2[1− (1− cµ)(1− g∞)]
> 0 (41)

In an analogous way one can show thatf†(µ0) =
−N†(µ0)/D(µ0) = 0 which, when combined with (41),
proves thatµ0 is a stable equilibrium point.

C. Results for the Normalized Algorithm

Now consider the normalized algorithm (26) where

µ̂(t) = µ̂(t− 1)− y(t)z∗(t)
r(t)

r(t) = ρr(t− 1) + |z(t)|2. (42)

Let γ = 1 − ρ. For constantµ and forρ sufficiently close to
1, it holds thatr(t) ∼= h(µ)/γ whereh(µ) = E[|z(t; µ)|2] =
Rzz(0; µ). Hence, the normalized algorithm can be analyzed
analogously to the gradient algorithm (28), provided that the
gainα is set toγR−1

zz (0; µ0). Note that this modification does
not qualitatively affect the results reported in the previous
subsections – similarly as before,µ0 = µopt is the only stable
equilibrium point of (42) satisfying (14). Sincef†(µ0) = 0,
the stochastic differential equation associated with (42) has the
form

dXs = −γh−1(µ0)f ′(µ0)Xsds

+ γh−1(µ0)
√

g(µ0) dWs. (43)

To evaluateh(µ0) = Rzz(0; µ0), note that

E[z(t)z∗(t)] = E{[(1− cµ)z(t− 1)− cµ

µ
y(t− 1)]

× [(1− cµ)z∗(t− 1)− cµ

µ∗
y∗(t− 1)]}

and hence

Rzz(0) = (1− cµ)2Rzz(0)− cµ(1− cµ)
µ∗

Rzy(0)

− cµ(1− cµ)
µ

Ryz(0) +
c2
µ

|µ|2 Ryy(0).

SinceRzy(0; µ0) = Ryz(0; µ0) = 0, one obtains

h(µ0) = Rzz(0; µ0) = R∗zz(0; µ0) =
cµRyy(0; µ0)
|µ0|2(2− cµ)

. (44)
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D. Variability

To study stochastic variability of̂µ(t)−µ0 we have to eval-
uateg(µ0) in (31). Note that under (A1)–(A3), the processes
{y(t)} and {z(t)} are zero-mean and Gaussian. Therefore it
holds that [18]

η(τ ;µ0) = E[ y(τ ; µ0)z∗(τ, µ0)y∗(0; µ0)z(0; µ0) ]
= I1(τ) + I2(τ) + I3(τ)

where

I1(τ) = E[ y(τ ; µ0)z∗(τ, µ0) ] E[ y∗(0; µ0)z(0; µ0) ]

= |Ryz(0; µ0)|2
I2(τ) = E[ y(τ ; µ0)y∗(0, µ0) ] E[ z∗(τ ; µ0)z(0; µ0) ]

= Ryy(τ ;µ0)R∗zz(τ ; µ0)
I3(τ) = E[ y(τ ; µ0)z(0, µ0) ] E[ z∗(τ ;µ0)y∗(0; µ0) ]

= Ryz∗(τ ; µ0)Rz∗y(τ ; µ0).

SinceRyz(0; µ0) = 0, it holds thatI1(τ) ≡ 0. Moreover, since
the processes{v(t)} and{e(t)} were assumed to be circular
white, one obtainsRvv∗(τ) = Rww∗(τ) = 0, ∀τ , which entails
Ryz∗(τ ; µ0) = Rz∗y(τ ;µ0) = 0, ∀τ and leads toI3(τ) ≡ 0.
Furthermore, we will show that

I2(τ) =
{

Ryy(0; µ0)Rzz(0; µ0), τ = 0
0, τ 6= 0 . (45)

Actually, note that

E[y(t)y∗(t− 1)] = E{[(1− µβ)ejω0y(t− 1) + e(t)

+ v(t)− ejω0v(t− 1)] y∗(t− 1)}
which leads toRyy(1) = ejω0 [(1 − µβ)Ryy(0) − Rvy(0)].
In an analogous way one can show thatRyy(τ) = ejω0(1 −
µβ)Ryy(τ − 1) , ∀τ > 1. Since [cf. (38)]Ryy(1; µ0) =
ejω0 [(1−µ0β)Ryy(0; µ0)−σ2

v ] = 0, one obtainsRyy(τ ;µ0) =
R∗yy(−τ ; µ0) = 0, ∀τ 6= 0, which leads to (45).

Finally, after combining all results presented above, one gets

g(µ0) =
∞∑

τ=−∞
η(τ ;µ0) = Ryy(0; µ0)Rzz(0; µ0). (46)

Derivation of (46) in the non-Gaussian case, i.e., under (A1)–
(A2) only, is also possible, but much more tedious.

E. Tracking Properties of the Normalized Algorithm

Since the properties of the closed-loop system depend on
the value ofµ̂(t)β, rather than on the value of̂µ(t), we will
introduce a new variableYs = βXs. Multiplying both sides of
(43) with β one arrives at the following differential equation

dYs = −γh−1(µ0)f ′(µ0)Ysds + γβh−1(µ0)
√

g(µ0) dWs

(47)
which can be used to study the evolution ofµ̂(t)β in the
neighborhood of the equilibrium pointµ0β = g∞.

Using (41), (44), and (46) one can rewrite (47) in the form

dYs = −bYsds + c dWs (48)

where

b = γh−1(µ0)f ′(µ0) = γg∞
2− cµ

1− (1− cµ)(1− g∞)
(49)

10
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−310

−8

10
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µ(
t)
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Fig. 3. Dependence of the steady-state variance ofµ̂(t)β on γ for the Guo-
Bodson’s plantK1(q−1). Solid lines – experimental results, dotted lines –
theoretical predictions. Circles –β = 1, squares –β = 4.

c = γβh−1(µ0)
√

g(µ0) = γ|µ0|β
√

(2− cµ)/cµ. (50)

Based on (48)–(50), one can rationalize the choice ofγ and
cµ:

1) Selection ofγ: Denote by E∞[|µ̂(t)β − g∞|2] ∼=
E∞[|Ys|2] the variance of fluctuations of̂µ(t)β aroundg∞.
Solving the Lyapunov equation associated with (48), one
obtainsE∞[|Ys|2] = |c|2/(2b), which leads to

q∞ = E∞[|µ̂(t)β − g∞|2]
∼= γg∞

1− (1− cµ)(1− g∞)
2cµ

. (51)

Quite clearly, to make the steady-state fluctuations ofµ̂(t)β
small, one should keep the coefficientγ sufficiently close to
0. On the other hand, as shown in [19], the closer thatγ
becomes to 0, the longer it takes for the algorithm to readjust
the adaptation gain̂µ(t) when the plant changes. Hence,
selection ofγ is a classical variance/bias compromise, typical
of identification of nonstationary systems [13]: for “small”
values ofγ, the estimation algorithm is “slow” (yields large
tracking bias) but “accurate” (yields small tracking variance),
whereas for “large” values ofγ, it is “fast” but “inaccurate”.

A special simulation experiment was arranged to check the
dependence of the steady-state variance ofµ̂(t)β on γ = 1−ρ
for the Guo–Bodson plant (19). The disturbance and noise
settings areσv = 0.1, σe = 0.001, ω0 = 0.1 and d(0) = 1.
All numerical values are obtained by combined ensemble
averaging (50 realizations of{v(t)} and {e(t)}) and time
averaging (100000 time-steps). For each realization, the first
25000 samples were discarded to ensure that only the steady-
state values are averaged. Fig. 3 shows the results obtained
for β = 1 (no modeling error) and forβ = 4. The constant
cµ was set to 0.01. Note the good correspondence between
experimental and theoretical curves in the considered range of
RPE gains. The obtained results are practically insensitive to
modeling errors.

2) Selection ofcµ: According to [19], the constantcµ

should be chosen so as to minimize the following measure
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Fig. 4. Block diagram of the adaptive FXLMS algorithm with auxiliary noise
plant identification.

of the tracking capability of the algorithm:

J(cµ) =
b2

|c|2 =
(2− cµ)cµ

[1− (1− cµ)(1− g∞)]2
.

Straightforward calculations lead to

copt
µ = arg min

cµ

J(cµ) = g∞. (52)

Note that in the case where
√

ζ ¿ 1 (slow rate of amplitude
variation), it holds thatg∞ ∼= √

ζ = σe/σv [cf. (5)]. Then, for
cµ = g∞, one obtains:b = γ, | c| ∼= γ

√
2g∞ andq∞ ∼= γg∞.

Remark: Since neitherb nor |c| = γg∞
√

(2− cµ)/cµ

depend onβ, the tracking properties of the RPE algorithm
(26) areindependentof the modeling error.

VII. C OMPARISON WITH THEFXLMS APPROACH

The original FXLMS algorithm was designed for systems
operating under stationary conditions, where identification of
the controlled plant (e.g., the so-called secondary path, in
acoustic applications) can be performed off-line, before the
control loop is closed. When the plant characteristics change
over time, an adaptive version of the FXLMS algorithm should
be used, allowing for on-line plant identification/tracking.
Two well-known solutions to this problem are based on the
auxiliary noise approach, and the overall system modeling
approach, respectively [3]. Both approaches were compared
in [21] and, based on evaluation of their steady-state and
transient performance, the approach utilizing auxiliary signals
was found superior to the approach in which no auxiliary
signals are required – for this reason we will focus our
attention on the first of them only.

In the auxiliary noise approach, proposed originally
by Eriksson and Allie [22], to enable reliable identifica-
tion/tracking of the plant, a low-variance random perturbation
(an artificially generated white noise sequence) is added to the
input signal. At each time-step, the updated plant model is used
as the reference prefilter for the classical FXLMS algorithm.
The resulting scheme, further referred to as adaptive FXLMS,
is depicted in Fig. 4. It incorporates two adaptation loops:

1) The system identification loop, which tracks coefficients
of a finite impulse response (FIR) model of the plant. It

is served by the first LMS algorithm

y′(t) = ϕT(t)k̂(t− 1)− y(t)

k̂(t) = k̂(t− 1) + µ1Re{ϕ(t)y′(t)} (53)

where y′(t) is a hypothetical (reconstructed) response
of the identified system to the auxiliary noise signal
u′(t), k̂(t) = [k̂1(t), . . . , k̂M (t)]T is a vector of esti-
mated impulse response coefficients,ϕ(t) = [u′(t− 1),
. . . , u′(t − M)]T is a vector made up of past values
of the auxiliary noise signal, andµ1 is a (real-valued)
step-size parameter.

2) Direct control loop, which forms the compensating sig-
nal by means of adjusting the magnitude and phase of
the measured, or artificially generated, reference signal
r(t) = ejω0t. It is served by the second LMS algorithm

r′(t) = ψT(t)k̂(t)

δ̂(t) = δ̂(t− 1) + µ2r
′(t)y(t) (54)

where r′(t) = K̂p(q−1)r(t) is a prefiltered reference
signal, ψ(t) = [r(t − 1), . . . , r(t − M)]T is a vector
made up of past values of the reference signal,δ̂(t) is a
complex-valued weight, andµ2 is a (real-valued) step-
size parameter.

As far as narrowband noise suppression is concerned, the solu-
tion described above has some obvious drawbacks, compared
to our solution (the comparison presented below does not
extend to other variants of FXLMS):

1) Unnecessary Performance Degradation.The method
proposed by Eriksson and Allie is an invasive approach
– injection of an auxiliary noise disturbs operation of the
adaptive noise canceling system, causing deterioration of its
performance (especially in the absence of measurement noise).
This drawback can be alleviated to some extent by using
schemes with dynamic scheduling of noise variance, such as
the scheme proposed in [23]. There the auxiliary noise power
is large before the adaptive noise control system converges,
and becomes small afterwards. Since convergence can only
take place under stationary conditions (time-invariant plant),
when the system is continuously operated in the tracking
mode, only small improvements can be gained by taking this
approach.

2) Lack of Parsimony.To maintain satisfactory performance
of the closed-loop system, one may be forced to use FIR
models of relatively high orders. For example, in our ex-
periments with the Guo-Bodson plant, estimation of at least
M = 20 impulse response coefficients was necessary to
maintain stability of the closed-loop system. Since all that is
needed for cancellation purposes, is an estimate of the plant’s
gain at the frequencyω0 : k̂p =

∑M
i=1 k̂ie

−jω0i, the identified
model is grossly overparameterized. This lack of parsimony
results in a slower response of the system to plant and/or
disturbance changes, as well as in an extra degradation of its
steady-state performance. Note that in our approach only one
complex-valued coefficient is estimated.

3) Excessive Numerical Complexity.Computational burden
associated with the adaptive FXLMS algorithm (53)–(54) is
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equal to6M +12 real multiply/add operations per time update
(this count does not include the cost of generating auxiliary
noise and reference). When the normalized LMS (NLMS)
recursions are used instead of the regular ones, the compu-
tational cost further increases to8M + 13 real multiply/add
operations and 2 real division operations. The analogous count
for the algorithm (26) gives 33 real multiply/add operations
and 3 real division operations per time update. Note that for
M = 20 the adaptive FXLMS algorithm is computationally 4
times more demanding than our algorithm. This computational
advantage of SONIC diminishes with increasing number of
eliminated sinusoidal componentsm, as it grows linearly with
m (see Section VIII-A). For adaptive FXLMS the analogous
cost increment is smaller, because the orderM of the identified
plant model does not need to be increased.

4) Necessity of Tuning.The adaptive FXLMS algorithm
(53)–(54) requires selection of three real-valued design pa-
rameters: two step-size coefficients and the variance of an
auxiliary noise. Since different settings may be required under
different operating conditions, no set of fixed values of design
parameters can guarantee satisfactory performance of the
system in the presence of plant and/or disturbance changes.
In contrast with this, the proposed algorithmautomatically
adjusts one complex-valued parameter [note that the constants
cµ, ρ and kn, appearing in (26), have no influence on the
steady-state behavior of the system] – and it does it in a
way that guarantees minimization of the steady-state mean-
squared cancellation error. Of course, one can design extended
FXLMS schemes equipped with some additional mechanisms
for on-line adjustment of LMS step-sizesµ1 and µ2 – see
e.g. [24] and the references therein. Generally, we have bad
experience with applying variable step-size algorithms to (53)–
(54): they are difficult to tune (the method described in [24]
requires fixing 3 design parameters for each of the updated
step-sizes) and they often cause system instability – see
Section X-B. The main problem with suchad hocsolutions
is that they are designed and optimized for open-loop systems
subject to wideband excitation, where they work satisfactorily.
However, when incorporated in a frequency selective control
system, such as adaptive narrowband noise canceller, they
usually misbehave, most likely because of the closed-loop
identifiability problems. Note that the adaptation gain update
mechanism used in SONIC was derived for a closed-loop
system. This explains its good properties.

Remark: To do justice to the adaptive FXLMS approach
it should be stressed that while SONIC can be used to
cancel narrowband disturbances only, FXLMS is capable of
eliminating practically any kind of diswturbance, including
wideband noise.

VIII. E XTENSIONS

We now describe three extensions of the proposed scheme:
to systems with multiharmonic disturbances, systems with
extra transport delay, and real-valued signals.

A. Multiharmonic Disturbance

Sinusoidal disturbances that occur in vibrating systems often
consist of the fundamental (with frequencyω0) and several

harmonics (with frequencies2ω0, 3ω0, etc.). Suppose thatm
such components, with slowly-varying amplitudes, are present,
i.e.,

d(t) =
m∑

i=1

di(t), di(t) = ai(t)ejiω0t

ai(t) = ai(t− 1) + ei(t) (55)

where {ei(t)}, i = 1, . . . ,m, are mutually independent
circular white noise sequences with variancesσ2

e1
, . . . , σ2

em
,

respectively.
Similarly as before, we will base the structure of our adap-

tive filter on the form of the optimal solution to the open-loop
problem. Suppose that one would like to “remove”d(t) from
the signals(t) = d(t) + v(t), where{v(t)} denotes circular
white measurement noise. Letd(t) = [d1(t), . . . , dm(t)]T.
Note that the signals(t) admits the following state-space
representation

d(t) = Ad(t− 1) + ẽ(t)

s(t) = 1Td(t) + v(t) (56)

whereA = diag{ejω0 , . . . , ejmω0}, 1T = [1, . . . , 1], ẽ(t) =
[ẽ1(t), . . . , ẽm(t)]T and ẽi(t) = ei(t)ejiω0t.

In the Gaussian case, the optimal steady-state one-step-
ahead predictor ofs(t) can be computed using the following
Kalman filter recursions

ŝ(t| t− 1) = 1Td̂(t| t− 1)
ε(t) = s(t)− ŝ(t| t− 1)

d̂(t + 1| t) = Ad̂(t| t− 1) + Ag∞ε(t) (57)

whereg∞ = [g1, . . . , gm]T is the steady-state Kalman gain
(note that under the assumptions made, it holds thatΣe =
cov[ẽ(t)] = diag{σ2

e1
, . . . , σ2

em
}, i.e., the state-space model

of s(t) is time-invariant).
Observe that the last recursion of (57) can be decomposed

as

d̂i(t + 1| t) = ejiω0 [ d̂i(t| t− 1) + giε(t) ], i = 1, . . . , m
(58)

i.e., the steady-state Kalman filter can be viewed as a parallel
structure made up ofm subfilters, designed to track different
harmonics and driven by the same global prediction error

ε(t) = s(t)−
m∑

i=1

d̂i(t| t− 1).

Under the slow-variation hypothesis, one can show thatgi
∼=√

ζi where ζi = σ2
ei

/σ2
v , i = 1, . . . , m. Based on (58), we

propose the following decentralized control rule

u(t) = −
m∑

i=1

d̂i(t + 1| t)
kni

d̂i(t + 1| t) = ejiω0 [ d̂i(t| t− 1) + µ̂i(t)y(t) ] (59)

i = 1, . . . , m

where kni = Kn(e−jiω0) are the nominal plant gains at
different frequencies, and the adaptation gainsµ̂i(t) are com-
puted (independently of one another) using the algorithm
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designed for the single-frequency case. When necessary, a
zero-frequency (dc) disturbance componentd0 can be included
in an analogous way

d̂0(t + 1| t) = d̂0(t| t− 1) + µ̂0(t)y(t).

B. Systems with Delay

Suppose that the plant is governed by

y(t) = Kp(q−1)u(t− τ0) + d(t) + v(t)
∼= kpu(t− τ0) + d(t) + v(t)

whereτ0 denotes transport delay (e.g., secondary path delay).
So far, we have considered the unit-delay case. Some modifi-
cations are needed to cope withτ0 > 1.

First, one should replace (10) with

u(t) = − d̂(t + τ0| t)
kn

.

Second, since (11) should be replaced with

d̂(t + τ0| t) = ejω0 d̂(t + τ0 − 1| t− 1) + µejω0τ0y(t)

one arrives at
∂y(t)
∂µ

= ejω0
∂y(t− 1)

∂µ
− µβ ejω0τ0

∂y(t− τ0)
∂µ

− β ejω0τ0y(t− τ0).

Finally, settingβ = cµ/µ, one obtains

∂y(t)
∂µ

= ejω0
∂y(t− 1)

∂µ
− cµ ejω0τ0

∂y(t− τ0)
∂µ

− cµ

µ
ejω0τ0y(t− τ0) (60)

which can be considered a generalized version of (24).
The corresponding disturbance rejection algorithm can be

summarized as follows

z(t) = ejω0z(t− 1)− cµ ejω0τ0z(t− τ0)

− cµ

µ̂(t− 1)
ejω0τ0 y(t− τ0)

r(t) = ρr(t− 1) + | z(t)|2

µ̂(t) = µ̂(t− 1)− z∗(t)y(t)
r(t)

d̂(t + τ0| t) = ejω0 d̂(t + τ0 − 1| t− 1) + µ̂(t)ejω0τ0y(t)

u(t) = − d̂(t + τ0| t)
kn

. (61)

Remark: The algorithm (26) continues to work satisfactorily
for systems with delay – the only price paid for delay
underestimation is in longer transient responses and less
accurate tuning, compared to (61). Delay overestimation leads
to similar effects with one noticeable exeption. Recall that for
the purpose of derivation and steady-state analysis of (26) we
have adopted a static model of the plant, i.e., we have assumed
that Kp(q−1)u(t) ∼= kpu(t). Since in all transient phases a
more adequate approximation has the formKp(q−1)u(t) ∼=
kpu(t − τφ), whereτφ = −arg[Kp(e−jω0)]/ω0 denotes the
so-called phase delay of the plant, measured at the frequency
ω0, incorporation of an extra delay not exceeding (or only
slightly exceeding)τφ usually improvescontrol results! – see
Section X-D.

C. Real-Valued Signals

All presented results apply to systems with inputs and
outputs described by complex numbers. A “quick and dirty”
way of extending our adaptive filter to real-valued signals,
which works pretty well in practice, can be summarized as
follows:

1) Regarding{y(t)} as a sequence of complex numbers
[yR(t) = y(t), yI(t) = 0], compute the complex-valued
control signalu(t) = uR(t)+ juI(t) using the proposed
algorithm.

2) Apply uR(t) to the input of the plant.

Remark: A more sophisticated solution to this problem,
yielding better results, was described in [25]. One can prove
that the control part of the complex-valued algorithm works
identically to the control part of the real-valued algorithm,
derived in [25]. Differences occur in the self-optimizing parts
of both algorithms. Note that the complex-valued algorithm
tries to minimize the following measure of fitE[|y(t)|2] =
E[y2

R(t)]+E[y2
I (t)] while, when applied to real-valued signals,

it should minimizeE[y2
R(t)]. For this reason, unlike the algo-

rithm proposed in [25], the modified complex-valued regulator
doesnot converge to the optimal regulator designed for a real-
valued case – but it continues to work satisfactorily.

IX. SAFETY JACKETING

So far, we have been assuming that the plant is time-
invariant. Since the proposed procedure for automatic tuning
of the adaptation gainµ is based on minimization of the
local measure of fit (21), the algorithm (26) should also cope
favorably with slow changes in plant dynamics. To make it
robust to abrupt plant changes (note that the initial convergence
phase also falls into this category), some further modifications
are needed.

First, to avoid erratic behavior of the algorithm during
startup/transient periods, it is advisable to set the maximum
allowable values for| µ̂(t)| , | µ̂(t)−µ̂(t−1)|, andr(t), further
denoted byµmax, ∆µmax, and rmax, respectively. These are
typical “safety valves” used in adaptive filtering.

Second, instead of a constant forgetting factorρ, one can
use in (26) a time-varying factor dependent on the current
value ofµ

ρ(t) = 1− cρ| µ̂(t− 1)|

where 0 < cρ ¿ 1. This ensures that1 − ρ will be at all
times much smaller than̂µ, which is consistent with the rule
saying that the adaptation time constants of a hierarchical
multi-layer adaptive system should gradually increase from the
shortest (fastest adaptation) to the longest (slowest adaptation).
The recommended values ofcρ are those from the interval
[0.01,0.1].

Denote bysat(x, a), x ∈ C, a ∈ R+, a complex-valued
saturation function

sat(x, a) =

{
x , |x| ≤ a

a
x

|x| , |x| > a .
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Then, the modified disturbance rejection algorithm that com-
bines all “fixes” described above can be summarized as follows

z(t) = ejω0

[
(1− cµ)z(t− 1)− cµ

µ̂(t− 1)
y(t− 1)

]

ρ(t) = 1− cρ| µ̂(t− 1)|
r̃(t) = ρ(t)r(t− 1) + | z(t)|2
r(t) = min[r̃(t), rmax]

∆µ(t) = sat [z∗(t)y(t)/r(t) , ∆µmax]
µ̃(t) = µ̂(t− 1)−∆µ(t)
µ̂(t) = sat[µ̃(t), µmax]

d̂(t + 1| t) = ejω0 [ d̂(t| t− 1) + µ̂(t)y(t) ]

u(t) = − d̂(t + 1| t)
kn

. (62)

X. SIMULATION AND EXPERIMENTAL RESULTS

Four computer simulations and one real-world experiment
were performed to check both the steady-state and transient
performance of the proposed disturbance rejection schemes.

A. Tracking Behavior

The objective of this simulation experiment was to demon-
strate the ability of the proposed algorithm to cope with
modeling errors, including sudden plant changes. The transfer
function of the plant was altered three times during each
simulation run – see Table I. The adopted measurement
noise and sinusoidal disturbance settings were:σv = 0.1,
σe = 0.001, ω0 = 0.1 rad, d(0) = 1.

While the first two changes [fromK1(q−1) to K2(q−1) at
instant t = 15000 and fromK2(q−1) to K3(q−1) at instant
t = 30000] were confined to plant parameters, the last change
was more substantial: at instantt = 45000, the first-order
inertial systemK3(q−1) with a single real pole was switched
to the second-order nonminimum phase systemK4(q−1) with
a pair of complex poles. Since the phase shift introduced
by K4(q−1) at the frequencyω0 differs from the analogous
shift of K3(q−1) by more thanπ/2, the last change causes
temporal instability of the closed-loop system, making the task
of disturbance rejection even harder.

Fig. 5 (illustrating typical behavior) and Fig. 6 (illustrat-
ing mean behavior) show results obtained for the algorihm
(62) with the following settings:cρ = 0.05, cµ = 0.005,
µmax = 0.05, ∆µmax(t) = µ̂(t− 1)/50, rmax = 1600. The
nominal plant gain was fixed at the valuekn = ejω0 — the
corresponding magnitude and phase errors are listed in Table
I.

The adaptation process was started from scratch at instant
t = 1 using the following initial conditions:̂d(0) = ejω0 ,
r(0) = 100, z(0) = 0, µ̂(0) = 0.02. The algorithm copes
favorably with both the initial convergence problem and with
abrupt plant changes. When the experiment is started or
when a change to the plant dynamics occurs, the magnitude
of the adaptation gain̂µ(t) temporarily increases to quickly
compensate large initial modeling errors; later on, it gradually
decays to settle down around its optimal steady-state value.
Note the very quick response to phase errors and usually much

slower response to magnitude errors — the effect caused by
diverse sensitivity of system output to two types of modeling
errors.

The simulation experiments show that the proposed control
scheme has the self-stabilization property (not covered by the
SDE-based analysis). When instability occurs at the instant
t = 45000 [which is unavoidable since, due to the sign
mismatch, the stabilizing gain̂µ for K3(q−1) does not stabilize
K4(q−1)], it causes rapid growth of the output signaly(t),
which in turn speeds up convergence ofµ̂ to a new stabilizing
value. In this way, after a burst observed at the system output,
the closed-loop stability is regained.
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Fig. 5. Transient behavior of the disturbance rejection algorithm (results of
a typical simulation experiment). Solid lines – estimated values, dotted lines
– optimal steady-state values.

The mean transient responses observed at instantst =
15000 and t = 30000 are shorter than 500 samples, i.e.,
they last for less than 8 periods of the disturbance (T0 =
2π/ω0

∼= 63). For less significant plant changes the length of
the transient period is usually much shorter, often taking the
values smaller thanT0.

B. Comparison with the Adaptive FXLMS Algorithm

The simulated first-order plant was governed by

y(t) = %(t)y(t− 1) + 0.0952u(t− 1)
%(t) = 0.7 + 0.25 sin(0.0003t)

where the coefficient%(t) ∈ [0.45, 0.95] determines location
of a “time-varying system pole” [the Guo-Bodson plant cor-
responds to the choice%(t) = 0.9048, ∀t]. The frequency of
the sinusoidal disturbance was set equal toω0 = 0.3, and its
amplitude varies according to

a(t) = 1 + 0.2 sin(0.002t)

Following [21], the order of the FIR filter was set toM = 32,
and the variance of auxiliary noise – toσ2

u′ = 0.001.
Table II compares the results yielded by the optimally

tuned adaptive FXLMS algorithm with those given by the
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TABLE I
PLANT SWITCHING SCHEDULE IN THE TRANSIENT BEHAVIOR EXPERIMENT AND THE CORRESPONDING MODELING ERRORS.

Time interval Plant |β| Arg[β]

0 < t < 15000 K1(q−1) =
0.0952

1− 0.9048q−1
0.708 −47.9

15000 ≤ t < 30000 K2(q−1) =
0.0238

1− 0.9762q−1
0.234 −79.3

30000 ≤ t < 45000 K3(q−1) =
0.2

1− 0.8q−1
0.913 −27.1

45000 ≤ t ≤ 60000 K4(q−1) =
−0.1 + 0.14q−1

1− 1.8391q−1 + 0.8649q−2
1.960 121.1
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Fig. 6. Mean transient behavior of the disturbance rejection algorithm
(average of 100 simulation runs). Solid lines – ensemble averages of the
estimated values, dotted lines – optimal steady-state values.

SONIC algorithm (26) [cµ = 0.01, ρ = 0.995, kn = 1].
The best settings for FXLMS (µ1 = 0.025, µ2 = 0.7 for
σv = 0.1, and µ1 = 0.025, µ2 = 1.3 for σv = 0) were
found using a computationally exhaustive trial and error search
procedure. All numbers were obtained by means of combined
ensemble averaging (10 realizations of{v(t)} and {u′(t)})
and time averaging (t ∈ [20001, 70000]), after the compared
algorithms have reached their steady-state behavior. Results
for the FXLMS controllercannotbe improved by decreasing
the variance of the auxiliary noise. When the varianceσ2

u′ is
further reduced, the mean-squared cancellation/output errors
start to increase – this effect is caused by poor identification
results due to insufficient plant excitation.

While in the presence of measurement noise (σv = 0.1)
SONIC is only marginally better than the optimally tuned
FXLMS, in the absence of noise (σv = 0), which is the
situation considered in [21], the improvement is quite signifi-
cant, reaching 24 dB. In both cases, SONIC is computationally
almost 6 times less demanding than FXLMS. Note also that,
since in practice FXLMS seldom is optimally tuned, the

TABLE II
COMPARISON OF THE MEAN-SQUARED ESTIMATION ERRORS YIELDED BY

THE OPTIMIZED ADAPTIVE FXLMS ALGORITHM AND BY THE SONIC
ALGORITHM .

σv MSE FXLMS SONIC

0.1 |c(t)|2 3.80 · 10−4 3.65 · 10−4

|y(t)|2 1.038 · 10−2 1.037 · 10−2

0 |y(t)|2 9.03 · 10−5 3.67 · 10−7

comparison presented above is rather unfair for SONIC.
Our attempts to combine the FXLMS algorithm (53)–(54)

with the robust step-size adjustment technique proposed in
[24] were a complete failure. Even though we followed the
guidelines of [24] for choosing the method’s design parame-
ters, the closed-loop system turned out to be unstable in almost
every simulation run.

C. Elimination of a Multiharmonic Disturbance

In our third simulation experiment, the output of the Guo–
Bodson plant was corrupted with a sinusoidal signal consisting
of the first and third harmonics:d(t) = d1(t)+d3(t), d1(t) =
a1(t)ejω0t, d3(t) = a3(t)e3jω0t, wherea1(t) anda3(t) denote
complex amplitudes evolving according to the random-walk
model: σe1 = σe3 = 0.001, a1(0) = d1(0) = 1, a3(0) =
d3(0) = 0.5. The measurement noise varianceσ2

v = 0.01. The
decentralized adaptive controller (59) was applied, combining
two algorithms of the form (62) with identical settings:cρ,1 =
cρ,3 = 0.05, cµ,1 = cµ,3 = 0.005, rmax,1 = rmax,3 = 1600,
∆µmax,1(t) = µ̂1(t − 1)/50, ∆µmax,3(t) = µ̂3(t − 1)/50,
µmax,1 = µmax,3 = 0.05. The initial conditions were set to
d̂1(0) = d̂3(0) = 0 and µ̂1(0) = µ̂3(0) = 0.02. Finally, the
nominal plant gainsk1 and k3 were set toejω0 and ej3ω0 ,
respectively, which results in the following modeling errors:
|β1| = 0.708, Arg[β1] = −47.9 ˚ , |β3| = 0.318, Arg[β3] =
80.3 ˚ .

Instead of a “cold start”, used in the preceding example
(which is not recommended in practice, because of the risk
of large initialization transients) a two-stage initialization
procedure was applied. During the first 300 time-steps, the
quantities [z1(t), r1(t)] and [z3(t), r3(t)] were evaluated,
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Fig. 7. Rejection of a multiharmonic disturbance (average of 100 simulation
runs). Solid lines – ensemble averages of estimated values, dotted lines –
optimal steady-state values.

but the adaptation gains [µ̂1(t), µ̂3(t)] were kept at their
starting values [̂µ1(0), µ̂3(0)] and not updated. Then, at instant
t = 301, the adaptation lock was released.

Fig. 7 shows results of a typical simulation run. Similarly,
as in the single-frequency case, the phase angles ofµ̂1(t) and
µ̂3(t) quickly respond to initial phase errors. The reaction of
| µ̂1(t)| and | µ̂3(t)| is slower, but eventually both quantities
also converge in mean to values that are close to the optimal
steady-state values. Small estimation biases can be explained
by violation of our small adaptation gain assumption, under
which all theoretical results were derived.

D. Systems with Delay

The transient behavior experiment, reported in Section X-A,
was repeated with an extra transport delay, equal to 5 sampling
intervals (τ0 = 6), added to all switched plant models. The
algorithm (61) was used, equipped with the safety enforcement
mechanisms described earlier. The adaptation was started at
the instantt = 1 in an analogous way as described in Section
X-A. The assumed nominal gainkn was equal toejω0 .

Fig. 8 shows the results of a typical simulation run. Note
that these results are comparable with those presented in Fig. 5
for a plant with unit delay (in both cases the same realizations
of {e(t)} and {v(t)} were used). The robustness issues are
illustrated in Fig. 9.

E. Acoustic Experiment

One real-world active noise control experiment was per-
formed using a standard PC, equipped with a poor-quality
sound card. The left loudspeaker served as the noise source,
while the right one was used for cancellation purposes. The
error microphone was located approximately 1 m away from
the left loudspeaker and 30 cm from the right loudspeaker.
The system was operated at a sampling rate of1 kHz. The
transport delay was equal to 60 ms, i.e., 60 sampling intervals.
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Fig. 8. Transient behavior of the disturbance rejection algorithm in the
presence of an extra 5-sample transport delay (results of a typical simulation
run). Solid lines – estimated values, dotted lines – optimal steady-state values.
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Fig. 10. Power spectral density of the signal before (dashed line) and after
(solid line) disturbance cancellation.

The major part of this delay was due to hardware limitations
(low processing speed + buffering) and not due to propagation
effects.

The generated disturbance consisted of three sinusoidal
tones with identical amplitudes and with frequencies120 Hz,
240 Hz, and360 Hz, respectively. The nominal filter gains
were set to1 for all frequencies. The remaining parameters
were chosen as follows:µmax = 0.05, cµ = 0.005, rmax = 5,
ρ = 0.999 (the same for all three subfilters). After an initial
convergence phase, which lasted for a few seconds, the closed-
loop system reached its steady-state behavior. Fig. 10 depicts
periodogram-based estimates of the power spectral density of
the original signal and its “silenced” version, picked up by the
error microphone. The peaks at 120 Hz, 240 Hz, and 360 Hz
were practically eliminated. Listening tests confirmed that the
achieved disturbance reduction was significant.
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Fig. 9. Results for the switched plant [K1(q−1) → K2(q−1), ω0 = 0.1, τ0 = 10]. Mean transient responses were obtained for regulators designed
assuming that the delayτ0 is equal to 5 (three top figures), 10 (three middle figures), and 15 (three bottom figures), respectively. Phase delay of the plantτφ

evaluated at the frequencyω0 is equal to 8 before the change, and 15 after the change.

XI. CONCLUSION

The problem of eliminating a complex-valued sinusoidal
disturbance of known frequency, acting at the output of an
unknown linear stable plant, was considered. The proposed
solution is based on the coefficient fixing — a technique
originally developed for the purpose of adaptive minimum-
variance control — combined with automatic adaptation gain
adjustment. It was shown that when the complex-valued ampli-
tude of the disturbance evolves according to the random-walk
model, the resulting disturbance rejection scheme converges
in mean to the optimal solution. It is also robust to abrupt
plant changes. The obtained results were further extended to
multiharmonic disturbances, plants with delay, and real-valued
signals.
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[12] M. Niedźwiecki, “Steady-state and parameter tracking properties of self-
tuning minimum variance regulators,”Automatica, vol. 25, pp. 597–602,
July 1989.

[13] ——, Identification of Time-varying Processes. New York: Wiley, 2000.
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