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Control — Part I: the Known Frequency Case

Maciej Niedzwiecki, Member, IEEEand Michat Meller,Student member, IEEE

Abstract—This paper presents a new approach to rejection d(t)
of complex-valued sinusoidal disturbances acting at the output +
of a discrete-time stable linear plant with unknown dynamics. u(t) Plant
It is assumed that the frequency of the sinusoidal disturbance is > K (q") —
known, and that the output signal is contaminated with wideband P\
measurement noise. The disturbance rejection control rule is first +
derived and analyzed for a nominal plant model, different from v(t)
the true model. Then a special adaptation mechanism is added, Feedback
which is capable of compensating modeling biases (errors in both eedbac
magnitude and phase) so that, under Gaussian assumptions, the Controller
closed-loop system can converge in mean to the optimal solution.

) o ) o ] Fig. 1. Block diagram of the disturbance rejection system.
Index Terms—Adaptive filtering, system identification, distur-

bance rejection.
[2], [3]. Both types of applications fall into a more general
I. INTRODUCTION narrowband disturbance rejection category.

ONSIDER the problem of reducing of a complex-valued The problem of narrowband disturbance rejection was con-
C narrowband disturbance at the output of a discrete-tingidered by many authors under different methodologies, such

system governed by (see Fig. 1) as filtered-X LMS (FXLMS) compensation [3], [4], internal
) model principle [5], [6], and phase-locked loop control [7],
y(t) = Kp(g™)ult — 1) 4+ d(t) + v(t) @ 8]
wherey(t) denotes the corrupted complex-valued system out- 1 "€ Proposed self-optimizing narrowband noise canceling

put,t = ...,—1,0,1,... denotes normalized timey,(¢) (SONIC) algorithm incorporates two adaptation loops: the

denotes unknown transfer function of a stable linear singliner control loop, which predicts and cancels the disturbance,

input single-output plant; ! is the backward shift operator, f':md the outer, self-optimization Iopp, Which automatically ad-
‘ justs the complex-valued adaptation gain (the only parameter

d(t) = a(t)e’’ (2) that is estimated) to the unknown, and possibly time-varying,

characteristics of the controlled plant, sinusoidal disturbance,

is a complex-valued sinusoidal disturbance (cisoid) of knownh . X
. . and/or measurement noise. We prove that, under certain con-
frequencywy and unknown, slowly-varying amplitude(t),

: : . ditions, the resulting controller converges in mean to the
v(t) is a wideband measurement noise, arit) denotes the _ - . :
. : optimal, minimum-variance controller, and we show that it
input (control) signal.

) : compares favorably, both in terms of canceling efficiency and
We will look for a feedback controller allowing for cancella- . . . . :
. i : ; . . computational complexity, with the very popular (especially in
tion, or near-cancellation, of the sinusoidal disturbance, i.e., a

controller generating the complex-valued feedback sigga the signal processing community) FXLMS active noise control

that minimizes the system output in the mean-squared sensscheme. - o .
9 . PUnhke most of the existing contributions, our study will
E[y()[* ] — min.

mechanical systems, where narrowband disturbances are uBsu- y y '

ally generated by rotating machinery and their suppressi A _derlve_d in such a complex case, are SIm_pIer and hence
. L . : asier to interpret than the analogous results in the real case.
is necessary to maintain high quality of the underlying tecl}-

nological process [1]. Similar problems are encountered iII qualitative aspects of the disturbance rejection problem,

- - ; ich are of our main interest here, are in both cases the
acoustic active noise control systems, where the unwant&

sound is attenuated by a noise-canceling speaker emittin ame. Of course, most of the signals and systems encountered

- - . In practice are real-valued. Later on we will present a simple
sound wave with the same amplitude but opposite polarwas/ of extending our algorithms to real-valuSd signals P
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(A1) {v(t)} is a zero-mean circular white sequence with Under assumptions (A1)—(A3), the optimal estimated (o}

varianceo? can be computed recursively using the Kalman filter algorithm
and that the coefficient(t) in (2) evolves according to the dt|t—1) = e?od(t — 1|t — 1)
random-walk (RW) model p(t[t—1) = p(t — 1]t — 1) + o
a(t) =a(t—1)+e(t) 3) p(t]t—1)
9 = 25 Tpt[t—1)
where the sequence of one-step changes obeys v by
(A2) {e(t)}, independent of{v(t)}, is a zero-mean circular Ag(t) - A(t) —dtft—1)
white sequence with varianee?. d(t[t) =d(t|t — 1) + g(t)e(t)
Even though from a practical viewpoint the RW model can p(t| 1) = p(t| t — 1) p2(t|t — 1) ©)

be criticized as rather me&e, it has two obvious advantages. o2 p(t[t—1)
First, it allows one to obtain analytical results. Second, an ~ _ , ,
more importantly, under the random-walk hypothesis, one C\év?lwzre (t| tzj _t E[d(t}|$(i)] Edezlottes the ftlltereld 2est|m§1te
establish a Cra@r-Rao-type estimation bound that limits thé (t), and p(t[t ~ 1) = E[d(t) - d(t|t — 1)]"] an

" 5 o o

efficiency ofanydisturbance rejection scheme. This will allowp(lt| t)= EH d(t) — d(t] t)] .] ‘Te tﬂ?a pr|or(|j anda posﬁerlorlf h

us to evaluate the performance of the proposed algorithmseHor variances, respec_tlve y. the stzea y-state value of the
an-squared cancellation erio]f ¢(¢)|*] = p(¢|t—1), equal

absolute, rather than relative, terms. To derive such a boullef ) . ;
we will need the following additional assumption: 10 poo = lim¢—o0 p(t| ¢ — 1), can be obtained by solving the
. associated Riccati equatiopt, /(02 + pa) = o2. This results
(A3) The sequenceqv(t)} and {e(t)} are normally dis-
tributed: v(t) ~ N(0,02), e(t) ~ N(0,02). 02 + /o + 40202
The only assumption that will be made about the unknown Poo = 2 ' 0
plant is that it is stable and has nonzero gain at the frequenggte that in steady state, the Kalman filter (6) reduces to
wo- Y __dworl gy
(M) Kpla™) = S ki, £ K] < oo, At = O =)+ sl
K, (e=i%0) £ 0. e(t) = s(t) — d(t|t 1) ®)
Although in our primary design we will assume that thevhere g., = lim; .0 9(t) = Poo/(02 + Poo)s 0 < goo < 1,
transfer function of the plant is fixed and known, later ois the optimal (real-valued) steady-state gain. Note also that,
we will propose a special adaptation mechanism capable wfder assumptions (A1)—(A3)., is the lower bound on the
readjusting the control loop so as to make it insensitive ean-squared cancellation error, called the Bayesian &ram
discrepancy between the nominal (assumed) transfer functRao bound [10] (the classical Cr@&mRao bound does not
and the true one. Hence, the nominal gain will be considere@ply to systems/signals with random parameters). This means
only as a convenient starting point for the adaptive regulatahat no other compensation scheme can do better than the one
described above.

IIl. OPEN-LOOP CASE
IV. CLOSED-LOOP CASE— A PRELIMINARY SOLUTION

Consider the problem of one-step-ahead prediction/compen-Consider a system governed by (1). In order to reject the

sation of a signal governed by narrowband disturbancé(¢), one should generate another
s(t) = d(t) + v(t) @ ngrrowband signak(t), whiph, after passing throggh the p_Iant,
will have the same amplitude a&t) but opposite polarity.
whered(t) is a nonstationary cisoid, described in the previouSince linear systems basically scale and shift sinusoidal inputs,
section, andy(t) denotes white measurement noise. Combitthe narrowband character oft) justifies the following steady-
ing (2)—(4), one arrives at the following state-space equatiosiste approximation

d(t) = e70d(t — 1) + &(t) Kp(g Hu(t —1) = kpu(t - 1) ©)
s(t) = d(t) +v(t) (5) wherek, = K,(e7“0). Some further comments on this
_ , ~ . approximation will be given in Remark 2 at the end of this
wheree(t) = e/*ote(t). Under (A2) the sequencge(t)} is section.
circular white with variancer;. To design our feedback controller, we will assume that the
Denote byS(t) = {s(1),...,s(¢)} the set of measurementsyansfer function of the plant is equal to some “nominal”

available at instant. The optimal, in the mean-square SeNsgyansfer functionk,, (¢~1). Sincek,(¢~1) is usually unknown

one-step-ahead predictor eft) has the form [9E(¢|¢ —1) = and/or time-varying, in general it will hold that,(¢~!) #

E[s(t)| S(t—1)] = d(t|t—1), whered(t| t—1) = E[d(£)|S(t= K (4-1). Denote byk, = K,(e~7=0) + 0 the nominal plant
1)] is a one-step-ahead predictor @ft). The mean-squared gain at the frequencyy,. The proposed control rule has the
prediction error can be expressed in the fdiis(t) —s(t[t—  form

D2 = B[ e(t)2] + 02, wherec(t) = d(t) — d(t|t — 1) will dit+1[t)

be called the cancellation error. u(t) = — ke (10)
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o~

whered(t + 1| t) is obtained from To see what happens in the presence of phase mismatch,
~ ool we will assume that the rati¢ is small (slow variation hy-
d(t +1[t) = e?*°[d(t|t — 1) + py(t) ] (11)  pothesis), namely < 4 cos? ¢. In this caseuop: = v/C/| B,

andp > 0 denotes adaptation gain. Poo = 00y and

To check performance of the closed-loop system, observe E_[|c(t)|2| i = jiopt ] = oot = P>~ (18)
that cos¢p  coso
- which means that even jf is chosen in the optimal way, one
y(t) = kpu(t — 1) +d(t) + (1) may face substantial losses in rejection efficiency for large
=d(t) — Bd(t|t — 1)+ v(t) = c(t) + v(t) (12) phase errors.
) ) ) ) After the discussion presented above, the suggested distur-
where 3 = ky/ky is the ratio of the true plant gain o itSpance rejection scheme can be summarized as follows

nominal (as_sgmed) gain and) denote§ the cancellation 1) Stability can be achieved for arbitrary magnitude errors
error. Combining (11) and (12) one obtains o2
and limited (smaller tham/2) phase errors.
o(t) = (1 — pf)e(t — 1) + &(t) — pfu(t—1)  (13) 2) Statistical efficiency (for arbitrary magnitude errors) is
4 possible only in the absence of phase errors.
where®(t) = e?“°v(t). Note that, similarly to{v(¢)}, {v(¢)} 3) The “true” adaptation gain of the algorithm (11), used
is a circular white noise signal with varianeg. for amplitude tracking, is equal {93 and hence depends
Observe thaE[c(t)] = e’“° (1 — uB)E[c(t — 1)]. Hence, if not only ony but also on modeling errors, e.g., when
B8 = 0.5 or 8 = 2, the estimation memory of this
|1—pupl <1 (14) algorithm is effectively doubled or halved, respectively.
then lim,_.« E[c(t)] = Eoo[e(t)] = 0, which means that the 4) The optimal value of:, guaranteeing the best achievable

steady-state mean value of the cancellation error is zero — Performance, depends on the valuefofso even if the
even if 3 # 1, i.e., if the true gain of the plant at frequency ~ Ccharacteristics of the disturbance?} and noise ¢7) are

wo differs from the assumed gain. known, it is not possible to determing,p;.

Let § = | B|e’®, where| ] is the magnitude ratio and In the next section, we will describe an extended disturbance
denotes the phase modeling error. It is straightforward to che@iection scheme free of the drawbacks mentioned above.
that condition (14) is equivalent to Remark 1: When deriving the feedback control rule (10),

we have assumed thgt= 1. This resembles and leads to the
ul Bl < 2cos ¢ (15) same qualitative results as the coefficient fixing technique used

. t with I3 335 to “robustify” adaptive minimum-variance (MV) regulators.
in agreement wi [3, sec. 3.3. 1 o The MV control rule is a function of plant parameters. When
According to (15), the disturbance rejection scheme (10)5.cq0 narameters are not knoarpriori, or when they vary
(1hl) is unstable icos ¢ <0, "E" if the abso'?}te value of thewith time, adaptive versions of MV regulators can be used,
phase error exceeds/2. On the contrary, wheng| < 7/2, where the true (unknown) coefficients are replaced with their

one can always choogeso as to satisfy (14) — irrespective 0fcurren'[ estimates, obtained by means of system identification.

the magnitude error. When the stability condition is fUIf'"edHowever, since identification is carried in a closed loop,

one can easily derive and minimize the expression for tlﬂ"?e input/output data do not contain enough information to

steady-state mean-squared cancellation error. Straightforwﬁﬁ%mbiguously estimate all plant parameters — one degree of

calculations lead to freedom is “taken away by the loop.” To avoid identifiability

o2 + | upo? problems and to prevent parameter estimates from drifting,

Eoofl c(t)|2] —1_ |1 — pup? (16) one of the system coefficients — callbif — is usually fixed at
a preselected, nominal valbg and not estimated [11].
and It can be shown that for a wide range of ratigg/b,, the
ftopt = arg min Eoo|| c(t)[?] resulting adaptive regulator converges to the optimal (MV)
HERL regulator, which means that the modeling bias is automatically
¢ 2 ¢ compensated by feedback. The coefficient fixing technique has
=515 + CEYE + a5 (17) some limitations. First, one should get the sigrb@fb, right,
namely it should hold thal, /b, > 0 (note that our condition
where | | < w/2 can be interpreted as a sign requirement imposed on
¢ =0%/o? the real part ofg = k,/kn: Re[8] > 0). Second, as shown in

[12], [13], when finite-memory identification is combined with
andx denotes complex conjugation. One can check that wheaefficient fixing, the “closed-loop memory” of the estimator
there is no phase error, i.ep, = 0, it holds thatyu.,.3 = depends on the ratity /b, in a similar way as was observed
Hopt| Bl = goo ANA Eoo[ | c(t)|?| 1t = iopt ]| = poo- Therefore, for the algorithm (11).
no matter how large the magnitude mismatch, one can alwayskemark 2: The expression (16), which describes depen-
choose an adaptation gajn that will make the disturbance dence of the mean-squared cancellation error.owas based
rejection scheme statistically efficient (in the Gaussian casen the assumption that the plant’s response to narrowband
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10 10 degradation. The situation changes if one allgwdo take
o =0.1 o =0.1 H ;
o 02:0.0001 - 0::0.0005 complex values. It is straightforward to check that
] : 1] ¢ ¢ g
1 1 _ 21 2|5 ST _ I
lOAM 1074W fovt = arginelgEooHc(t)\ 1= Fl727V3 o= 5
(20)
10° — = L 10l _ _ . and Eoo[| c(t)|?| 1t = topt | = Poo for any value of ¢. Having
10 10 10 10 10 10 10 10 this in mind, we will design an adaptive algorithm for on-line
. . tuning of a complex-valued adaptation gain
10 o =01 10 | o =01 We adjusty recursively by minimizing the following local
s 0.=0.0010 S 0.=0.0050 measure of fit, made up of exponentially weighted squares of
10 10 system outputs
t
10_4\% 1o ) ,
V(t,p) =Yo7 |y(r, ) (21)
=1
10° 10° i § )
10" 10° 107 107" 10" 10°  10° 10'  where the forgetting constapt (0 < p < 1) determines the
M M

effective averaging range. To evaluate the estinjate =
arg min, V (¢, ), we will use the recursive prediction error

Fig. 2. Comparison of theoretical values of the mean-squared cancellat;
error, obtained using the steady-state plant approximation (solid line), WKF?PE) approach [14]

the experimental values (crosses). () = fi(t — 1) — {V"[t, filt — 1)]}71 VIt —1)] (22)

excitation can be closely approximated by an analogous kehere
sponse of a much simpler “scale and shift” model, based on Aylt, it — D\
frequency-domain concepts. A special simulation experiment V'[t, fi(t — 1)] = (’aﬂ) ylt, u(t —1)]

was arranged to check how well the resulting theoretical
2

formula fits the true error values. The simulated discrete-timg , " . oy[t, p(t — 1)]
plant (Guo—Bodson) s [t at—1)] = pV"[t = 1,00 —2)] + T
_ 0.0952 and
Ky (q 1):W (19) 9 1 9o .0
ou 2 | ORe[y] jaIm[,u]

was adopted from [8] and corresponds to a continuous- o o .
time plant with transfer functioni,(s) = 1/(1 + 0.01s) denotes symbolic differentiation with respect to a complex

sampled at the rate of 1 kHz. Simulations were carried o¥@iablex. Such an approach, usually referred to as Wirtinger

for o, = 0.1 and for four different rates of amp“tudecalculus or CR (complex real) calculus, was introduced in [15].
variation o € {0.0001,0.0005,0.001,0.005}, in the absence It is based on the concept of real differentiability of complex
of modeling errors § = 1). For each(o.,u) pair, the functions and is applicable to nonanalytic functions, such as
experiment, covering 100000 time-steps, was repeated 388) — see [16]-[18] for more details.
times for different realizations ofv(¢)} and {e(t)}. In all ~ ApPplying standard rules of Wirtinger calculus to (11) and
cases/(0) was set to 1 and(0) was set toe/“0, (12), one obtains

The results, summarized in Fig. 2, were obtained by means dy(t) ad(t|t —1)
of combined ensemble and time averaging, after discarding o = —ﬂT
the first 50000 samples (to ensure that the steady-state condj-— ~
tions are reached). Note the good agreement of experiment d(t +1]t) = eﬂww + eIy (t) + Wm%
values with theoretical expectations for the considered (and 7z I I
practically meaningful) range of adaptation gains. leading to

More on the practical side — Fig. 2 clearly shows the benefits Ay(t) ‘ Ayt —1)
that stem from tuning the adaptation gainto the degree of i =el“° [(1 - uﬁ)T — By(t — 1)] . (23)

system nonstationarity, exactly as predicted by theory.
Since the value ofs is not known, the obtained recursive

formula can't be used in its present form. The way out of
difficulty is to apply once more the gain fixing technique.
To optimize performance of (10)—(11) and, perhaps ev&etting3 = 1 in (23), one arrives at
more importantly, to make the proposed disturbance rejection Sult Sult — 1
scheme insensitive to modeling errors, we will equip it with an Iy(t) = w0 {(1 — #)M —y(t— 1)} : (24)
automatic adaptation gain tuning mechanism. It is clear from 7z 7z
the discussion in the previous section that in the presenceNiite, however, that to guarantee stable operation of (24), one
phase errors¢( # 0), no choice of the real-valued adaptatioomust have| 1 — p| < 1, which puts some constraints on the
gainu can prevent performance of the rejection algorithm fromhase ofu: Arg[u] < 7/2, where Arg[z] € (—=, 7] denotes

V. CLOSED-LOOP CASE— THE REFINED SOLUTION
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principal argument of a complex number This means that  Our tracking analysis will be based on studying the proper-
full correction of phase errors will not be possible using thises of a stochastic differential equation (SDE) associated with
approach. To overcome the above-mentioned limitation, oakgorithm (26). Since strict mathematical conditions under
can sets = ¢, /u, wherec,, is a small positive constant. Thiswhich such an SDE-based approach is applicable are not

leads to! specified (one of the prerequisites is stochastic stability of the
oyt " oyt —1 c analyzed system, which is a difficult problem to resolve on its

81(1) = el [(1 - Cu)%/l) - ﬁy(t - 1)} - (25)  own), the “theoretical” results derived below must be carefully

L R verified experimentally. This will be done in Section X.

Let r(t) = V"[t, u(t — 1)] and z(t) = dy[t, u(t — 1)]/0p- To avoid unnecessary complications, we will initially exam-
Then the proposed SONIC algorithm can be summarized i@ the tracking properties of the simplified (gradient) version
follows of algorithm (26), obtained by replacing the RPE updates [the

£(t) = e [(1 )t 1) A(ti . ot 1)} second and third lines of (26)] with
r(t) = pr(t — 1) + |2(t)[? p(t) = n(t —1) — ay(t)z"(t) (28)
) =at—1) -2 ®)y(®) wherea > 0 denotes a small gain. Later on, we will extend
N S r(t) the results of our analysis to the normalized case, where
d(t+1]t) = e[ d(t|t — 1) + a(t)y(¢) ] the constant gain is replaced with a recursively computed
d(t +1|%) normalizing factorl /r(t).
u(t) = — B (26) It is known that the tracking behavior of constant-gain

h | h ; h (finite-memory) estimation algorithms, such as (28), can be
T e recommended values ef, and p are those from the studied by examining the properties of the associated differ-
intervals [0.005,0.05] and [0.999,0.9999], respectively.  once equations [19], [20]. Denote Hy(t: )} and {2 (: 1)}

The disturbance tracking loop [governed by the fourtQy sionary processes that “settle down” in the closed-loop
equation of (26)] can be easily recognized as an almost St%g}'stem for a constant value gf fi(t) = u € €., where

dard LMS-type recursion, i.e., a general-purpose estimatign js e stability region. Furthermore, let, be the stable
algorithm, capable of trackingny types of changes. Its only «. . e o s .

) N equilibrium” point of (28) obeying
nonstandard (but very important) feature is that the step-
size i, is complex-valued and automatically adjusted — this Fuo) =0 (29)
allows one to account for unknown, and possibly time-varying,
characteristics of the controlled dynamic process. Note also, ) ) ) 9
that the self-optimizing loop [governed by the first three Re[f(10)] >0, [ f'(1o)|” > | fT (1o (30)
equation of (26)], by the very nature of the RPE approach,
will tend to minimize prediction (output) erroisespectiveof ~Where
their origin, e.g., it should respond adequately to abrupt plant f(w) = E[y(t; p)z*(t; )]
changes, or to changes in the level of the measurement noise,
even though such forms of nonstationarity were not takemd

into consideration when deriving the disturbance canceling . ‘

Hence, althoqgh obtgmed under SpeC.IfIC, and rqther un%eC'cording to [19], [20], when the coefficient is sufficiently
alistic, assumptions (disturbance changing according to thé . L ~
s%nall, the evolution of the estimation err(t) — uo can be

RW model, time-invariant plant, white measurement noise 0 : . L . :
P roximately described by the following linearized stochastic

constant intensity), the algorithm (26) can be safely used un%é) . . . 2 : .
I y) 1€ alg (26) y . differential equation (provided that tracking is satisfactory, i.e.,
more realistic conditions that are encountered in practica .
t) remains close tqug)

applications — some simulation evidence for this robustne’d

claim will be given in Section X. dX, = —af'(j1g) Xsds — afT(uo)des

VI. TRACKING ANALYSIS + v/ g(po) AW (31)
We will show that, under assumptions (Al1)-(A4), the pro- o
posed adaptive filter converges in mean to the optimal solution Xs=p(t) —po for s=1
Eoo [1(t)] & topt = %o . (27) wheres denotes continuous timélW, } is a standard complex-
valued Wiener process and
We will also shed light on the role played by design variables
p andc,,. ad . .
g gp) = Y Ely(rim)z"(rimy™(0;)2(0; )] (32)
INote that, according to (20), the desired valug:Gfis real. Hence, setting T=—00
uB = cy is to some extent a natural choice. Note also that as lonrg as 2 . .
the modified recursion is stable, irrespective of the phase. of (the series being assumed convergent).
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A. Equilibrium Point B. Local Stability

We will show thatu = fiopi- FOT two jointly stationary pro- 1o prove stability of the equilibrium point, we have
cesseg(x(t)} and{y(t)}, define R, () = E[z(t)y"(t = 7). to verify (30). Note thatR,.(0;p) = — N(u)/D(p),
Note thatf(n) = R,.(0; ). Using the steady-state approxiyyhere N(p) = cul(1—pB)Ryy(0) — 2] and D(p) =

v

mation [ cf. (11)—(12) ] one arrives at [1— (1 —cu)(1— pb)u* According to (38), it holds that
_(1_ Jwo, (4 _ > wo N(po) = 0. Additionally, since [cf. (40)]R.  (0; o) = 0, one
t) = (1 J t—1)+e(t)+ J 33
y(t) = (1 =uB)e™y( JTED FolH) —e™u(t=1) (33) obtains N’ (110) = —cuBRyy(0; po). Combyi?\ing these results
(for brevity, the dependence om is temporarily dropped). one arrives at
Combining (26) with (33), one obtains

/ / N’
Ely(®)=" ()] I (o) = Ry (05 o) = — D<(5f>)
=E{[(1 — uB)e?y(t —1) + &) +v(t) — e/ v(t — 1)] _ Cugooyy (0; po)
< (1= g)eT (¢ =1) = ey (= 1)) = TPl — (= e —goy 0 @Y

Jg an analogous way one can show that (ug) =
—N*t(uo)/D(po) = 0 which, when combined with (41),
proves thafu is a stable equilibrium point.

which, after elimination of cross terms that are zero due
orthogonality, leads to the following recursive relationship

Ry2(0) = (1 = ¢u)(1 — pB)Ry=(0)

_ % ‘n
w* (1= 1B) Ry (0) + u Ry (0)- (34) C. Results for the Normalized Algorithm

In an analogous way, the relationship Now consider the normalized algorithm (26) where
E[y(t)y* (t)] = E{[(1 — uB)e’*y(t — 1) + &(t) + v(t) R n (t)2*(t)
_ ejwov(t —1]-[(1— /L*ﬂ*)efjwoy*(t —-1) pt) = p(t —1) — %
FE) 4+ 0t () — e (- 1))} r(t) = pr(t — 1) + |=(t) 2. (42)
implies

Let v = 1 — p. For constanj: and for p sufficiently close to
Ryy(0) = |1 — pB* Ry, (0) + o2 + 202 1, it holds thatr(t) = h(u)/y whereh(u) = E[|z(t; 1)|?] =
* R..(0; ). Hence, the normalized algorithm can be analyzed
— (1= pB)Ryw(0) — (1 — R, (0). 35 ' X : :
(1= 1) Ryo(0) = (1 = 1737 Ruy (0) (35) analogously to the gradient algorithm (28), provided that the
Note thatR,,(0) = R,,(0) = o2. Solving (34) and (35) with gain« is set toyR;}(0; uo). Note that this modification does

respect toR,, (0) and R,.(0), one obtains not qualitatively affect the results reported in the previous
o2 + | uf2o? subsections — similarly as beforg, = 1.t is the only stable
R,,(0) = % + 02 (36) equilibrium point of (42) satisfying (14). Sincgf (1) = 0,
1—=|1—pp| the stochastic differential equation associated with (42) has the
Cp bR, o2 form
R,.(0) = — ul(l = #3) By (0) = 0] (37)

[1—(1—cu)(1— pB)p* dXs = —vh™ (o) f' (o) X sds

The equilibrium pointy, can be determined by solving =
f(p0) = Ry (0; o) = 0 or equivalently +vh™ (10) v/ 9(1o) AW, (43)
(1 — p10B) Ry (0; o) = 2. (38) To evaluateh(uo) = R..(0; o), note that

I[_C?t ?56; 1 — poB. Equation (38) can be rewritten in the form E[2(8)2*(8)] = B{[(1 — c)2(t — 1) — Cu y(t —1)]

1— 2
PO (s ) DY (39) <[ = )z (= 1) = Syt - )]}
1 —[zol? e
Since, according to (39),0 must be a real number, one finallyand hence
obtains a )
C —C

2o =1+C/25/C/A+C, poB=—C/2++/C2JA+C. R.:(0) = (1 - ¢,)*R22(0) — ”ui” R.,(0)
To guarantee stability of the closed-loop system, one must B cu(l—cy) Ry.(0) + 02 Ry, (0).
require thatuoS > 0 which leads to [cf. (20)]u08 = goo- 1 vz |M|2
Since

Lo = arg meucl Ry, (0; 1) (40) SinceR.,(0; uo) = Ry, (0; o) = 0, one obtains
"

the equilibrium point established above corresponds to thep () = R, (0; 1u0) = R, (0; o) = M (44)
optimal (minimum-variance) control strategy. l1ol?(2 — cp)
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D. Variability .
To study stochastic variability qi(t) — 1o we have to eval- 10
uateg(uo) in (31). Note that under (A1)—(A3), the processes
{y(t)} and{z(t)} are zero-mean and Gaussian. Therefore it 107° ’
holds that [18] _
n(7s o) = E[y (75 10) 2" (7 10)y™ (05 110) (03 o) | Sw0°
= I (7) + I2(7) + I3(7) s
where 107"
Ii(1) = E[y(73 p0)2" (7, o) | E[y" (05 p0)2(0; p10) | -
= [Ry=(0; o) | 10° 10" 10°

Lo(r) = Bly(r; po)y" (0, o) ] B 2" (73 120) 2(0; o) | !

= Ry, (75 po) R%,(7; o)
I3(1) = E[y(7; 10)2(0, po) ] E[ 2 (73 p10)y™ (05 o) |
= Ry (75 p1o) Rovy (T3 110)-

SinceR,. (0; o) = 0, it holds thatl, (7) = 0. Moreover, since e =Bk (10) v/ 9(po) = Yol B/ (2 — cu) /ey (50)
the processe$v(t)} and{e(t)} were assumed to be circular

white, one obtaingz, - (1) = Ru.- (1) = 0, V7, which entails  Based on (48)—(50), one can rationalize the choice aind
Ry (T3 10) = R.-y(T510) = 0, V7 and leads tal3(7) = 0.
Furthermore, we will show that

I(r) { Ryy(O;MO)O—I?zz(O;NO)7 :;8 . (@45)

Fig. 3. Dependence of the steady-state variance(6f3 on ~ for the Guo-
Bodson's plantK1(¢~'). Solid lines — experimental results, dotted lines —
theoretical predictions. Circles = 1, squares -8 = 4.

Cu

1) Selection ofy: Denote by Eo[|ii(t)8 — gool?] =
Eo[|Ys/|?] the variance of fluctuations gi(t)3 aroundg...
Solving the Lyapunov equation associated with (48), one
obtainsE. [|Ys|?] = |¢|?/(2b), which leads to

Actually, note that

Ely(t)y"(t = 1] = E{[(1 — pB)e’y(t — 1) + e(t) doo = Bao|A(1)6 — gool?]
+ou(t) — et - 1)] y"(t - 1)} N 1—(1—c)(1 = goo)
which leads toR,,(1) = e0[(1 — p3)Ryy(0) — Ryy(0)]. — e 2, '
In an analogous way one can show ttif, (1) = ef“0(1 —
wB)Ryy(tr — 1) , V1 > 1. Since [cf. (38)] Ry, (1;10) =

(51)

Quite clearly, to make the steady-state fluctuationgi@fs
70 [(1—1108) Ry (0; 10) —02] = 0, one obtaingR,,, (; o) = small, one should keep the coefficientsufficiently close to
R}, (=75 o) = 0, V7 # 0, which leads to (45). 0. On the other hand, as shown in [19], the closer that

Finally, after combining all results presented above, one g&@comes to 0, the longer it takes for the algorithm to readjust

oo

9(mo) = Y (7 Ho) = Ryy(0; p10) Rz (05 ro)

T=—00

Derivation of (46) in the non-Gaussian case, i.e., under (Al

(A2) only, is also possible, but much more tedious.

the adaptation gairii(t) when the plant changes. Hence,

(46) selection ofy is a classical variance/bias compromise, typical

of identification of nonstationary systems [13]: for “small”
alues of~, the estimation algorithm is “slow” (yields large

racking bias) but “accurate” (yields small tracking variance),

whereas for “large” values of, it is “fast” but “inaccurate”.
: . : . A special simulation experiment was arranged to check the
E. Tracklng Propertlles of the Normalized Algorithm dependence of the steady-state varianca(6f3 on-y — 1—p
Since the properties of the closed-loop system depend @f the Guo-Bodson plant (19). The disturbance and noise
the value ofu(t), rather than on the value gi(t), we will  settings arer, = 0.1, 0. = 0.001, wy = 0.1 and d(0) = 1.
introduce a new variablg; = 3.X,. Multiplying both sides of a|| numerical values are obtained by combined ensemble
(43) with 8 one arrives at the following differential equationayeraging (50 realizations ofv(t)} and {e(t)}) and time
dY, = —vh ™ (o) f' (110) Yads + vBh ™ (110) /9 (o) AW, averaging (100000 timg-steps). For each realization, the first
(47) 25000 samples were discarded to ensure that only the steady-
which can be used to study the evolution ft)3 in the State values are averaged. Fig. 3 shows the results obtained
neighborhood of the equilibrium pointy3 = gac. for 3 = 1 (no modeling error) and foB = 4. The constant

Using (41), (44), and (46) one can rewrite (47) in the forrfi, Was set to 0.01. Note the good correspondence between
experimental and theoretical curves in the considered range of

dY, = —bYyds + cdW, (48) RPE gains. The obtained results are practically insensitive to
where modeling errors.
_ 2—-c 2) Selection ofc,: According to [19], the constant
— 1 / — H (2 iz
b=yh" (o) (o) = 1900 1-(1—cu)(1—9cx) (49) should be chosen so as to minimize the following measure
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d(t) is served by the first LMS algorithm
t t p y(t) ~
—— =5 iy ] e @ i v (8) = " (Ok(t — 1) —y(1)
+ ~ ~
el T ----- vy k(t) = k(t— 1) + mRe{e()y ()} (53)
|
R, (q") Nie ut, Ro(q) S )4 where y/'(t) is a hypothetical (reconstructed) response
Generator Ll of the identified system to the auxiliary noise signal
' u'(t), k(t) = [ki(t),...,kan(t)]T is a vector of esti-
> LMS, ye) mated impulse response coefficientg) = [u/(t — 1),

F(t) ...,u'(t — M)]* is a vector made up of past values

> LMS, i< of the auxiliary noise signal, angd, is a (real-valued)

step-size parameter.
Fig. 4. Block diagram of the adaptive FXLMS algorithm with auxiliary noise 2) Direct control oop, \_Nhl(.:h forms the (.:Ompensatmg SIg-
plant identification. nal by means of adjusting the magnitude and phase of
the measured, or artificially generated, reference signal
r(t) = 7«0t It is served by the second LMS algorithm

' (t) = T k()

ey ¥ (2= ey 3(6) = 8(t — 1) + par' (1)y(t) (54)
T = (B = -0 e — gl e

Straightforward calculations lead to

of the tracking capability of the algorithm:

where r/(t) = I?p(q—l)r(t) is a prefiltered reference
signal, ¥ (t) = [r(t —1),...,7(t — M)]" is a vector
P = argmin J(c,) = oo (52) made up of past values of the reference sigh@ is a
Cu complex-valued weight, and, is a (real-valued) step-
Note that in the case wherg( < 1 (slow rate of amplitude Size parameter.
variation), it holds thay., = /¢ = o./0, [cf. (5)]. Then, for As far as narrowband noise suppression is concerned, the solu-
i = goo, ONE ObtAINSh = 7, | c| = 74/2go andq., = vg... tion described above has some obvious drawbacks, compared

Remark: Since neitherb nor |c| = vgoor/(2 — cu)/cu to our solution (the comparison presented below does not
depend ong3, the tracking properties of the RPE algorithnextend to other variants of FXLMS):
(26) areindependentf the modeling error. 1) Unnecessary Performance Degradatiofhe method
proposed by Eriksson and Allie is an invasive approach
VIl. COMPARISON WITH THEFXLMS APPROACH — injection of an auxiliary noise disturbs operation of the

adaptive noise canceling system, causing deterioration of its

The original FXLMS algorithm was designed for systemgerformance (especially in the absence of measurement noise).
operating under stationary conditions, where identification §tis drawback can be alleviated to some extent by using
the controlled plant (e.g., the so-called secondary path, dBhemes with dynamic scheduling of noise variance, such as
acoustic applications) can be performed off-line, before thge scheme proposed in [23]. There the auxiliary noise power
control loop is closed. When the plant characteristics chang;e|arge before the adaptive noise control system converges,
over time, an adaptive version of the FXLMS algorithm shoulghg pecomes small afterwards. Since convergence can only
be used, allowing for on-line plant identification/trackingtake place under stationary conditions (time-invariant plant),
Two well-known solutions to this problem are based on thghen the system is continuously operated in the tracking
auxiliary noise approach, and the overall system modelipgode, only small improvements can be gained by taking this
approach, respectively [3]. Both approaches were compargshroach.
in [21] and, based on evaluation of their steady-state andp) | ack of ParsimonyTo maintain satisfactory performance
transient performance, the approach utilizing auxiliary signal$ the closed-loop system, one may be forced to use FIR
was found superior to the approach in which no auxilianodels of relatively high orders. For example, in our ex-
signals are required — for this reason we will focus OoWeriments with the Guo-Bodson plant, estimation of at least
attention on the first of them only. M = 20 impulse response coefficients was necessary to

In the auxiliary noise approach, proposed originallyaintain stability of the closed-loop system. Since all that is
by Eriksson and Allie [22], to enable reliable identificaneeded for cancellation purposes, is an estimate of the plant's

~

tion/tracking of the plant, a low-variance random perturbatiofyin at the frequencyy : k, = Zi]\il k;e—iwoi the identified
(an artificially generated white noise sequence) is added to figdel is grossly overparameterized. This lack of parsimony
input signal. At each time-step, the updated plant model is use@yits in a slower response of the system to plant and/or
as the reference prefilter for the classical FXLMS algorithmjisturbance changes, as well as in an extra degradation of its
The resulting scheme, further referred to as adaptive FXLM&eady-state performance. Note that in our approach only one
is depicted in Fig. 4. It incorporates two adaptation loops: complex-valued coefficient is estimated.

1) The system identification loop, which tracks coefficients 3) Excessive Numerical Complexifyomputational burden

of a finite impulse response (FIR) model of the plant. lissociated with the adaptive FXLMS algorithm (53)—(54) is
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equal to6 M + 12 real multiply/add operations per time updatéarmonics (with frequencieyg, 3wq, etc.). Suppose that
(this count does not include the cost of generating auxiliaguch components, with slowly-varying amplitudes, are present,
noise and reference). When the normalized LMS (NLMS).,

recursions are used instead of the regular ones, the compu- m

tational cost further increases &\/ + 13 real multiply/add d(t) = Zdi(t)7 di(t) = a;(t)e?™o!
operations and 2 real division operations. The analogous count i=1

for the algorithm (26) gives 33 real multiply/add operations a;(t) = a;(t — 1) + e;(t) (55)

and 3 real division operations per time update. Note that for . )

M = 20 the adaptive FXLMS algorithm is computationally 4Vhere {ei(t)}, @ = 1,...,m, are mutually |ndeper21dent

times more demanding than our algorithm. This computatior@[CUlar White noise sequences with varianegs, ..., o7,

advantage of SONIC diminishes with increasing number GFSPECtively. _

eliminated sinusoidal components, as it grows linearly with _ >imilarly as before, we will base the structure of our adap-

m (see Section VIII-A). For adaptive FXLMS the analogoug've filter on the form of the optimal .solut|o“n to the,open—loop

cost increment is smaller, because the ofdeof the identified ProPlém. Suppose that one would like to “removit) from

plant model does not need to be increased. the signals(t) = d(t) + v(t), where{u(t)} denotes cwcm#ar
4) Necessity of TuningThe adaptive FXLMS algorithm White measurement noise. Lek(t) = [di(?),...,dm(1)]".

(53)-(54) requires selection of three real-valued design giote that the signak(t) admits the following state-space

rameters: two step-size coefficients and the variance of Presentation

auxiliary noise. Since different settings may be required under d(t) = Ad(t — 1) +8&(t)

different operating conditions, no set of fixed values of design

_ 1T
parameters can guarantee satisfactory performance of the s(t) =17d() +v(?) (56)
system in the presence of plant and/or disturbance changelere A = diag{e/“°,... /™ 0} 1T =[1,...,1], e(t) =
In contrast with this, the proposed algorithautomatically [¢;(t),...,¢,,(t)]T ande;(t) = e;(t)el“ot,

adjusts one complex-valued parameter [note that the constantth the Gaussian case, the optimal steady-state one-step-
cu, p and k,, appearing in (26), have no influence on thehead predictor of(¢) can be computed using the following
steady-state behavior of the system] — and it does it inkalman filter recursions

way that guarantees minimization of the steady-state mean-

~, 4T3
squared cancellation error. Of course, one can design extended s(tlt—1) =1"d(¢]t - 1)

FXLMS schemes equipped with some additional mechanisms e(t) = s(t) —s(t[t —1)

for on-line adjustment of LMS step-sizgg and p; — see d(t+1t) = Ad(t|t — 1) + Agace(t) (57)
e.g. [24] and the references therein. Generally, we have bad

experience with applying variable step-size algorithms to (53yhere go = [g1,...,9m]" is the steady-state Kalman gain
(54): they are difficult to tune (the method described in [240te that under the assumptions made, it holds Mat=
requires fixing 3 design parameters for each of the updat@y[€(t)] = diag{o? ,...,07 }, i.e., the state-space model

step-sizes) and they often cause system instability — <¥fes(?) is time-invariant).

Section X-B. The main problem with suad hocsolutions Observe that the last recursion of (57) can be decomposed
is that they are designed and optimized for open-loop systeffs

subject to widebgnd excitation., where they work sat.isfactorily.@(t F1]t) = ] @(ﬂ t— D4 ge®)], i=1....m
However, when incorporated in a frequency selective control (58)

system, such as adaptive narrowband noise canceller, gy e steady-state Kalman filter can be viewed as a parallel
usually misbehave, most likely because of the closed-0QRcyre made up of: subfilters, designed to track different
identifiability problems. Note that the adaptation gain updaje, .. onics and driven by the same global prediction error
mechanism used in SONIC was derived for a closed-loop .

system. This explains its good properties. ~

yRemark: To dpo justice gt]o thepaé)aptive FXLMS approach e(t) =s(t) - Zdi(t' t=1).

it should be stressed that while SONIC can be used to o =t )

cancel narrowband disturbances only, FXLMS is capable gfider the slow-variation hypothesis, one can show ghat

— L2 2 5
eliminating practically any kind of diswturbance, including’/¢: Where¢; = o¢ /oy, i = 1,...,m. Based on (58), we
wideband noise. propose the following decentralized control rule

VIII. EXTENSIONS u(t) =—3" W

We now describe three extensions of the proposed scheme: R =l
to systems with multiharmonic disturbances, systems with di(t+1t) =e™°[d;(t|t — 1) + i (H)y(t)]  (59)
extra transport delay, and real-valued signals. 1

1=1,....,m
A. Multiharmonic Disturbance where k,; = K,(e 7“0) are the nominal plant gains at
Sinusoidal disturbances that occur in vibrating systems oftdifferent frequencies, and the adaptation gging) are com-

consist of the fundamental (with frequency) and several puted (independently of one another) using the algorithm
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designed for the single-frequency case. When necessaryC.aReal-Valued Signals
zero-frequency (dc) disturbance componéntan be included

, All presented result ly t tems with inputs an
in an analogous way presented results apply to systems puts and

outputs described by complex numbers. A “quick and dirty”

Eo(t+ 1]t) = cfo(ﬂt— 1) + fio(t)y(t). way of extending our adaptive filter to real-valued signals,
_ which works pretty well in practice, can be summarized as
B. Systems with Delay follows:

Suppose that the plant is governed by 1) Regarding{y(t)} as a sequence of complex numbers

y(t) = Kp(g~ Hult —70) + d(t) + v(t) [yr(t) = y(t), yi(t) = 0], compute the complex-valued
> kpu(t — 1) + d(t) + v(t) control signaku(t) = ugr(t) + jui(t) using the proposed
algorithm.

wherer, denotes transport delay (e.g., secondary path delay) :
So far, we have considered the unit-delay case. Some modiﬁ-z) Apply ux (¢) to the input of the plant.

cations are needed to cope with > 1. Remark: A more sophisticated solution to this problem,
First, one should replace (10) with yielding better results, was described in [25]. One can prove
~ that the control part of the complex-valued algorithm works
u(t) = ,d(t+70|t). identically to the control part of the real-valued algorithm,
kx derived in [25]. Differences occur in the self-optimizing parts
Second, since (11) should be replaced with of both algorithms. Note that the complex-valued algorithm
d(t + 70| t) = €0d(t + 70 — 1|t — 1) + pel“o™oy(t) tries to minimize the following measure of fi€[|y(t)|?] =

E[yi (¢)]+E[y? (t)] while, when applied to real-valued signals,

one arrives at it should minimizeE[y3 (¢)]. For this reason, unlike the algo-

9y(t) _ Oyt —1) 13 o y(t — o) rithm proposed in [25], the modified complex-valued regulator
ou ou ou doesnot converge to the optimal regulator designed for a real-
— B edToy(t — 79). valued case — but it continues to work satisfactorily.
Finally, setting8 = ¢,,/1, one obtains
0y(t) _ o gyt —1) e Ay(t — 7o) IX. SAFETY JACKETING
Ou . Op Op So far, we have been assuming that the plant is time-
- ;“ e?“0T0y(t — 719) (60) invariant. Since the proposed procedure for automatic tuning

of the adaptation gain. is based on minimization of the
local measure of fit (21), the algorithm (26) should also cope
IF’eﬁ/orably with slow changes in plant dynamics. To make it
robust to abrupt plant changes (note that the initial convergence

which can be considered a generalized version of (24).
The corresponding disturbance rejection algorithm can
summarized as follows

2(t) = ed0z(t — 1) — ¢, €107 2(t — 79) phase also falls into this category), some further modifications
cy o are needed.
- = €070 y(t — 19) : . . . . .
(it —1) First, to avoid erratic behavior of the algorithm during
r(t) = pr(t—1) + | 2(t)]? startup/transient periods, it is advisable to set the maximum
2 (Dy(t) allowable values fof ii(t)| , | 2(t) — (¢ —1)|, andr(¢), further

) =npt—-1)— denoted bYumax, Alimax, aNdry.y, respectively. These are

R R r(t) o typical “safety valves” used in adaptive filtering.
d(t + 1ol t) = ?°d(t + 10 — 1[t — 1) + Fu(t)e? ™y (t) Second, instead of a constant forgetting fagtpione can
j(t+70|t) use in (26) a time-varying factor dependent on the current
u(t) = _T. (61) value Of/.L
Remark: The algorithm (26) continues to work satisfactorily p(t) =1 —cp|pu(t — 1)

for systems with delay — the only price paid for delay ) )
underestimation is in longer transient responses and |¥43ere0 < ¢, < 1. This ensures that — p will be at all
accurate tuning, compared to (61). Delay overestimation led#f§€s much smaller thap, which is consistent with the rule

to similar effects with one noticeable exeption. Recall that f&2Ying that the adaptation time constants of a hierarchical
the purpose of derivation and steady-state analysis of (26) {pulti-layer adaptive syst_em should gradually increase from _the
have adopted a static model of the plant, i.e., we have assursbartest (fastest adaptation) to the longest (slowest a_ldaptatlon).
that K, (¢~ )u(t) = kyu(t). Since in all transient phases alhe recommended values of are those from the interval
more adequate approximation has the fokp(q—')u(t) = [0.01,0.1].

kpu(t — 74), wherer, = —arg[K, (e 7“?)]/w, denotes the ~Denote bysap(x,a), z € C, a € Ry, a complex-valued
so-called phase delay of the plant, measured at the frequefgfuration function
wo, incorporation of an extra delay not exceeding (or only

x , |z < a
slightly exceeding)r, usuallyimprovescontrol results! — see sat(z,a) = x | /_‘
Section X-D. a |z 2] > a
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Then, the modified disturbance rejection algorithm that corslower response to magnitude errors — the effect caused by
bines all “fixes” described above can be summarized as followierse sensitivity of system output to two types of modeling
errors.

‘UJ() c . . .
2(t) =/ | (1 —cu)z(t —1) — % y(t—1) The simulation experiments show that the proposed control
At =1) heme has the self-stabilizati h
() =1— )| fi(t— 1) scheme has the sel -stabi ization property (not covered_by the
3 P ) SDE-based analysis). When instability occurs at the instant
7(t) = p(O)r(t —1) +[2(t)] t = 45000 [which is unavoidable since, due to the sign
r(t) = min[7(¢), rmax) mismatch, the stabilizing gajiafor K5(¢~') does not stabilize
Au(t) = sat [ O)y(t) /r(t) , Aftmas] K4§q__1)], it causes rapid growth of ihe output &grjv;(ltl),
() = it — 1) — Ap(t) which in turn speeds up convergenceiofo a new stabilizing
/i H B H° value. In this way, after a burst observed at the system output,
1i(t) = sat[fi(t), pmasx] the closed-loop stability is regained.
d(t +1]t) = 0 [d(t[t — 1) + a(t)y(t)]
At + 1
u(t) = _M. (62)

Ky

X. SIMULATION AND EXPERIMENTAL RESULTS

Four computer simulations and one real-world experimel
were performed to check both the steady-state and transic
performance of the proposed disturbance rejection scheme

=10 T

A. Tracking Behavior

The objective of this simulation experiment was to demor 107 1 > 3 ) s
strate the ability of the proposed algorithm to cope witl
modeling errors, including sudden plant changes. The trans —
function of the plant was altered three times during eac 2
simulation run — see Table |. The adopted measureme<
noise and sinusoidal disturbance settings werg:= 0.1,

o. = 0.001, wy = 0.1 rad, d(0) = 1.

While the first two changes [fronk; (¢~!) to Ky(qg~!) at
instantt = 15000 and from K»(¢~1) to K3(g~!) at instant Fig. 5. Transient behavior of the disturbance rejection algorithm (results of
t = 30000] were confined to plant parameters, the last Changeypical simulation experiment). Solid lines — estimated values, dotted lines
was more substantial: at instant= 45000, the first-order ~ °Pimal steady-state values.
inertial systemK3(¢~!) with a single real pole was switched
to the second-order nonminimum phase sysf€pig—!) with
a pair of complex poles. Since the phase shift introduc

—1 .
by Kilq~") at the frequencyw differs from the analogous 27wy =2 63). For less significant plant changes the length of

shift of K3(¢~*) by more thanr/2, the last change cause . o .
temporal instability of the closed-loop system, making the ta%srlle transient period is usually much shorter, often taking the

of disturbance rejection even harder. values smaller thaffy.
Fig. 5 (illustrating typical behavior) and Fig. 6 (illustrat- . . . .

ing mean behavior) show results obtained for the algorihﬁi Com!oarlson W'_th the Adaptive FXLMS Algorithm

(62) with the following settingsz, = 0.05, ¢, = 0.005,  The simulated first-order plant was governed by

Pmax = 0.05, Aumax(t) = w(t —1)/50, rmax = 1600. The y(t) = o(t)y(t — 1) + 0.0952u(t — 1)

nominal plant gain was fixed at the valig = e/“° — the .

corresponding magnitude and phase errors are listed in Table o(t) = 0.7 + 0.255in(0.0003¢)

l. where the coefficienp(t) € [0.45,0.95] determines location
The adaptation process was started from scratch at instaht “time-varying system pole” [the Guo-Bodson plant cor-

t = 1 using the following initial conditionsd(0) = e/“°, responds to the choice(t) = 0.9048,Vt]. The frequency of

r(0) = 100, z(0) = 0, 11(0) = 0.02. The algorithm copes the sinusoidal disturbance was set equabgo= 0.3, and its

favorably with both the initial convergence problem and witamplitude varies according to

abrupt plant changes. When the experiment is started or .

when a change to the plant dynamics occurs, the magnitude a(t) =1+ 0.25in(0.002¢)

of the adaptation gaim(t) temporarily increases to quickly Following [21], the order of the FIR filter was set id = 32,

compensate large initial modeling errors; later on, it gradualnd the variance of auxiliary noise — ¢g, = 0.001.

decays to settle down around its optimal steady-state valueTable Il compares the results yielded by the optimally

Note the very quick response to phase errors and usually miiched adaptive FXLMS algorithm with those given by the

t [x10%]

The mean transient responses observed at instants
13000 and t = 30000 are shorter than 500 samples, i.e.,
?hey last for less than 8 periods of the disturban€g &
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TABLE |
PLANT SWITCHING SCHEDULE IN THE TRANSIENT BEHAVIOR EXPERIMENT AND THE CORRESPONDING MODELING ERRORS
Time interval Plant | 8] Arg[3]
0.0952
0 < t < 15000 Ki(gl)=—"——— 0.708 | —47.9
1 —0.9048¢~1
0.0238
15000 < ¢ < 30000 Ko(ghH)y=—"—"—"— 0.234 | —79.3
1—0.9762¢!
) . 0.2
30000 < ¢ < 45000 K3(gl)y = ——— 0913 | -27.1
1—-0.8¢~1
—0.1+40.14¢7 1
45000 < ¢ < 60000 | Ki(qg~1) = + 914 1.960 | 121.1
1—1.8391¢g—! + 0.8649¢—2

102 TABLE I
10t ' ' ' ' ' COMPARISON OF THE MEAN-SQUARED ESTIMATION ERRORS YIELDED BY
o b 1 THE OPTIMIZED ADAPTIVE FXLMS ALGORITHM AND BY THE SONIC
ALGORITHM.
oy MSE FXLMS SONIC

01| |e(®))? | 3.80-10% | 3.65-107%

ly(¢)]2 | 1.038-1072 | 1.037-10~2

0 | |y@®)2 | 9.03-1075 3.67-10~7

comparison presented above is rather unfair for SONIC.

Our attempts to combine the FXLMS algorithm (53)—(54)
with the robust step-size adjustment technique proposed in
[24] were a complete failure. Even though we followed the
guidelines of [24] for choosing the method’s design parame-
ters, the closed-loop system turned out to be unstable in almost
Fig. 6. Mean transient behavior of the disturbance rejection algorith@VEry Simulation run.

(average of 100 simulation runs). Solid lines — ensemble averages of the
estimated values, dotted lines — optimal steady-state values.

Arg(w[°]
[=]

-100f

1 2 3 4 5
t [x10%]

C. Elimination of a Multiharmonic Disturbance

In our third simulation experiment, the output of the Guo—

Bodson plant was corrupted with a sinusoidal signal consisting
SONIC algorithm (26) ¢, = 0.01,p = 0.995,kn = 1].  of the first and third harmonicst(t) = dy (t) +ds(t), di(t) =
The best settings for FXLMSuf = 0.025, po = 0.7 for g, ()eivot, dy(t) = as(t)e®“ot, wherea, (t) andas(t) denote

o, = 0.1, and iy = 0.025, pp = 1.3 for o, = 0) were complex amplitudes evolving according to the random-walk
found using a computationally exhaustive trial and error seargtbdel: ., = 0., = 0.001, a1(0) = d1(0) = 1, a3(0) =
procedure. All numbers were obtained by means of combingd () — 0.5. The measurement noise variance= 0.01. The
ensemble averaging (10 realizations {of(¢)} and {v'(t)}) decentralized adaptive controller (59) was applied, combining
and time averagingt (< [20001, 70000]), after the compared two algorithms of the form (62) with identical settings;; =
algorithms have reached their steady-state behavior. Resylts — (.05, ¢,; = ¢,5 = 0.005, Fmayx.1 = Tmaxs = 1600,

for the FXLMS controllercannotbe improved by decreasingAumax’l(t) = fi1(t — 1)/50, Apimax.s(t) = fis(t — 1)/50,
the variance of the auxiliary noise. When the variange is fimax, = fimax,3 = 0.05. The initial conditions were set to
further reduced, the mean-squared cancellation/output errg\ﬁo) — 33(0) = 0 and i1 (0) = 7i5(0) = 0.02. Finally, the
start to increase — this effect is caused by poor identificatigR minal plant gainsk, and k; were set toe/*o and e/3«o,

results due to insufficient plant excitation. respectively, which results in the following modeling errors:
While in the presence of measurement noisg € 0.1) | (] = 0.708, Arg[31] = —47.9°, | B3] = 0.318, Arg[Bs] =
SONIC is only marginally better than the optimally tuned0.3°.
FXLMS, in the absence of noiser{ = 0), which is the Instead of a “cold start”, used in the preceding example
situation considered in [21], the improvement is quite signif(which is not recommended in practice, because of the risk
cant, reaching 24 dB. In both cases, SONIC is computationatly large initialization transients) a two-stage initialization
almost 6 times less demanding than FXLMS. Note also thatiocedure was applied. During the first 300 time-steps, the
since in practice FXLMS seldom is optimally tuned, theuantities Ei(¢), r1(¢)] and [z5(t), r3(t)] were evaluated,
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Fig. 7. Rejection of a multiharmonic disturbance (average of 100 simulatigfyy. 8. Transient behavior of the disturbance rejection algorithm in the
runs). Solid lines — ensemble averages of estimated values, dotted linesresence of an extra 5-sample transport delay (results of a typical simulation
optimal steady-state values. run). Solid lines — estimated values, dotted lines — optimal steady-state values.

but the adaptation gaingi{(t), fiz(t)] were kept at their  _s Periodogram PSD Estimate
starting valuesy}; (0), 7i3(0)] and not updated. Then, at instant
t = 301, the adaptation lock was released. —40r ey 1

Fig. 7 shows results of a typical simulation run. Similarly & _ i N

5OF - R
as in the single-frequency case, the phase anglgs (@j and 5 | oo T : !

ps(t) quickly respond to initial phase errors. The reaction ¢ -60f| 2
|21(t)] and|fi5(¢)| is slower, but eventually both quantities 2 ﬂ

d

. ) iU colae - b : - - 1
also converge in mean to values that are close to the optino 1 A NENPEAIR AW " ,

steady-state values. Small estimation biases can be explai § -sof | ' ol .'.":' "‘?’ T Y Y "
by violation of our small adaptation gain assumption, und & ' : Sl ~ T
which all theoretical results were derived. 5 0 o A1 MA¢
§ -100} ,
D. Systems with Delay —110k
The transient behavior experiment, reported in Section X-;
was repeated with an extra transport delay, equal to 5 sampl 1205 100 200 300 200 500

intervals ¢, = 6), added to all switched plant models. The Frequency (Hz)
algorlthm (61) was l_Jsed’ equped with the ngety enforcem%‘?t. 10. Power spectral density of the signal before (dashed line) and after
mechanisms described earlier. The adaptation was startegs@ line) disturbance cancellation.
the instantt = 1 in an analogous way as described in Section
X-A. The assumed nominal gait), was equal tae/«o, ) ) o

Fig. 8 shows the results of a typical simulation run. Not&n® major part of this delay was due to hardware limitations
that these results are comparable with those presented in Fig o8/ Processing speed + buffering) and not due to propagation
for a plant with unit delay (in both cases the same realizatioRE€Cts-

of {e(t)} and {v(t)} were used). The robustness issues are The generated disturbance consisted of three sinusoidal
illustrated in Fig. 9. tones with identical amplitudes and with frequenci@s Hz,

240 Hz, and 360 Hz, respectively. The nominal filter gains
were set tol for all frequencies. The remaining parameters
were chosen as followgimax = 0.05, ¢;, = 0.005, rmax = 5,

One real-world active noise control experiment was pep-= 0.999 (the same for all three subfilters). After an initial
formed using a standard PC, equipped with a poor-qualitpnvergence phase, which lasted for a few seconds, the closed-
sound card. The left loudspeaker served as the noise soutcep system reached its steady-state behavior. Fig. 10 depicts
while the right one was used for cancellation purposes. Tperiodogram-based estimates of the power spectral density of
error microphone was located approximately 1 m away frothe original signal and its “silenced” version, picked up by the
the left loudspeaker and 30 cm from the right loudspeaketror microphone. The peaks at 120 Hz, 240 Hz, and 360 Hz
The system was operated at a sampling ratd &Hz. The were practically eliminated. Listening tests confirmed that the
transport delay was equal to 60 ms, i.e., 60 sampling intervad&hieved disturbance reduction was significant.

E. Acoustic Experiment
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Results for the switched plankf(¢~!') — Ka(¢~!), wo = 0.1, 70 =

10]. Mean transient responses were obtained for regulators designed

assuming that the delay is equal to 5 (three top figures), 10 (three middle figures), and 15 (three bottom figures), respectively. Phase delay ofrthe plant
evaluated at the frequencyy is equal to 8 before the change, and 15 after the change.

XI. CONCLUSION [11]

The problem of eliminating a complex-valued sinusoidal
disturbance of known frequency, acting at the output of dt?]
unknown linear stable plant, was considered. The proposed
solution is based on the coefficient fixing — a techniqugs;
originally developed for the purpose of adaptive minimurrii4]

variance control — combined with automatic adaptation g

adjustment. It was shown that when the complex-valued amﬂ%]
tude of the disturbance evolves according to the random-wélR]

model, the resulting disturbance rejection scheme conver
in mean to the optimal solution. It is also robust to abru
plant changes. The obtained results were further extended&)

multiharmonic disturbances, plants with delay, and real-valuﬁ%]
signals.
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