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Abstract—This paper presents a new approach to rejection
of complex-valued sinusoidal disturbances acting at the output
of a discrete-time stable linear plant with unknown and possibly
time-varying dynamics. It is assumed that both the instantaneous
frequency of the sinusoidal disturbance and its amplitude may
be slowly varying with time and that the output signal is contam-
inated with wideband measurement noise. It is not assumed that
a reference signal, correlated with the disturbance, is available.
The proposed disturbance rejection algorithm is an extension
of the algorithm derived for the constant-known-frequency case,
described in Part I of this paper.

Index Terms—Adaptive filtering, system identification, distur-
bance rejection.

I. I NTRODUCTION

CONSIDER the problem of eliminating a narrowband
disturbance acting at the output of a discrete-time system

governed by

y(t) = Kp(q−1)u(t− 1) + d(t) + v(t) (1)

wherey(t) denotes the corrupted complex-valued system out-
put, t = . . . ,−1, 0, 1, . . . denotes normalized (dimensionless)
time, Kp(q−1) denotes the unknown transfer function of a
linear stable single-input single-output plant,q−1 is the back-
ward shift operator,d(t) denotes a nonstationary narrowband
disturbance,v(t) is a wideband measurement noise, andu(t)
denotes the input signal.

We will look for the minimum-variance feedback controller,
i.e., for a control rule that minimizes the system output in the
mean-squared sense:

E[ | y(t) |2 ] 7−→ min .

We assume that no reference signal (usually obtained from
a transducer placed in the vicinity of the source of vibration)
is available. This makes the task of disturbance rejection
more difficult, as application of the feedforward compensation
technique is, in such a case, not possible.

Practically important, the problem of vibration control has
attracted a great deal of attention in recent years [1]–[3], solved
by many authors using different approaches, such as filtered-
X LMS (FXLMS) compensation, internal model principle, or
phase-locked loop – for references see [4]. Methodological
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aspects aside, the proposed solutions differ in the assumptions
made about the controlled plant and sinusoidal disturbance.
The most important design premises are those concerning:

• Known/unknown/time-varying plant dynamics
• Known/unknown/time-varying amplitude of the distur-

bance
• Known/unknown/time-varying frequency of the distur-

bance

Only a few algorithms, out of a large number of proposed
ones, are capable of dealing with the most general case: a
nonstationarysinusoidal disturbance, with time-varying am-
plitude and frequency, corrupting the output of anonstationary
linear plant — the adaptive FXLMS algorithm being one of
the noticeable exceptions.

To perform satisfactorily, all available methods require
tuning of several design parameters. For example, in the case
of the adaptive FXLMS algorithm, one should adjust two
step-size coefficients (determining the speed of adaptation of
the control and system identification loops, respectively), the
variance of auxiliary noise (injected into the control loop to
facilitate plant identifiability), and at least two adaptation gains
of the adaptive line enhancer (used to “extract” the reference
signal from the output signal). Since different settings may
be required under different operating conditions, tuning those
design parameters may be a difficult task, especially in a
nonstationary environment. To the best of our knowledge, the
algorithm derived in this paper is the firstself-optimizingnar-
rowband noise canceller capable of eliminating disturbances
in their most general form, which incorporates both amplitude
and frequency changes. The proposed solution is an extension
of the self-optimizing narrowband noise canceling (SONIC)
algorithm, described in the first part of the paper [4] and
derived under the assumption that frequency of the narrowband
disturbance is constant and known. The extended algorithm
will be called xSONIC. The new approach compares favorably,
both in terms of control quality and computational complexity,
with the adaptive FXLMS scheme.

II. A SSUMPTIONS

We assume that the measurement noise in (1) obeys
(A1) {v(t)} is a complex-valued zero-mean circular white

sequence with varianceσ2
v .

In its most general form, the nostationary narrowband distur-
bance will be modeled using the following equations

d(t) = ejω(t−1)d(t− 1) + ẽ(t)
ω(t) = ω(t− 1) + w(t) (2)
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where
(A2) {ẽ(t)} and {w(t)}, mutually independent and indepen-

dent of {v(t)}, are zero-mean white sequences with
variancesσ2

e and σ2
w, respectively,{ẽ(t)} is complex-

valued circular, and{w(t)} is real-valued.

When σ2
w = 0, which entails ω(t) = ω(0) = ω0, the

disturbance can be expressed in the more explicit form

d(t) = a(t)ejω0t (3)

where the complex-valued “amplitude”a(t) obeys the random-
walk model

a(t) = a(t− 1) + e(t), e(t) = e−jω0tẽ(t) (4)

(note that the sequence{e(t)} is circular white with variance
σ2

e ). Hence, in this special case,d(t) is a complex-valued si-
nusoidal signal (cisoid) with constant frequency and randomly
drifting amplitude. Disturbances of this form were considered
in Part I of this paper [4].

Whenσ2
w 6= 0, the instantaneous frequency drifts according

to the random-walk model. Therefore, the model (2) describes
a narrowband signal subject to random variations of both
amplitude and phase.

Even though the proposed adaptive control algorithm is
capable of eliminating the disturbance (2) in its most general
form (σ2

e 6= 0, σ2
w 6= 0), the majority of our analytical results

will be derived for the somewhat simpler case

d(t) = ejω(t−1)d(t− 1)
ω(t) = ω(t− 1) + w(t) (5)

which can be obtained from (2) by settingσ2
e = 0. Note that

the signal governed by (5) is a constant-modulus cisoid (| d(t)|
constant) with randomly drifting frequency.

To arrive at analytical results, we will assume that the plant
is unknown, time-invariant, and stable, and that it has nonzero
gain over the entire frequency range:

(A3) Kp(q−1) =
∑∞

i=0 kiq
−i,

∑∞
i=0 | ki| < ∞,

Kp(e−jω) 6= 0, ∀ω ∈ (−π, π].

Later on, in Section VII, we will show that the proposed
controller also works satisfactorily in the case where the plant
dynamics change over time.

III. B ASIC CONTROL ALGORITHM AND ITS PROPERTIES

A. Control Algorithm

The control algorithm that will serve as a basis for our
further considerations is an extended version of the algorithm
proposed in [4] for elimination of narrowband disturbances
described by (3), i.e., with a constant-known frequencyω0.
The extended algorithm can be summarized as follows:

d̂(t + 1| t) = ejω̂(t| t−1)[d̂(t| t− 1) + µy(t)]

ω̂(t + 1| t) = (1− η)ω̂(t| t− 1) + η Arg

[
d̂(t + 1| t)
d̂(t| t− 1)

]

u(t) = − d̂(t + 1| t)
kn

(6)

and incorporates frequency tracking. In the above algorithm,
µ, 0 < µ ¿ 1, denotes a small gain that controls the rate
of amplitude adaptation, andη, 0 < η ¿ 1, is another
gain that controls the rate of frequency adaptation,kn denotes
the nominal (assumed) gain, andArg[x] ∈ (−π, π] denotes
principal argument of a complex numberx. The frequency
estimation loop in (6) is identical with that proposed in [5].

Remark: The nominal plant gain, adopted in (6), is a time-
invariant quantity. Another possible solution, which incorpo-
rates the “instantaneous” gain of the nominal plant model
Kn(e−jω), has the form

u(t) = − d̂(t + 1| t)
kn(t)

, kn(t) = Kn(e−jω̂(t+1| t)). (7)

B. Tracking Properties

To derive analytical results, we will assume that the dis-
turbance is governed by (5), i.e., it is a constant-modulus
cisoid1 with unknown magnitudea = | d(t)| and randomly
drifting frequencyω(t). Furthermore, we will assume that
the (unknown) plant is time-invariant. Our approach will
be based on averaging. Consider a local analysis window
T = [t1, t2], coveringT = t2−t1+1 consecutive time instants
(T À 2π/ω(t),∀t ∈ T ). If the transfer function of the plant
Kp(e−jω) is a smooth function ofω, and if the instantaneous
frequency of the disturbance changes sufficiently slowly with
time, the true response of the plant to the narrowband excita-
tion u(t) can be approximated as

Kp(q−1)u(t− 1) ∼= kT u(t− 1), t ∈ T
wherekT =

∑
t∈T Kp(e−jω(t))/T denotes the average plant

gain over the intervalT . Using this approximation, one can
express plant output in the form

y(t) ∼= d(t)− βd̂(t| t− 1) + v(t) , t ∈ T (8)

whereβ = kT /kn — the ratio of the average plant gain to the
nominal (assumed) gain — denotes the local modeling error.
In our local analysis,β will be regarded as a time-invariant
quantity.

Denote the cancellation error by∆d̂(t) = d(t)−βd̂(t| t−1),
and the one-step-ahead frequency prediction error by∆ω̂(t) =
ω(t)− ω̂(t| t− 1). To establish the dependence of∆d̂(t) and
∆ω̂(t) on v(t) and w(t), we will employ the approximating
linear filter (ALF) technique, proposed by Tichavský and
Händel [5], for the purpose of analyzing adaptive notch filters.
Using this approach, one arrives at the following approxima-
tions (see Appendix):

∆x̂(t) = (1− µβ)∆x̂(t) + ja2∆ω̂(t− 1)− µβz(t− 1)

∆ω̂(t + 1) = ∆ω̂(t)− η

a2
Im[µβ∆x̂(t)]− η

a2
Im[µβz(t)]

+ w(t + 1) (9)

where∆x̂(t) = ∆d̂(t)d∗(t) andz(t) = v(t)d∗(t). Note that

E[|∆x̂(t)|2] = a2E[|∆d̂(t)|2] (10)

1From a qualitative viewpoint, this is not a serious limitation, as all
information about the frequency of the analyzed signal is contained in its
phase – see e.g. [6].

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


3

and that{z(t)} is a circular white noise with varianceσ2
z =

E[|z(t)|2] = a2σ2
v .

IV. T RACKING ANALYSIS IN THE ABSENCE OF MODELING

ERRORS

Based on (9), we will study the tracking properties of (6)
in the absence of modeling errors (β = 1). Let ∆x̂R(t) =
Re[∆x̂(t)], ∆x̂I(t) = Im[∆x̂(t)], zR(t) = Re[z(t)], and
zI(t) = Im[z(t)]. Since, for the time being, we have assumed
that the adaptation gainµ is real-valued, the recursive rela-
tionship (9) can be written in the form

∆x̂R(t) = (1− µ)∆x̂R(t− 1)− µzR(t− 1)

∆x̂I(t) = (1− µ)∆x̂I(t− 1) + a2∆ω̂(t− 1)− µzI(t− 1)

∆ω̂(t + 1) = ∆ω̂(t)− ηµ

a2
∆x̂I(t)− ηµ

a2
zI(t)

+ w(t + 1). (11)

Solving the linear equations (11) with respect to∆x̂R(t),
∆x̂I(t), and∆ω̂(t), one obtains

∆x̂R(t) = F (q−1)zR(t)

∆x̂I(t) = G1(q−1)zI(t) + G2(q−1)w(t)
∆ω̂(t) = H1(q−1)zI(t) + H2(q−1)w(t) (12)

where

F (q−1) = − µq−1

1− λq−1

G1(q−1) = − µ[1 + (η − 1)q−1]q−1

1− (1 + λ)q−1 + (λ + ηµ)q−2

G2(q−1) =
a2

1− (1 + λ)q−1 + (λ + ηµ)q−2

H1(q−1) = − ηµ(1− q−1)q−1

a2[1− (1 + λ)q−1 + (λ + ηµ)q−2]

H2(q−1) =
1− λq−1

1− (1 + λ)q−1 + (λ + ηµ)q−2

andλ = 1− µ. All filters are asymptotically stable for anyµ
andη in the interval (0,1).

A. Frequency Tracking

Since under (A1) and (A2) the process{zI(t)} is orthogonal
to {w(t)}, one arrives at

E{[∆ω̂(t)]2} = I[H1(z−1)]E[z2
I (t)] + I[H2(z−1)]E[w2(t)]

where
I[X(z−1)] =

1
2πj

∮
X(z)X(z−1)

dz

z

is an integral evaluated along the unit circle in thez-plane, and
X(z−1) denotes any stable proper rational transfer function.
By means of residue calculus (see e.g. [7]) one obtains

I[H1(z−1)] =
2η2µ

a4(1− η)(2 + 2λ + ηµ)
∼= η2µ

2a4

I[H2(z−1)] =
µ2(1 + λ) + ηµ(1 + λ2)
ηµ2(1− η)(2 + 2λ + ηµ)

∼= 1
2η

+
1
2µ

where the approximations hold for sufficiently small values of
µ andη. SinceE[z2

I (t)] = a2σ2
v/2, one arrives at

E{[∆ω̂(t)]2} ∼= η2µ

4a2
σ2

v +
[

1
2η

+
1
2µ

]
σ2

w . (13)

Denote byµω andηω the values ofµ andη that minimize the
mean-squared frequency estimation error (13). It is straight-
forward to check that

µω = 4
√

8ξ , ηω = 4
√

ξ/2 (14)

where

ξ =
a2σ2

w

σ2
v

is a scalar coefficient that can be regarded as a measure of
nonstationarity of a signal governed by (5).

Under the Gaussian assumptions imposed on{v(t)} and
{w(t)}, the lower frequency tracking bound [called the pos-
terior Craḿer-Rao bound (PCRB)] was established in [8]

PCRB ∼= σ2
w

4
√

2ξ−1. (15)

Note that, after combining (13) with (14), one obtains

E{[∆ω̂(t)]2|µω, ηω} ∼= σ2
w

4
√

2ξ−1 (16)

which is identical to (15). Hence, despite its simplicity, the
optimally tuned algorithm (6) is a statistically efficient scheme
for tracking randomly-drifting instantaneous frequency. In
practical terms, this means that there seems to be no incentive
to replace the simple gradient frequency update, incorporated
in (6), with a more elaborate frequency estimation mechanism.

B. Disturbance Cancellation/Tracking

Of course, our main interest lies in minimization of
the mean-squared cancellation error. In order to evaluate
E[|∆d̂(t)|2], we will exploit (10). Due to the orthogonality
of zR(t) andzI(t), it holds that

E[|∆x̂(t)|2] = E{[∆x̂R(t)]2}+ E{[∆x̂I(t)]2} (17)

where [cf. (12)]

E{[∆x̂R(t)]2} = I[F (z−1)] E[z2
R(t)]

E{[∆x̂I(t)]2} = I[G1(z−1)] E[z2
I (t)]

+ I[G2(z−1)] E[w2(t)] . (18)

Since

I[F (z−1)] =
µ

1 + λ
∼= µ

2

I[G1(z−1)] =
(2− 2η + η2)µ + η(1 + λ)

(1− η)(2 + 2λ + ηµ)
∼= µ

2
+

η

2

I[G2(z−1)] =
a4(1 + λ + ηµ)

ηµ2(1− η)(2 + 2λ + ηµ)
∼= a4

2ηµ2

and E[z2
R(t)] = E[z2

I (t)] = a2σ2
v/2, after combining (10),

(17), and (18), one arrives at

E[|∆d̂(t)|2] ∼= a2

4
(µ + η)σ2

v +
a4

2ηµ2
σ2

w. (19)
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Fig. 1. Comparison of theoretical values of the mean-squared frequency
tracking error, obtained using the steady-state plant approximation (solid line),
with the experimental values (crosses).

Denote byµd andηd the values ofµ andη that minimize the
mean-squared cancellation error (19). One can easily check
that

µd = ηd = 4
√

2ξ (20)

and
E[|∆d̂(t)|2|µd, ηd] ∼= 4

√
2ξ σ2

v . (21)

Note that the settings that minimize the mean-squared cancel-
lation error differ from those that minimize the mean-squared
frequency tracking error established earlier.

C. Numerical Example

Since the ALF approach is heuristic (no strict mathematical
analysis of the conditions of its applicability was presented
in [5]), “theoretical” results, such as (13) or (19), should be
treated with caution. A special simulation experiment was
arranged to check how well the formula (13) fits the true error
values. The simulated discrete-time plant (Guo-Bodson)

Kp(z−1) =
0.0952

1− 0.9048z−1
(22)

was adopted from [9], and corresponds to a continuous-time
plant with transfer functionKp(s) = 1/(1 + 0.01s) sampled
at the rate of 1 kHz.

To (nearly) eliminate modeling errors, the modified control
rule (7) was used withKn(·) ≡ Kp(·), which requires perfect
knowledge of the plant’s frequency response (note, however,
that the nominal gain in (7) is evaluated at the estimated
frequency instead of the true frequency).

Simulations were carried on forσv = 0.1 and for four
different rates of amplitude variationσw ∈ {0.00001, 0.00002,
0.00004, 0.00008}. To decrease the number of design degrees
of freedom from 2 (µ, η) to 1 (η), the value ofη was set toµ/2
— such a choice was motivated by the fact thatηω = µω/2.

For each(σw, µ) pair, the results, summarized in Fig. 1,
were obtained by means of combined ensemble averaging

(50 different realizations of{v(t)} and {w(t)}) and time
averaging (50000 consecutive time-steps, after discarding the
first 10000 samples, to ensure that the steady-state conditions
are reached). In all cases,ω(0) was set to 0.1. Note the good
agreement of theoretical expectations with simulation results
for small values ofµ. Discrepancies that occur for larger
values of the adaptation gain can be attributed to the frozen
gain approximation (8) and to errors introduced by the ALF
analysis (linearization and neglecting higher-order terms). Fol-
lowing [10], one can argue that approximation errors should
not compromise our statistical efficiency conclusion as long
as tracking is “satisfactory”, i.e., as long as the minimum
attainable mean-squared cancellation error (often called excess
prediction error) is much smaller than the variance of the
measurement error. This leads to the following condition,
expressed in terms of the rate of system nonstationarity:
4
√

2ξ ¿ 1, or equivalently,ξ ≤ 10−4.

V. SELF-OPTIMIZING CANCELLATION SCHEME

Even though we have been assuming that the adaptation gain
µ is a real-valued quantity, the derivation of approximating
linear equations is not restricted to this case — equations
(9) remain valid also for complex-valued gainsµ ∈C. When
the true plant characteristics are not known, i.e., whenβ =
kT /kn 6= 1, incorporation of a complex-valued gain has an
obvious advantage, as it allows one to compensate modeling
error. Actually, according to (9), whenµ is chosen so that
the conditionµβ = µ0 > 0 is met (which can be achieved
provided thatIm[µβ] = 0, i.e., Arg[µ] = −Arg[β] ), the
control algorithm (6) with a complex-valued gain, used in in
the presence of modeling errors (β 6= 1), should yield the
same results as the same algorithm equipped with a real-valued
adaptation gainµ0 operated in the absence of modeling errors
(β = 1). In particular, whenµ is set toµω/β andη is set to
ηω, the closed-loop system will guarantee statistically efficient
frequency tracking. Similarly, whenµ is set toµd/β andη is
set toηd, the mean-squared cancellation error will achieve its
minimum value (21) — even though the assumed plant gain
differs from the true value.

Since in practiceβ and ξ are unknown quantities, we will
propose a special mechanism for automatic adjustment ofµ
andη. Generally, we would like to adjust both adaptation gains
so as to minimize the mean-squared value of the output signal

E[ | y(t;µ, η)|2 ] 7−→ min .

Since E[ |y(t)|2 ] = E[ |∆d̂(t)|2 ] + σ2
v , this is equivalent to

minimization of the mean-squared cancellation error. To make
the estimation scheme more flexible and to avoid problems
with mixed optimization (joint optimization of a complex-
valued gainµ and a real-valued gainη), we will design two
separate loops for adjustment ofµ and η, respectively. Both
tuning procedures will be based on the recursive prediction
error (RPE) optimization strategy.

A. Adjustment ofµ

Consider the following local measure of fit, made up of
exponentially weighted system outputs [the output signaly(t)
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is regarded here as a function ofµ]

V (t; µ) =
t∑

τ=1

(ρµ)t−τ | y(τ ;µ)|2 . (23)

The forgetting constantρµ (0 < ρµ < 1) determines the
effective averaging range. To evaluate the estimateµ̂(t) =
arg minµ V (t; µ), we will use the RPE approach [11]

µ̂(t) = µ̂(t− 1)−
∂

∂µ∗ V (t; µ̂(t− 1))
∂2

∂µ∗∂µ V (t; µ̂(t− 1))
(24)

where

∂

∂µ
=

[
∂

∂µR
− j

∂

∂µI

]
,

∂

∂µ∗
=

[
∂

∂µR
+ j

∂

∂µI

]

µR = Re[µ] , µI = Im[µ]

denote operations of symbolic differentiation used in the so-
called Wirtinger calculus, applicable to nonanalytic functions,
such as (23) — for references, see [4].

Since

∂|y(τ)|2
∂µ∗

= y(τ)
(

∂y(τ)
∂µ

)∗
+

∂y(τ)
∂µ∗

y∗(τ)

the gradient and Hessian that appear in (24) can be computed
recursively using approximations typical of RPE

∂V [t; µ̂(t− 1)]
∂µ∗

= y[t; µ̂(t− 1)]
(

∂y[t; µ̂(t− 1)]
∂µ

)∗

+
∂y[t; µ̂(t− 1)]

∂µ∗
y∗[t; µ̂(t− 1)]

∂2V [t; µ̂(t− 1)]
∂µ∗∂µ

∼= ρµ
∂2V [t; µ̂(t− 2)]

∂µ∗∂µ

+
∣∣∣∣
∂y[t; µ̂(t− 1)]

∂µ

∣∣∣∣
2

+
∣∣∣∣
∂y[t; µ̂(t− 1)]

∂µ∗

∣∣∣∣
2

. (25)

Note that [cf. (8)]

∂y(t)
∂µ

= −β
∂d̂(t| t− 1)

∂µ
,

∂y(t)
∂µ∗

= −β
∂d̂(t| t− 1)

∂µ∗
(26)

and [cf. (6)]

∂d̂(t + 1| t)
∂µ

= j
∂ω̂(t| t− 1)

∂µ
d̂(t + 1| t)

+ ejω̂(t| t−1)

[
∂d̂(t| t− 1)

∂µ
+ y(t) + µ

∂y(t)
∂µ

]

∂d̂(t + 1| t)
∂µ∗

= j
∂ω̂(t| t− 1)

∂µ∗
d̂(t + 1| t)

+ ejω̂(t| t−1)

[
∂d̂(t| t− 1)

∂µ∗
+ µ

∂y(t)
∂µ∗

]
(27)

where the last recursion stems from the fact that, in Wirtinger
calculus,∂µ/∂µ∗ = ∂µ∗/∂µ = 0.

To evaluate∂ω̂(t+1| t)/∂µ and∂ω̂(t+1| t)/∂µ∗ = [∂ω̂(t+
1| t)/∂µ]∗, we will employ the following relationship

∂Arg[x(µ)]
∂µ

=
∂arctan[xI/xR]

∂µ

=
j

2|x|2
[
x

(
∂x

∂µ∗

)∗
− x∗

∂x

∂µ

]
(28)

which can be derived using the chain rule. Using (28), one
arrives at

∂ω̂(t + 1| t)
∂µ

= (1− η)
∂ω̂(t| t− 1)

∂µ

+
jη

2

[
[∂d̂(t + 1| t)/∂µ∗]∗

d̂∗(t + 1| t)
− (∂d̂[t| t− 1)/∂µ∗]∗

d̂∗(t| t− 1)

]

− jη

2

[
∂d̂(t + 1| t)/∂µ

d̂(t + 1| t)
− ∂d̂(t| t− 1)/∂µ

d̂(t| t− 1)

]
. (29)

Remark: When the disturbance frequency is constant and
known, i.e., ω̂(t| t − 1) = ω0 and ∂ω̂(t| t − 1)/∂µ =
∂ω0/∂µ = 0, it holds that (under suitable stability conditions)
limt→∞ ∂d̂(t| t−1)/∂µ∗ = limt→∞ ∂y(t)/∂µ∗ = 0. In a case
like this, the RPE recursions (25)–(27) reduce to those given
in [4].

B. Adjustment ofη

Consider another exponentially weighted measure of fit

W (t; η) =
1
2

t∑
τ=1

(ρη)t−τ | y(τ ; η)|2 (30)

whereρη, 0 < ρη < 1, denotes another forgetting constant and
y(t) is now regarded a function ofη. Using the RPE approach,
one arrives at the following recursive scheme for evaluation
of η̂(t) = arg minη W (t; η)

µ̂(t) = µ̂(t− 1)− ∂W [t; η̂(t− 1)]/∂η

∂2W [t; η̂(t− 1)]/∂η2

∂W [t; η̂(t− 1)]
∂η

= Re
{

y[t; η̂(t− 1)]
∂y∗[t; η̂(t− 1)]

∂η

}

∂2W [t; η̂(t− 1)]
∂η2

= ρη
∂2W [t; η̂(t− 2)]

∂η2

+
∣∣∣∣
∂y[t; η̂(t− 1)]

∂η

∣∣∣∣
2

. (31)

Furthermore
∂y(t)
∂η

= −β
∂d̂(t| t− 1)

∂η
(32)

∂d̂(t + 1| t)
∂η

= j
∂ω̂(t| t− 1)

∂η
d̂(t + 1| t)

+ ejω̂(t| t−1)

[
∂d̂(t| t− 1)

∂η
+ µ

∂y(t)
∂η

]
. (33)

In order to evaluate∂ω̂(t| t− 1)/∂η, note that

∂ Arg[x(η)]
∂η

=
∂ Im[ log x]

∂η
= Im

[
∂ log x

∂η

]
= Im

[
1
x
· ∂x

∂η

]
.
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Using this relationship, one obtains

∂ω̂(t + 1| t)
∂η

=

= (1− η)
∂ω̂(t| t− 1)

∂η
− ω̂(t| t− 1) + Arg

[
d̂(t + 1| t)
d̂(t| t− 1)

]

− η Im

[
∂d̂(t + 1| t)/∂η

d̂(t + 1| t)
− ∂d̂(t| t− 1)/∂η

d̂(t| t− 1)

]
. (34)

C. Coping with Modeling Error

Since the quantities∂y(t)/∂µ, ∂y(t)/∂µ∗, and ∂y(t)/∂η
depend explicitly on the modeling errorβ, which is unknown,
recursive formulas for the evaluation of sensitivity derivatives,
derived in Sections V-A and V-B, can’t be used in their present
form. Following [4], we will replaceβ in (26) and (32) with

β =
cµ

µ
(35)

wherecµ denotes a small positive constant. As shown in [4],
in the constant-known-frequency case, this particular variant
of the gain fixing technique guarantees convergence in mean
of the adaptive disturbance rejection scheme to the optimal
solution, irrespective of the phase errorArg[β] (which cannot
be achieved whenβ is simply set to 1). Simulation experiments
confirm that similar effect can be observed when (35) is
used in combination with the self-optimizing control algorithm
described in the previous subsections.

D. Summary of the Proposed Control Algorithm

The following shorthand will be used to simplify our
notation:

d̂(t) = d̂(t| t− 1) , ω̂(t) = ω̂(t| t− 1)

yµ(t) =
∂y[t; µ̂(t− 1)]

∂µ
, dµ(t) =

∂d̂[t| t− 1; µ̂(t− 1)]
∂µ

yµ∗(t) =
∂y[t; µ̂(t− 1)]

∂µ∗
, dµ∗(t) =

∂d̂[t| t− 1; µ̂(t− 1)]
∂µ∗

yη(t) =
∂y[t; η̂(t− 1)]

∂η
, dη(t) =

∂d̂[t| t− 1; η̂(t− 1)]
∂η

rµ(t) =
∂2V [t; µ̂(t− 1)]

∂µ∗∂µ
, rη(t) =

∂2W [t; η̂(t− 1)]
∂η2

ωµ(t) =
∂ω̂[t| t− 1; µ̂(t− 1)]

∂µ

ωη(t) =
∂ω̂[t| t− 1; µ̂(t− 1)]

∂η
.

Using this symbolism, the proposed xSONIC algorithm can
be expressed in the form:

Adjustment of̂µ(t)

dµ(t) = jωµ(t− 1)d̂(t)

+ ejω̂(t−1)[dµ(t− 1) + y(t− 1) + µ̂(t− 1)yµ(t− 1)]

dµ∗(t) = jω∗µ(t− 1)d̂(t)

+ ejω̂(t−1)[dµ∗(t− 1) + µ̂(t− 1)yµ∗(t− 1)]

ωµ(t) = [1− η̂(t− 1)]ωµ(t− 1) +
jη̂(t− 1)

2

×
[

(dµ∗(t))∗

d̂∗(t)
− dµ(t)

d̂(t)
− (dµ∗(t− 1))∗

d̂∗(t− 1)
+

dµ(t− 1)

d̂(t− 1)

]

yµ(t) = − cµ

µ̂(t− 1)
dµ(t)

yµ∗(t) = − cµ

µ̂(t− 1)
dµ∗(t)

rµ(t) = ρµrµ(t− 1) + | yµ(t) |2 + | yµ∗(t) |2

µ̂(t) = µ̂(t− 1)− y∗µ(t)y(t) + yµ∗(t)y∗(t)
rµ(t)

(36)

Adjustment of̂η(t)

dη(t) = jωη(t− 1)d̂(t) + ejω̂(t−1)[dη(t− 1)
+ µ̂(t− 1)yη(t− 1)]

ωη(t) = [1− η̂(t− 1)]ωη(t− 1)− ω̂(t− 1)

+ Arg

[
d̂(t)

d̂(t− 1)

]
+ η̂(t− 1) Im

[
dη(t)

d̂(t)
− dη(t− 1)

d̂(t− 1)

]

yη(t) = − cµ

µ̂(t− 1)
dη(t)

rη(t) = ρηrη(t− 1) + | yη(t)|2

η̂(t) = η̂(t− 1)− Re[y∗η(t)y(t)]
rη(t)

(37)

Adjustment of̂d(t) and ω̂(t)

d̂(t + 1) = ejω̂(t)[d̂(t) + µ̂(t)y(t)]

ω̂(t + 1) = [1− η̂(t)] ω̂(t) + η̂(t)Arg

[
d̂(t + 1)

d̂(t)

]
(38)

Evaluation of control signal

u(t) = − d̂(t + 1)
kn

or

u(t) = − d̂(t + 1)
Kn(ejω̂(t+1))

(39)
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The computational complexity of the xSONIC algorithm is
equal to 98 real multiply/add operations, 5 real division
operations, and 4 trigonometric operations (1×sin, 1×cos,
2×arctan) per time update.

E. Simplified Algorithm

Simplification of the xSONIC algorithm can be easily
achieved by fixing the gainη. According to the ALF equa-
tions (9), the tracking properties of the algorithm (6) can be
quantified in terms ofµβ and η. Dependence onµβ means
that the “true” adaptation gain of the amplitude tracking loop is
determined not only byµ, but also by modeling errorsβ. Since
modeling errors are unknown, and they may change with time,
choosing a “meaningful” value ofµ is an impossible task.
This is why automatic adjustment ofµ is so important. In the
case of the second adaptation gain, controlling the frequency
tracking loop, the situation is different. Since modeling errors
do not interfere withη, the value of this coefficient can be
safely fixed at a constant level, based on our prior knowledge
of the expected rate of frequency variation.

To arrive at a simplified version of the algorithm, we will
assume that the estimated frequency trajectory coincides with
the true trajectory, which leads to:ωµ(t) = ∂ω̂(t)/∂µ =
∂ω(t)/∂µ = 0 and ωη(t) = ∂ω̂(t)/∂η = ∂ω(t)/∂η =
0. Since, under suitable stability constraints, the condition
ωµ(t) = 0 entails (asymptotically)dµ∗(t) = 0, yµ∗(t) = 0,
and the conditionωη(t) = 0 entailsdη(t) = 0, yη(t) = 0, the
algorithm (36)-(39) reduces down to

dµ(t) = ejω̂(t−1)[dµ(t− 1) + y(t− 1)

+ µ̂(t− 1)yµ(t− 1)]

yµ(t) = − cµ

µ̂(t− 1)
dµ(t)

rµ(t) = ρµrµ(t− 1) + | yµ(t) |2

µ̂(t) = µ̂(t− 1)− y∗µ(t)y(t)
rµ(t)

d̂(t + 1) = ejω̂(t)[d̂(t) + µ̂(t)y(t)]

ω̂(t + 1) = [1− η] ω̂(t) + η Arg

[
d̂(t + 1)

d̂(t)

]

u(t) = − d̂(t + 1)
kn

. (40)

The computational burden associated with the simplified al-
gorithm is equal to 37 real multiply/add operations, 2 real
division operations, and 4 trigonometric operations (1×sin,
1×cos, 2×arctan) per time update.

VI. SAFETY MEASURES AND EXTENSIONS

A. Safeguards

Similarly as in [4], to avoid erratic behavior of the algorithm
during startup/transient periods, it is advisable to set the
maximum allowable values for| µ̂(t)| andη̂(t), further denoted

by µmax and ηmax, respectively. The modified update rules
have the form

µ̂(t) = sat
[
µ̂(t− 1)− y∗µ(t)y(t) + yµ∗(t)y∗(t)

rµ(t)
, µmax

]

η̂(t) = min
[
η̂(t− 1)− Re[y∗η(t)y(t)]

rη(t)
, ηmax

]
(41)

where sat(x, a), x ∈ C, a ∈ R+ denotes a complex-valued
saturation function

sat(x, a) =

{
x if |x| ≤ a

a
x

|x| if |x| > a .

B. Extensions

We will describe three extensions of the proposed scheme:
to systems with multiharmonic disturbances, systems with an
extra transport delay, and real-valued signals.

1) Multiharmonic Disturbances:Suppose that the signal
d(t) in (1) has the form

d(t) =
m∑

i=1

di(t)

and is made up ofm frequency components

di(t) = ejωi(t−1)di(t− 1) + ẽi(t)

ωi(t) = ωi(t− 1) + wi(t) (42)

i = 1, . . . ,m

evolving independently of one another. Rejection of such a
multiharmonic disturbance can be achieved by combiningm
subalgorithms, each designed to track one component ofd(t),
into the following parallel estimation scheme

d̂i(t + 1| t) = ejω̂i(t| t−1) [ d̂i(t| t− 1) + µ̂i(t)y(t) ]

ω̂i(t + 1| t) = [ 1− η̂i(t) ] ω̂i(t| t− 1)

+ η̂i(t) Arg

[
d̂i(t + 1| t)
d̂i(t| t− 1)

]

i = 1, . . . , m

u(t) = −
m∑

i=1

d̂i(t + 1| t)
kni

(43)

wherekn1 , . . . , knm denote the nominal plant gains, and where
the adaptation gainŝµi(t), η̂i(t) are computed recursively
(independently of one another) using the algorithm designed
for the single-frequency case.

When the frequenciesω1(t), . . . , ωm(t) are known to be
mutually related, e.g. whenωi(t) = iω1(t), i = 2, . . . , m
(which corresponds to a fundamental andm − 1 harmonics),
more specialized algorithms can be designed to take advantage
of the available prior knowledge. Because of the lack of space,
such opportunity will be not further explored here.
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2) Systems with Delay:Suppose that the plant is governed
by

y(t) = Kp(q−1)u(t− τ0) + d(t) + v(t)
∼= kpu(t− τ0) + d(t) + v(t) (44)

whereτ0 denotes transport delay. So far we have considered
the one-sample delay case. The modified control rule that will
work for τ0 > 1 has the form

d̂(t + τ0| t) = ejω̂(t+τ0−1| t−1) d̂(t + τ0 − 1| t− 1)

+ µ̂(t)ejτ0ω̂(t+τ0−1| t−1)y(t)

ω̂(t + τ0| t) = [ 1− η̂(t) ] ω̂(t + τ0 − 1| t− 1)

+ η̂(t) Arg

[
d̂(t + τ0| t)

d̂(t + τ0 − 1| t− 1)

]

u(t) = − d̂(t + τ0| t)
kn

. (45)

Similar to the algorithm derived in the constant-known-
frequency case (see Section VIII-B in Part I), the algorithm
(45) is robust to delay misspecification.

Based on (44) and (45), one can easily derive recursions
analogous to (26), (27), (29), and (32), (33), (34), needed
to evaluate sensitivity derivatives∂y(t)/∂µ, ∂y(t)/∂µ∗, and
∂y(t)/∂η.

3) Real-Valued Signals:A simple way of extending the
proposed algorithms to real–valued signals can be summarized
as follows:

1) Regarding{y(t)} as a sequence of complex numbers
[yR(t) = y(t), yI(t) = 0], compute the complex-valued
control signalu(t) = uR(t)+ juI(t) using the proposed
algorithm.

2) Apply uR(t) to the input of the controlled plant.

VII. S IMULATION AND EXPERIMENTAL RESULTS

Several experiments were performed to check both the tran-
sient and steady-state performance of the proposed disturbance
rejection scheme.

A. Mean Convergence Properties

The purpose of this experiment was to examine the steady-
state mean convergence properties of the algorithm:

• For two choices of the plant: the dynamic Guo-Bodson
plant Kp(q−1), given by (22), and its non-inertial
counterpart, represented by the time-varying static gain
kp(t) = Kp(e−jω(t)) — to check to what extent static
approximation of dynamic plants, exploited in our ana-
lytical study, affects the obtained results.

• For three choices of magnitude errors (|β| = 0.5, 1, 2)
and two choices of phase errors (Arg[β] = 0˚, 45˚) —
to check sensitivity of the cancellation scheme to different
kinds of modeling errors.

• For three speeds of frequency variation (σw = 4 ·
10−6, 10−5, 4·10−5) — to check how the obtained results
depend on the rate of frequency variation.

The results, summarized in Tables I and II, were obtained by
means of combined ensemble averaging (100 realizations of
the processes{v(t)} and {w(t)}) and time averaging (t ∈
[20001, 80000]), after the examined algorithms have reached
their steady-state behavior. In all cases the noise variance was
constant and equal toσ2

v = 0.01, the initial frequency value
was set toω(0) = 0.1, and the amplitude of the disturbance
was equal toa = 1. To enforce modeling errors equal to
(approximately)β, the nominal model, adopted in (7), had
the form Kn(e−jω) = Kp(e−jω)/β. Finally, the algorithm
settings were equal toρµ = ρη = 0.9998 andcµ = 0.01.

Several conclusions can be drawn after comparing the
average values of the quantities|µ̂(t)β|, Arg[µ̂(t)β], andη̂(t),
gathered in Tables I and II. In all cases, the proposed adaptive
regulator remains close, in the mean sense, to the optimal
regulator. Not surprisingly, the smallest estimation biases occur
for the slowest frequency changes. There are no substantial
differences between the results obtained for the dynamic plant
(Table II) and for its static counterpart (Table I). As expected,
the static plant experimental results better fit theory.

Figs. 2(a) and 2(b) show typical simulation results obtained
in the absence of modeling errors and in the presence of
modeling errors, respectively, for the same realizations of
{v(t)} and {w(t)} (σv = 0.1, σw = 5 · 10−4, a = 1,
ω(0) = 0.1, cµ = 0.01, ρµ = ρη = 0.9992). In the case
depicted in Fig. 2b, modeling error was time-varying – it
evolved from |β| = 0.7, Arg[β] = −48 ˚ to |β| = 0.4,
Arg[β] = −60 ˚ .

During the first 1000 time-steps, the quantitiesyµ(t), yµ∗(t),
rµ(t), yη(t), rη(t) were evaluated, but the adaptation gains
µ̂(t) and η̂(t) were kept at their starting values and not
updated. Then, at the instantt = 1001, the adaptation lock
was released.

B. Comparison with the Constant-Known-Frequency Solution

Our second experiment aimed at comparing performance
of the control algorithm proposed in [4] and the frequency-
adaptive algorithms summarized in Sections V-D and V-E.
Unlike the previous example, the instantaneous frequency
changes were deterministic and governed by

ω(t) = 0.1 + 0.02 sin(0.001t) (46)

i.e., the frequency was subject to small sinusoidal variations
around the “nominal” frequencyω0 = 0.1. Fig. 3 shows the
results obtained for the Guo-Bodson plant (22) and a typical
(the same in all cases) realization of noise (σv = 0.1). The
control algorithm, adopted from [4], was used in Fig. 3(a) with
the following settings:ω0 = 0.1, kn = Kp(ej0.1), d̂(0) = 1,
µ̂(0) = 0.05, cµ = 0.01, ρ = 0.9995, µmax = 0.1, r(0) = 100.
The analogous settings for the “full-size” frequency-adaptive
algorithm in Fig. 3(b) were:kn = Kp(ej0.1), d̂(0) = 1,
µ̂(0) = 0.05, η̂(0) = 0.05, cµ = 0.01, ρµ = ρη = 0.9995,
µmax = 0.1, rµ(0) = rη(0) = 100. The adopted upper
bounds on|µ| andη play the role of “safety valves”. When, for
example,|µ̂(t)| is allowed to exceedµmax = 0.1, the closed-
loop system is prone to occasional bursts caused by local
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TABLE I
MEAN CONVERGENCE RESULTS FOR DIFFERENT MAGNITUDE AND PHASE ERRORS:

CONTROL ALGORITHM BASED ON THE SUBSTITUTIONβ = cµ/µ, STATIC SYSTEM.

σw µd = ηd β = 1 β = 2 β = 0.5

|µβ| Arg[µβ] η |µβ| Arg[µβ] η |µβ| Arg[µβ] η

4 · 10−6 0.0075 0.0079 0.2 ˚ 0.0081 0.0079 0.2 ˚ 0.0080 0.0079 0.2 ˚ 0.0080
1 · 10−5 0.0119 0.0123 0.2 ˚ 0.0112 0.0123 0.2 ˚ 0.0112 0.0123 0.2 ˚ 0.0112
4 · 10−5 0.0241 0.0244 0.2 ˚ 0.0195 0.0244 0.2 ˚ 0.0195 0.0244 0.2 ˚ 0.0195

σw µd = ηd β = ejπ/4 β = 2ejπ/4 β = 0.5ejπ/4

|µβ| Arg[µβ] η |µβ| Arg[µβ] η |µβ| Arg[µβ] η

4 · 10−6 0.0075 0.0079 0.0 ˚ 0.0081 0.0078 0.0 ˚ 0.0082 0.0079 0.0 ˚ 0.0081
1 · 10−5 0.0119 0.0123 −0.1 ˚ 0.0112 0.0123 −0.1 ˚ 0.0112 0.0123 −0.1 ˚ 0.0113
4 · 10−5 0.0241 0.244 −0.2 ˚ 0.0192 0.0244 −0.2 ˚ 0.0192 0.0244 −0.2 ˚ 0.0192

TABLE II
MEAN CONVERGENCE RESULTS FOR DIFFERENT MAGNITUDE AND PHASE ERRORS:

CONTROL ALGORITHM BASED ON THE SUBSTITUTIONβ = cµ/µ, DYNAMIC SYSTEM.

σw µd = ηd β = 1 β = 2 β = 0.5

|µβ| Arg[µβ] η |µβ| Arg[µβ] η |µβ| Arg[µβ] η

4 · 10−6 0.0075 0.0082 −1.4 ˚ 0.0073 0.0082 −1.4 ˚ 0.0073 0.0082 −1.4 ˚ 0.0073
1 · 10−5 0.0119 0.0129 −1.2 ˚ 0.0102 0.0129 −1.2 ˚ 0.0102 0.0129 −1.2 ˚ 0.0102
4 · 10−5 0.0241 0.0255 −1.4 ˚ 0.0177 0.0255 −1.4 ˚ 0.0177 0.0255 −1.4 ˚ 0.0177

σw µd = ηd β = ejπ/4 β = 2ejπ/4 β = 0.5ejπ/4

|µβ| Arg[µβ] η |µβ| Arg[µβ] η |µβ| Arg[µβ] η

4 · 10−6 0.0075 0.0083 −1.6 ˚ 0.0071 0.0083 −1.6 ˚ 0.0072 0.0084 −1.7 ˚ 0.0072
1 · 10−5 0.0119 0.0129 −1.5 ˚ 0.0101 0.0129 −1.5 ˚ 0.0101 0.0129 −1.4 ˚ 0.0101
4 · 10−5 0.0241 0.0255 −1.5 ˚ 0.0177 0.0255 −1.5 ˚ 0.0177 0.0255 −1.5 ˚ 0.0177

instabilities. The simplified frequency-adaptive algorithm in
Fig. 3(c) was run withη = 0.05. For all control algorithms, the
gain adjustment mechanisms were switched on at the instant
t = 100.

Note the relatively poor performance of the simpler con-
troller [Fig. 3(a)], which does not have enough degrees of
freedom to compensate all modeling errors. Basically, such
a controller works satisfactorily only at moments when the
instantaneous frequency is close to the nominal (assumed)
frequency. Note also that, after the initial convergence period,
the magnitude of the estimated gainµ̂(t) stays at its maximum
allowable level. In contrast with this, the results obtained for
the frequency-adaptive control algorithms [Figs. 3(b) and 3(c)]
are satisfactory at all times. The simplified algorithm yields
only slightly worse results than the “full-size” algorithm.

C. Comparison with the Adaptive FXLMS Algorithm

We will compare our algorithm with the FXLMS-based
solution, described in some detail in Part I of this paper. The
FXLMS canceller consists of two loops:

1) The system identification loop, providing estimates of
the coefficients of a finite impulse response (FIR) model
of the plant:K̂p(q−1) =

∑M
i=1 k̂iq

−i (to guarantee plant
identifiability, a low-intensity random perturbation, e.g.,
white noise sequence, is added to the input signal).

2) The direct control loop, which forms the compensating

signal by means of adjusting the magnitude and phase
of the reference signalr(t).

Since, in the case considered, the reference is neither available,
nor can it be synthesized (the instantaneous frequency ofd(t)
is unknown and possibly time-varying), it is replaced with the
reconstructed disturbance signal

d̂(t) = ALE[y(t)− K̂p(q−1)u(t)]

where ALE denotes adaptive line enhancer, an algorithm that
extracts sinusoidal waveforms from noisy measurements [12].

Comparison was performed for the same plant that was
described in Part I – the first-order inertial system with a
“time-varying pole”, governed by

y(t) = %(t)y(t− 1) + 0.0952u(t− 1)
%(t) = 0.7 + 0.25 sin(0.0003t).

The amplitudea(t) and the instantaneous frequencyω(t) of
the sinusoidal disturbance

d(t) = a(t)ej
∑t

τ=1 ω(τ)

were changing according to

a(t) = 1 + 0.2 sin(0.002t)
ω(t) = 0.3 + 0.03 sin(0.001t).

Fig. 4 shows the results obtained in the absence of measure-
ment noise (σv = 0) for the xSONIC algorithm and the well-
tuned adaptive FXLMS algorithm (for a typical realization of
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Fig. 2. Behavior of the disturbance rejection algorithm – results of a typical
simulation experiment. (a) In the absence of modeling errors. (b) In the
presence of modeling errors.

auxiliary noise). The noiseless case is the one most frequently
encountered in the literature on acoustic disturbance suppres-
sion. xSONIC was used with the following design parameters:
cµ = 0.01, ρµ = ρη = 0.9995, kn = 1, none of which had a
strong influence on the simulation results. The best settings for
FXLMS, determined by means of extensive numerical search,
were equal to:µ1 = 0.02 (adaptation step-size in the system
identification loop),µ2 = 0.15 (adaptation step-size in the
control loop), andσ2

u′ = 0.001 (variance of auxiliary noise).
The order of the FIR filter was set toM = 32 (for M < 20,
the closed-loop system was unstable). Finally, the adaptive
line enhancer, which is a part of the FXLMS-based canceller,
was based on a carefully tuned multiple frequency tracker,
described in [5]. It should be stressed, that the performance of
FXLMS cannot be improved by further reducing the variance
of the auxiliary noise.
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Fig. 3. Performance of adaptive disturbance rejection in the presence of
frequency variations. (a) Algorithm based on the constant-known-frequency
model. (b) Frequency-adaptive disturbance rejection algorithm. (c) Simplified
frequency-adaptive algorithm.

According to Fig. 4, xSONIC yields considerably better
cancellation results than FXLMS – the corresponding root-
mean-squared output error is equal to0.0034 (virtually the
same for the simplified algorithm), compared to0.0085 for
FXLMS (improvement by 8 dB).

In the presence of measurement noise (σv = 0.1), xSONIC
offers practically the same cancellation efficiency as thewell-
tunedFXLMS (µ1 = 0.02, µ2 = 0.1, σ2

u′ = 0.001) – the root-
mean-squared output errors for xSONIC, simplified xSONIC,
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Fig. 4. Real part of the disturbance signal (top) and cancellation results
obtained for the xSONIC algorithm (middle) and the adaptive FXLMS
algorithm (bottom).

and adaptive FXLMS are equal to0.1032, 1.041, and1.032,
respectively.

As already remarked in PartI of this paper, since in practice
FXLMS seldom is optimally tuned, the comparison presented
above is rather unfair for xSONIC.

D. Acoustic Experiment

A real-world acoustic active noise control experiment was
conducted using the proposed regulator. The instantaneous fre-
quency of the artificially generated disturbance was changing
sinusoidally between 241 and 250 Hz, with a period of 20 s.
The error microphone was located approximately 1 m away
from the source of disturbance and 15 cm from the noise
canceling loudspeaker. The system was operated at a sampling
rate of 1 kHz. The nominal filter gainkn was set to1. The
remaining parameters were chosen as follows:cµ = 0.01,
ρµ = 0.999, ρη = 0.99, µmax = 0.05. Fig. 5 shows the results.
After an initial convergence phase, which lasted for about 1s,
the closed-loop system reached its steady-state behavior. The
achieved rate of disturbance attenuation was approximately 20
dB.

In the experiment described above, the rate of frequency
variation was limited by a large processing delay, equal to
60 sampling intervals (we did not use specialized hardware).
However, our simulation tests show that for smaller delays,
xSONIC can satisfactorily track persistent (e.g., linear) fre-
quency changes up to 50 Hz/s under 1 kHz sampling.

VIII. C ONCLUSION

The problem of eliminating a sinusoidal disturbance of
unknown, slowly time-varying frequency, acting at the output
of an unknown (and possibly slowly time-varying) stable linear
plant, was considered. The adaptive feedback disturbance
rejection scheme, proposed and analyzed in this paper consists
of two loops: the inner control loop, which predicts and
cancels the disturbance, and the outer, self-optimization loop,
which automatically adjusts adaptation gains to the rate of
system and/or disturbance nonstationarity. Results of computer
simulation and real-world experiments confirm very good
rejection/tracking properties of the derived algorithm.
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Fig. 5. Power spectral density of the signal before (solid line) and after
(dotted line) disturbance cancellation (top figure) and the corresponding time-
domain measurements (three lower figures).
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[5] P. Tichavsḱy and P. Ḧandel, “Two algorithms for adaptive retrieval of
slowly time-varying multiple cisoids in noise,”IEEE Trans. on Signal
Process., vol. 43, pp. 1116–1127, May 1995.

[6] P.M. Baggenstoss and S.M. Kay, “On estimating the angle parameters
of an exponential signal at high SNR,”IEEE Trans. on Acoust., Speech,
Signal Process., vol. 39, pp. 1203–1205, May 1991.

[7] M. Jury, Theory and Application of theZ-transform Method. New
York: Wiley 1964.
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APPENDIX

DERIVATION OF (9)

According to [5], when carrying out the ALF analysis of
(6), one should examine the dependence of∆d̂(t) and∆ω̂(t)
on v(t) and w(t), neglecting higher than first-order terms of
all quantities listed above, including all cross-terms.

To arrive at the recursive formula for∆d̂(t)d∗(t), note that

∆d̂(t) = d(t)− βd̂(t| t− 1) = ejω(t−1)d(t− 1)

− βejω(t−1)e−j∆ω̂(t−1)[d̂(t− 1| t− 2)

+ µ∆d̂(t− 1) + µv(t− 1)]. (47)

When tracking is satisfactory, i.e., when∆ω̂(t) is small, one
obtainse−j∆ω̂(t−1) ∼= 1−j∆ω̂(t−1) which, after substitution
in (47) and neglecting all higher-order terms, leads to the
following approximation

∆d̂(t) = ejω(t−1)d(t− 1)

− βejω(t−1)[1− j∆ω̂(t− 1)]d̂(t− 1| t− 2)

− βµejω(t−1)∆d̂(t− 1)− βµejω(t−1)v(t− 1)].

Furthermore, sincêd(t− 1| t− 2) = [d(t− 1)−∆d̂(t− 1)]/β,
after substitution, regrouping, and neglecting the term propor-
tional to ∆ω̂(t− 1)∆d̂(t− 1), one obtains

∆d̂(t) = ejω(t−1)[1− βµ]∆d̂(t− 1)

+ jejω(t−1)d(t− 1)∆ω̂(t− 1)− βµejω(t−1)v(t− 1) .
(48)

Finally, after multiplying both sides of (48) byd∗(t) =
e−jω(t−1)d∗(t− 1), one arrives at the first recursion of (9).

To derive the second recursion, note that

ω̂(t + 1| t) = ω̂(t| t− 1) + ηg(t) (49)

where

g(t) = Arg

[
d̂(t + 1| t)e−jω̂(t| t−1)

d̂(t| t− 1)

]

= Im

{
log

[
1 +

µy(t)

d̂(t| t− 1)

]}
∼= Im

[
µy(t)

d̂(t| t− 1)

]
.

Assuming that the cancellation error∆d̂(t) is small, which
means thatd(t) ∼= βd̂(t| t− 1), one arrives at

g(t) ∼= Im
[

µβy(t)
d(t)

]
=

1
a2

Im[ µβ∆d̂(t)d∗(t) ]

+
1
a2

Im[ µβv(t)d∗(t) ]. (50)

Combining (49) with (50), one obtains

ω̂(t + 1| t) = ω̂(t| t− 1) +
η

a2
Im[µβ∆d̂(t)d∗(t) ]

+
η

a2
Im[µβv(t)d∗(t) ].

Finally, subtracting this equation (sidewise) fromω(t + 1) =
ω(t) + w(t + 1), one arrives at the second recursion of (9).
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