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Abstract—This paper presents a new approach to rejection aspects aside, the proposed solutions differ in the assumptions
of complex-valued sinusoidal disturbances acting at the output made about the controlled plant and sinusoidal disturbance.

of a discrete-time stable linear plant with unknown and possibly The most important design premises are those concerning:
time-varying dynamics. It is assumed that both the instantaneous '

frequency of the sinusoidal disturbance and its amplitude may « Known/unknown/time-varying plant dynamics

be slowly varying with time and that the output signal is contam- | kyown/unknown/time-varying amplitude of the distur-
inated with wideband measurement noise. It is not assumed that bance

a reference signal, correlated with the disturbance, is available. . . )
The proposed disturbance rejection algorithm is an extension * Known/unknown/time-varying frequency of the distur-
of the algorithm derived for the constant-known-frequency case, bance

described in Part | of this paper. .
Only a few algorithms, out of a large number of proposed

ones, are capable of dealing with the most general case: a
nonstationarysinusoidal disturbance, with time-varying am-
plitude and frequency, corrupting the output af@nstationary
l. INTRODUCTION linear plant — the adaptive FXLMS algorithm being one of
ONSIDER the problem of eliminating a narrowbandhe noticeable exceptions.
disturbance acting at the output of a discrete-time systemTo perform satisfactorily, all available methods require
governed by tuning of several design parameters. For example, in the case
of the adaptive FXLMS algorithm, one should adjust two
y() = Kp(g™ u(t = 1) +d(t) + v(t) @ step-size C(F))efficients (deter?nining the speed of ada{ptation of
wherey(t) denotes the corrupted complex-valued system odbe control and system identification loops, respectively), the
put,t =...,—1,0,1,... denotes normalized (dimensionlessyariance of auxiliary noise (injected into the control loop to
time, K,(¢~!) denotes the unknown transfer function of dacilitate plant identifiability), and at least two adaptation gains
linear stable single-input single-output plagt,' is the back- of the adaptive line enhancer (used to “extract” the reference
ward shift operatord(t) denotes a nonstationary narrowbangignal from the output signal). Since different settings may
disturbancey(t) is a wideband measurement noise, arit) be required under different operating conditions, tuning those
denotes the input signal. design parameters may be a difficult task, especially in a
We will look for the minimum-variance feedback controllernonstationary environment. To the best of our knowledge, the
i.e., for a control rule that minimizes the system output in tr@gorithm derived in this paper is the firs¢lf-optimizingnar-
mean-squared sense: rowband noise canceller capable of eliminating disturbances
9 ) in their most general form, which incorporates both amplitude
E[[y(t) "] — min . and frequency changes. The proposed solution is an extension

We assume that no reference signal (usually obtained fréththe self-optimizing narrowband noise canceling (SONIC)
a transducer placed in the vicinity of the source of vibratiordlgorithm, described in the first part of the paper [4] and
is available. This makes the task of disturbance rejectigi¢rived under the assumption that frequency of the narrowband
more difficult, as application of the feedforward compensatid#isturbance is constant and known. The extended algorithm
technique is, in such a case, not possible. will be called xXSONIC. The new approach compares favorably,

Practically important, the problem of vibration control ha§oth in terms of control quality and computational complexity,
attracted a great deal of attention in recent years [1]—[3], solvédth the adaptive FXLMS scheme.
by many authors using different approaches, such as filtered-
X LMS (FXLMS) compensation, internal model principle, or

phase-locked loop — for references see [4]. Methodological'Vé assume that the measurement noise in (.1) obeys _
(A1) {v(t)} is a complex-valued zero-mean circular white
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where and incorporates frequency tracking. In the above algorithm,

(A2) {&(t)} and {w(t)}, mutually independent and indepen#, 0 < p < 1, denotes a small gain that controls the rate
dent of {v(t)}, are zero-mean white sequences witRf amplitude adaptation, ang, 0 < 5 < 1, is another
varianceso? and o2, respectively,{¢(t)} is complex- gain that controls the rate of frequency adaptatighdenotes

valued circular, andw(t)} is real-valued. the nominal (assumed) gain, addg[z] € (—,7] denotes

_ _ principal argument of a complex number The frequency

When o, = 0, which entailsw(t) = w(0) = wo, the egtimation loop in (6) is identical with that proposed in [5].
disturbance can be expressed in the more explicit form Remark: The nominal plant gain, adopted in (6), is a time-
d(t) = a(t)elot (3) invariant quantity. Another possible solution, which incorpo-

) rates the “instantaneous” gain of the nominal plant model
where the complex-valued “amplitude(t) obeys the random- g (¢=i~), has the form

walk model Gt
alt) = a(t — 1) +e(t), e(t) = eIt (4) u(t) = —W, k() = Ko (e 720H1D) - (7)
(note that the sequende(t)} is circular white with variance
02). Hence, in this special casé(t) is a complex-valued si- B. Tracking Properties
nusoidal signal (cisoid) with constant frequency and randomly To derive analytical results, we will assume that the dis-
drifting amplitude. Disturbances of this form were considere@rbance is governed by (5), i.e., it is a constant-modulus
in Part | of this paper [4]. cisoidt with unknown magnitude: = |d(¢)| and randomly
Wheno?, # 0, the instantaneous frequency drifts accordingrifting frequencyw(t). Furthermore, we will assume that
to the random-walk model. Therefore, the model (2) describgfe (unknown) plant is time-invariant. Our approach will
a narrowband signal subject to random variations of boBe based on averaging. Consider a local analysis window
amplitude and phase. T = [t1,t2], coveringT = to—t1+1 consecutive time instants
Even though the proposed adaptive control algorithm {§" > 27 /w(t),Vt € 7). If the transfer function of the plant
capable of eliminating the disturbance (2) in its most generp;lp(ef.iw) is a smooth function ofy, and if the instantaneous
form (02 # 0,07, # 0), the majority of our analytical results frequency of the disturbance changes sufficiently slowly with

will be derived for the somewhat simpler case time, the true response of the plant to the narrowband excita-
d(t) = =D g(¢ — 1) tion u(t) can be approximated as
wlt) = w(t — 1) + wl(?) ®) Kplg™Yu(t — 1) 2 kru(t —1), t €T

which can be obtained from (2) by settind = 0. Note that wherekr = >, . K,(e77“(")) /T denotes the average plant
the signal governed by (5) is a constant-modulus cispitf#)| gain over the intervall’. Using this approximation, one can

constant) with randomly drifting frequency. express plant output in the form

To arrive at analytical results, we will assume that the plant ~  AGie
is unknown, time-invariant, and stable, and that it has nonzero y(t) = d(t) = pdtlt = 1) +o(t) . t€T ®)
gain over the entire frequency range: where = k7 /k, — the ratio of the average plant gain to the

1 0o —i 0o nominal (assumed) gain — denotes the local modeling error.
(A3) Kp(q, 2, = 2izokia™ Yol kil < o0, In our local analysis;/3 will be regarded as a time-invariant
Ky(e779) #0, Yw € (—m, 7). :
quantity. R R
Later on, in Section VII, we will show that the proposed Denote the cancellation error lyd(t) = d(t)—gd(t|t—1),
controller also works satisfactorily in the case where the plaand the one-step-ahead frequency prediction errakbyt) =
dynamics change over time. w(t) —o(t|t —1). To establish the dependenceAdl(t) and
A&(t) onv(t) andw(t), we will employ the approximating
I1l. BASIC CONTROL ALGORITHM AND ITS PROPERTIES linear filter (ALF) technique, proposed by Tichaysland
A. Control Algorithm Handel [5], for the purpose of analyzing adaptive notch filters.
The control algorithm that will serve as a basis for outLriJOS:;g(;glg zgggona:;)rg),.one arrives at the following approxima-
further considerations is an extended version of the algorithm '
proposed in [4] for elimination of narrowband disturbances AZ(t) = (1 — uB)AZ(t) + ja*AD(t — 1) — pfz(t — 1)
described by (3), i.e., with a constant-known frequengy ~ A~ Ui ~ n
The extended algorithm can be summarized as follows: A(E+1) = A(t) = 75 Im{pBAT()] — 25 Tm{pfz(?)]

At + 118) = PV - 1) + uy(D)] tuw(t+1) ©)
- where AZ(t) = Ad(t)d*(t) and z(t) = v(t)d*(t). Note that
~ _ d(t+1]t) ~
Wt +1t) =1 —n)w(t[t — 1) +n Arg - 1) E[|AZ(t)|?] = a®E[|Ad(t)[?] (10)
(j(t—i— 1‘ t) IFrom a qualitative viewpoint, this is not a serious limitation, as all
u(t) =" (6) information about the frequency of the analyzed signal is contained in its
kn phase — see e.g. [6].
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and that{z(¢)} is a circular white noise with variancg’ = where the approximations hold for sufficiently small values of
2

E[|z(t)|?] = a?02. w andn. SinceE[z3(t)] = a®c2/2, one arrives at
2
IV. TRACKING ANALYSIS IN THE ABSENCE OF MODELING E{[AG(t)]*} = Mo—?] + 1 + L o2 . (13)
4a2 2n  2u
ERRORS

Based on (9), we will study the tracking properties of (6penote byu. andn,, the values of. ands that minimize the
in the absence of modeling error§ & 1). Let Azy(¢) = Mmean-squared frequency estimation error (13). It is straight-
Re[AZ(t)], AZi(t) = Im[AZ(t)], zr(t) = Re[z(t)], and forward to check that
z1(t) = Im[z(t)]. Since, for the time being, we have assumed — 4/Re — e/ 14
that the adaptation gaip is real-valued, the recursive rela- Ho & M &/ (14)
tionship (9) can be written in the form where 5

a“oy,
AZg(t) = (1 — p)AZg(t — 1) — per(t — 1) ¢= o2
AZ1(t) = (1 — w)AZL(t — 1) + a®AD(t — 1) — pzr(t — 1)

is a scalar coefficient that can be regarded as a measure of
AD(t+1) = AL(t) — % AZy(t) — % z1(t) nonstationarity of a signal governed by (5).
“ “ Under the Gaussian assumptions imposed{o(t)} and
+uw(t+1). (11) {w(t)}, the lower frequency tracking bound [called the pos-
Solving the linear equations (11) with respect Agrg(t), terior Crangr-Rao bound (PCRB)] was established in [8]

AZ1(t), and AL (t), one obtains PCRB = o2 {/261. (15)

AZR(t) = F(qg V) 2r(t
Zr(t) (67 )z (t) Note that, after combining (13) with (14), one obtains

AZi(1) = Ga(g ™ )ar() + Calg () ) )
~ ~ 4 —
AG(t) = Hi(g Y z(t) + Ha(g Hw(t) (12) E{[AG()]7| poos M} = 07y v/ 2671 (16)
where which is identical to (15). Hence, despite its simplicity, the
1 optimally tuned algorithm (6) is a statistically efficient scheme
F(qg ') =— # for tracking randomly-drifting instantaneous frequency. In
M practical terms, this means that there seems to be no incentive
GilgY) = — pll+(n—1)g g! to replace the simple gradient frequency update, incorporated
ne =TT T4+ Ng P+ A+nu)g2 in (6), with a more elaborate frequency estimation mechanism.
a2
Galg™!) = - : :
T—(1+Ng 4+ N +nu)g2 B. Disturbance Cancellation/Tracking
nu(l —q Vg ! Of course, our main interest lies in minimization of
Hig™) = - |
11d a?[1— (1+Ng "+ (A + nu)g2] the mean-squared cancellation error. In order to evaluate
. E[|Ad(t)|?], we will exploit (10). Due to the orthogonality
Ha(g™) 1-Ag of zr(t) and z(¢), it holds that

TN+ A+ p)g?

=~ 271 e~ 2 o~ 2
and A = 1 — p. All filters are asymptotically stable for any Bz = B{[AZe (O]} + B{{AZ (1))} (17)

Since under (A1) and (A2) the process(¢)} is orthogonal

andn in the interval (0,1). where [cf. (12)]
A. Frequency Tracking E{[AfR(t)P} - I[F(Zil)] E[Z%‘(t)]
E{[AZ1(t)]"} = I[G1 (2™ )] E[2 (1)]
I

to {w(t)}, one arrives at +I[Ga (27 1) Elw? (1)) (18)
E{[AD(1)]*} = I[H1 (2" E[f (1)] + I[Ha(2"")]E[w?(1)]  Since
_ woop
h IFz Y= ——~=C
where B ) e [F(z)] T2
IXEz)]==— X)Xz ")— 9_9 9 14\
is an integral evaluated along the unit circle in thplane, and (I =) (2+2X\+np) 2 2
X (z~1) denotes any stable proper rational transfer function. . a*(1+ X+ np) at
By means of residue calculus (see e.g. [7]) one obtains I[G2(277)] = A= @A) = 202
- 2n*p n’p 2 2 2 2 e
IH (27 Y] = ~ 2D and E[z (t)] = E[#{(t)] = a®0;/2, after combining (10),
at(l=mn)(2+2X+nu)  2a* (17), and (18), one arrives at
214N +nu(l+2?) 1 1 2 4
[Hy (1] = 2 > G a
= a2 o BIAINP) = T (utmod + 505 oh (19
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(50 different realizations ofv(¢)} and {w(¢)}) and time

0 002 averaging (50000 consecutive time-steps, after discarding the
0.1 first 20000 samples, to ensure that the steady-state conditions
are reached). In all cases(0) was set to 0.1. Note the good

10 M’J 07 ._,_,;—A-"”"; agreement of theoretical expectations with simulation results

a
10 Ou
ag

E AW’

oy PCRE - PCRE for small values ofu. Discrepancies that occur for larger
10 90 507 oo oos 1° 90 o5 oo 006 vallues of thfa adaptatlon gain can be.attnbuted to the frozen
gain approximation (8) and to errors introduced by the ALF
— 5 — analysis (linearization and neglecting higher-order terms). Fol-
10° 0,,=0.00004 10° g,=0.00008 lowing [10], one can argue that approximation errors should
S °,=01 K’"*i: 01 not compromise our statistical efficiency conclusion as long
N M L 107 L as tracking is “satisfactory”, i.e., as long as the minimum
PCRB attainable mean-squared cancellation error (often called excess
i . prediction error) is much smaller than the variance of the
1075 002 o004 o006 o 002 004 0.06 measurement error. This leads to the following condition,
H H expressed in terms of the rate of system nonstationarity:

V2E <« 1, or equivalently¢ < 1074,
Fig. 1. Comparison of theoretical values of the mean-squared frequency
\t,rvif]klﬂg igg;rfﬁgpjigﬂgg t(r;foztsejsd)y state plant approximation (solid lin€), y;  gg| £ opTIMIZING CANCELLATION SCHEME
Even though we have been assuming that the adaptation gain

1 is a real-valued quantity, the derivation of approximating
Denote byu, andny the values ofu andn that minimize the linear equations is not restricted to this case — equations

mean-squared cancellation error (19). One can easily chgok remain valid also for complex-valued gaipseC. When

that the true plant characteristics are not known, i.e., whes
fa=1nq= V2 (20) kr/ky # 1, incorporation of a complex-valued gain has an
obvious advantage, as it allows one to compensate modeling
and ~ . 5 error. Actually, according to (9), whep is chosen so that
E[Ad(8)[?| jra. na] 2 /26 07 - (21)  the conditionu3 = uo > 0 is met (which can be achieved
Note that the settings that minimize the mean-squared cand¥vided thatlm[.(] = 0, i.e., Arglu] = —Arg[f] ), the
lation error differ from those that minimize the mean-squaré@®ntrol algorithm (6) with a complex-valued gain, used in in
frequency tracking error established earlier. the presence of modeling errors ¢ 1), should yield the

same results as the same algorithm equipped with a real-valued
adaptation gain, operated in the absence of modeling errors
(8 = 1). In particular, whery is set tou,, /3 andn is set to
Since the ALF approach is heuristic (no strict mathematicgl,, the closed-loop system will guarantee statistically efficient
analysis of the conditions of its applicability was presentefequency tracking. Similarly, when is set touy/3 andn is
in [5]), “theoretical” results, such as (13) or (19), should beet ton,, the mean-squared cancellation error will achieve its
treated with caution. A special simulation experiment wasinimum value (21) — even though the assumed plant gain
arranged to check how well the formula (13) fits the true errd@iffers from the true value.

C. Numerical Example

values. The simulated discrete-time plant (Guo-Bodson) Since in practice3 and¢ are unknown quantities, we will
. 0.0952 propose a special mechanism for automatic adjustment of
Ky(277) = 109048, (22)  andy. Generally, we would like to adjust both adaptation gains

. . S0 as to minimize the mean-squared value of the output signal
was adopted from [9], and corresponds to a continuous-time

plant with transfer functiorf,(s) = 1/(1 + 0.01s) sampled E[|y(t; 4, n)*] — min.

at the rate of 1 kHz. . 27 ~ 19 9 .
To (nearly) eliminate modeling errors, the modified contro?'.n(.:e.E[ ‘y(t” | = E[JAd(t)]"] + o, this IS equivalent to
minimization of the mean-squared cancellation error. To make

rule (7) was used W'ﬂK?(') = Kp (), which requires perfect the estimation scheme more flexible and to avoid problems
knowledge of the plant’'s frequency response (note, however,

that the nominal gain in (7) is evaluated at the estimat(\a'\cqth m|xe_d optimization (joint optimization .Of a _complex-
) valued gainu and a real-valued gain), we will design two
frequency instead of the true frequency).

Simulations were carried on for, — 0.1 and for four separate loops for adjustment pfand », respectively. Both

different rates of amplitude variatian, € {0.00001, 0.00002, g?é?%gg,%c)eg:{iﬁzm:g:;E;;ZS on the recursive prediction
0.00004, 0.00008}. To decrease the number of design degrees '
of freedom from 2, ) to 1 (), the value of; was set tqu/2 .
— such a choice was motivated by the fact that= /2. A Adjustment of:

For each(o,,, ) pair, the results, summarized in Fig. 1, Consider the following local measure of fit, made up of

were obtained by means of combined ensemble averagieponentially weighted system outputs [the output sigial
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is regarded here as a function @f To evaluated(t+1|t)/0p andow(t+1|t)/Op* = [0 (t+

. 1]t)/0u)*, we will employ the following relationship

V(tn) => (o) ly(rim). (23) OArg[z(p)]  Oarctan[z/wg]

T=1 a/J 8/1’

The forgetting cpnstanbu 0 < pu < 1) determines the - J - {x (ax*> _ *83:} (28)
effective averaging range. To evaluate the estinate = 2| z| op

X
op
argmin,, V(¢; 1), we will use the RPE approach [11] which can be derived using the chain rule. Using (28), one

i V(A —1)) arrivEs at R
i) =paE—1)— —2& o (24) dt+1t) . L IL(t-1)
9 . ————=0-n) —F
GBI V(t;u(t —1)) o ou
where L dn [[8E(t+1|t)/8u*]* (@djt|t — 1)/8/1*]*]
G RPN R R 2L @y (-1
on omm oml 0 o |oum Tom i [ac?(tﬂt)/au - 8J(t|t1)/8u] (29)

2 d(t+1[t) dt|t —1)

. o o ) Remark: When the disturbance frequency is constant and
denote o_p_erat|0ns of symbolu_: differentiation use_d in th_e SRhown, i.e., St — 1) = wy and Bt — 1)/0u =
called Wirtinger calculus, applicable to nonanalytic functlongwo/au — 0, it holds that (under suitable stability conditions)
such as (23) — for references, see [4]. lim, o 83(t| t—1)/Op* = limy_oc Ay(t)/du* = 0. In a case

Since like this, the RPE recursions (25)—(27) reduce to those given
Aly(r)I? )\ () . in [4]
v(r) < o ) M (7)

pr = Relp] ,  pr = Im(y]

onw*

h ) o th ] B. Adjustment of)

:eiu%rs?\?elleyntjii?w% l;g;‘:’:)i?r;azgigﬁ;;rcg ngd'l)?;;n be Computeg:onsider another exponentially weighted measure of fit
- ~ . 1 ¢ .

OVt p(t —1)] _ ol it — 1] Oylt; it — 1)] W(tn) =5 Y (o) Tyl (30)
o+ ’ o =1
oylt;u(t —1)] . ) wherep,,, 0 < p, < 1, denotes another forgetting constant and
T o Yt At = 1)] y(t) is now regarded a function ef Using the RPE approach,
D2V [t: fi(t — 1)] D2V [t: fi(t — 2)] one arrives at the following recursive scheme for evaluation

o~

50 >~ p, Y of 7(t) = arg min, W (¢;n)
1w op 1 op ~
Oylt: it — 1 2 oyl it — 1) SOV o 1Y OWt;(t —1)]/0n
i i ke el B PO =D " e ) o
OWt;nt—1 N oy*lt;n(t —1
Note that [cf. (8)] [37(7” = Re {y[’“ n(t —1)] W}
u) _ _, od(t[t—1)  dy(t) _ s od(t[t — 1) 6 OWAE-1]_ Wikt =2)
o ou Toour ou* on? =P on?
o 2
and [cf. (6)] + ‘ ool — 1) (31)
~ n
ad(t+1)t) (|t —1) ~ Furth
= d(t +1]|¢t urthermore N
ou I o (t+1]1) oy(t) _ _ 0dlult—1) 32)
-~ 0 0
+ J@(t t=1) [ad(ﬂ t—1) (t) + p 8y(t)] " "
n On od(t+1[t) . oB(t[t —1) Jt 111
od(t +1|t) OB Gy o T o
o o . Jelt —
Gl oue 4 00D [ad(“at D +uag(t)]. (33)
+ @t t=1) l (a| *— )+/4 ay(*)] 27) n n
H H In order to evaluatéd(¢|t — 1)/dn, note that

where the last recursion stems from the fact that, in WirtingétArg[z(n)]  dIm[logz] Im {6logx}  fm {1 83:]

calculus,0u/ou* = ou*/ou = 0. on on on z on
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Using this relationship, one obtains

Adjustment ofi(t)

P v 1t _ Au(t) = Juou(t = 1)d(t)

o o + I (1) +y(t = 1) + Al = Dyt = 1)
==Y sty o A | LD '
T Slaut—1) dyi- (t) = juy,(t = 1)d(1)

R i@ (t—1) _ e _
pIm od(t+1[t)/oy  dd(t|t — 1)/877] (34) +e [dy= (8 = 1) + [t = 1)yp- (t = 1)]
d( — - gn(t—1
de+uly - dde-) wu(t) = [1 =t~ Dlwatt — 1)+ 72D
d(@E)*  d(t d(t—-1)* d,(t—1
C. Coping with Modeling Error « | ‘i( )" 4 ‘i( ) ﬁ( )
d*(t) d(t) d*(t—1) d(t —1)
Since the quantitie®y(t)/0u, Oy(t)/ou*, and dy(t)/on cy
depend explicitly on the modeling err@t which is unknown, Yu(t) = — m du(t)
recursive formulas for the evaluation of sensitivity derivatives, c
derived in Sections V-A and V-B, can’t be used in their presenty,,- (t) = — * dy-(t)
form. Following [4], we will replaces in (26) and (32) with plt = 1)
. ru(t) = puru(t = 1) + 1 yu () [* + [y (8) 2
b= (39) Y (0y(E) + g (D" (1)
a At =Rt = 1) = F———5 (36)
wherec,, denotes a small positive constant. As shown in [4], .
in the constant-known-frequency case, this particular variant
of the gain fixing technique guarantees convergence in mean Adjustment ofj(t)
of the adaptive disturbance rejection scheme to the optimal
solution, irrespective of the phase erebrg[5] (which cannot _ N R
be achieved whef is simply set to 1). Simulation experiments dy(t) = jwy (t — 1)d(t) + e’ [d, (t — 1)
confirm that similar effect can be observed when (35) is + a(t — L)y, (t — 1)]
used in combination with the self-optimizing control algorithm
described in the previous subsections. wy(t) = [L =7t = D]y (t = 1) =&t - 1)
+ Arg d(t) ] +7(t —1)Im ldﬁ(t) - dﬂ(t — 1)]
D. Summary of the Proposed Control Algorithm dit - 1) d(t) d(t = 1)
Cu
The following shorthand will be used to simplify our ¥n(t)=— rt‘_ 0 dy(t)
notation: )
rn(t) = p,ﬂ“n(t -1+ |yn(t)|
S SO Rely; (1)y(t)]
d(t) = d(t|t — 1), B(t) = O(t|t — 1) ae) == 1) = :n(t) 5D
oylt:1i(t — 1 odlt|t — Lt — 1
ity = QBB ) _ D1 i 1) )
# R # Adjustment ofi(t) and &(¢)
oylt; u(t — 1 odlt|t — 1;a(t — 1
o) = PELEZIL g - S RREEDE -
~ d(t+1) = Od(t) + i)y (t)]
Ay[t; 7t —1)] od[t|t — 1;n(t —1)]
yn(t) = T ’ d’f/(t) = 877 N ~ —~ -~ C/l\(t + 1)
N R wt+1) =1 -n)]&(t) +n(t) Arg | —= (38)
r (t) _ azv[tnu’(t B 1)] r (t) o aQW[tan(t B 1)]
pA Ou*ou M on?
Evaluation of control signal
o[t t —1;0(t —1
(= 2012 = i~ 1) .
% Ao d(t+1)
oty — 2Bl = L = 1) “ =",
e on ’ or
Using this symbolism, the proposed xSONIC algorithm can u(t) = — d(tf 1) (39)
be expressed in the form: N CR
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The computational complexity of the xSONIC algorithm Dy pmax and nuax, respectively. The modified update rules
equal to 98 real multiply/add operations, 5 real divisiohave the form
operations, and 4 trigonometric operationsx<§in, 1xcos,

*()y(t o (D)y*(t
2xarctan) per time update. 1(t) = sat [ﬁ(t -1) - YOy )+(Zs By (®) ) umx]
T
E. Simplified Algorithm 7(t) = min {ﬁ(t— 1) — W , nmax] (41)
L7

Simplification of the xSONIC algorithm can be easily
achieved by fixing the gaim. According to the ALF equa- wheresat(z,a), = € C, a € R, denotes a complex-valued
tions (9), the tracking properties of the algorithm (6) can bsaturation function
quantified in terms ofu8 and n. Dependence om(3 means . it |z/<a
that the “true” adaptation gain of the amplitude tracking loop is sat(z,a) = T -
determined not only by, but also by modeling errors. Since a ] if |z|>a
modeling errors are unknown, and they may change with time,
choosing a “meaningful” value of: is an impossible task. .
This is why automatic adjustment pfis so important. In the B- Extensions
case of the second adaptation gain, controlling the frequencywe will describe three extensions of the proposed scheme:
tracking loop, the situation is different. Since modeling erroty systems with multiharmonic disturbances, systems with an
do not interfere withn, the value of this coefficient can beextra transport delay, and real-valued signals.
safely fixed at a constant level, based on our prior knowledge1) Multiharmonic Disturbances:Suppose that the signal
of the expected rate of frequency variation. d(t) in (1) has the form
To arrive at a simplified version of the algorithm, we will
assume that the estimated frequency trajectory coincides with d(t) = Zd-(t)
the true trajectory, which leads ta,(t) = 0&(t)/0p = o — ¢
Ow(t)/Op = 0 and wy(t) = 0w(t)/On = Ow(t)/on = =
0. Since, under suitable stability constraints, the conditicand is made up ofn frequency components
w,(t) = 0 entails (asymptotically}l,«(t) = 0, y,~(t) = 0, . _
and the conditionu, () = 0 entailsd;(t) =0, yn(/t) =0, the di(t) = VA (= 1) + &(t)
algorithm (36)-(39) reduces down to wi(t) = wi(t — 1) + wi(t) (42)

dy(t) = 20D, (t — 1) +y(t — 1)
it = Dyu(t —1)]

1=1,...,m

evolving independently of one another. Rejection of such a

yu(t) = — = ‘u . d,(t) multiharmonic disturbance can be achieved by combining
At —1) subalgorithms, each designed to track one componedttof
() = puru(t — 1) + |y (t) | into the following parallel estimation scheme
At) = it — 1) - ”)(ty)“) Gt +118) = PO (F(e] £ — 1) + Ba(t)y()]
I
~ O O;(t+1t)=[1—-m@) |0 (t|t -1
d(t+1) = *Od(t) + i(t)y(t)] o =t=no) A( -y
L (t) Arg d;(t+1]¢)
B(t+1) = [L—n]3(t) + n Arg | 2D di(t]t = 1)
d(t) i=1,...,m
d(t+1
u(t) = — (k ) (40) m Ai(t—&—l\t)
n u(t)=->»_ - (43)
The computational burden associated with the simplified al- i=1 i
gorithm is equal to 37 real multiply/add operations, 2 re"i}\llherekm’...,knm denote the nominal plant gains, and where

division operations, and 4 trigonometric operationsgih,

. the adaptation gaingi;(t), 1;(t) are computed recursivel
1xcos, 2<arctan) per time update. P gaing.i (1), 7i(t) P y

(independently of one another) using the algorithm designed
for the single-frequency case.
VI. SAFETY MEASURES AND EXTENSIONS When the frequencies; (t),...,wn,(t) are known to be
mutually related, e.g. whew;(t) = iwi(t), i = 2,...,m
(which corresponds to a fundamental and— 1 harmonics),
Similarly as in [4], to avoid erratic behavior of the algorithnmore specialized algorithms can be designed to take advantage
during startup/transient periods, it is advisable to set tlodthe available prior knowledge. Because of the lack of space,
maximum allowable values fdii(¢)| and7)(t), further denoted such opportunity will be not further explored here.

A. Safeguards
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2) Systems with DelaySuppose that the plant is governed he results, summarized in Tables | and Il, were obtained by

by means of combined ensemble averaging (100 realizations of
_ the processegu(t)} and {w(¢)}) and time averagingt(€
_ 1
y(t) = Kp(q™ Jult — 7o) +d(t) + v(t) [20001,80000]), after the examined algorithms have reached
= kpu(t — 70) +d(t) +v(t) (44) their steady-state behavior. In all cases the noise variance was

2 L
where 7y denotes transport delay. So far we have considerganStant and equal to, = 0.01, the initial frequency value

the one-sample delay case. The modified control rule that wilf® set tav(0) = 0.1, and the amphtudg of the disturbance
was equal toa = 1. To enforce modeling errors equal to
work for 7y > 1 has the form

(approximately)3, the nominal model, adopted in (7), had
g(t + 70l t) = IO (t+To—1]t=1) J(t +70—1t—1) the form K, (e77%) = K,(e™7«)/3. Finally, the algorithm
i ﬁ(t)ejTU@(t+To_1|t_l)y(t) settings were equal tp,, = p,, = 0.9998 andc, = 0.01.
Several conclusions can be drawn after comparing the

Gt+70|t)=[1-71)]&(t+70—1t—1) average values of the quantitiggt) 3|, Arg[u(t) 5], and7n(t),
~ gathered in Tables | and Il. In all cases, the proposed adaptive
+7(t) Arg | = d(t + 7ol ) 1 regulator remains close, in the mean sense, to the optimal
d(t+71 — 1|t —1) regulator. Not surprisingly, the smallest estimation biases occur
3(t+70|t) for the slowest frequency changes. There are no substantial
u(t) = — - (45) differences between the results obtained for the dynamic plant

(Table 1) and for its static counterpart (Table I). As expected,

Similar to the algorithm derived in the constant-knownme static plant experimental results better fit theory.
frequency case (see Section VIII-B in Part 1), the algorithm

(45) is robust to delay misspecification. Figs. 2(a) and 2(b) show typical simulation results obtained

Based on (44) and (45), one can easily derive FECUrsiofnS ihe absence of modeling errors and in the presence of

analogous to (26), (27), (29), and (32), (33), (34), need?rqodeling errors, respectively, for the same realizations of

to evaluate sensitivity derivative®y(t)/0u, dy(t)/op*, and {fv(t)} and {w®)} (6, = 0.1, 6 = 5-107% a = 1,

dy(t)/On.
. . . w(0) = 0.1, ¢, = 0.01, = = 0.9992). In the case
3) Real-Valued SignalsA simple way of extending the dé )icted in Flitg. 2b mo[c)ilélingpgrror was t)ime—varying — it
proposed algorithms to real-valued signals can be summari%% ved from |3 :' 0.7, Arglf] = —48°t0 |8 = 0.4
as follows: - o - A8 o
Arg[s] = —60".

1) Regarding{y(t)} as a sequence of complex numbers During the first 1000 time-steps, the quantitigst), v,.- (),
[yr(t) = y(t), y1(t) = 0], compute the complex-valuedr,(t), y,(t), m,(t) were evaluated, but the adaptation gains
control signalu(t) = ur(t) + jur(t) using the proposed fi(t) and 7(t) were kept at their starting values and not

algorithm. updated. Then, at the instant= 1001, the adaptation lock
2) Apply ugr(t) to the input of the controlled plant. was released.
VII. SIMULATION AND EXPERIMENTAL RESULTS B. Comparison with the Constant-Known-Frequency Solution

Several experiments were performed to check both the tran-Our second experiment aimed at comparing performance
sient and steady-state performance of the proposed disturbaoicéhe control algorithm proposed in [4] and the frequency-
rejection scheme. adaptive algorithms summarized in Sections V-D and V-E.

Unlike the previous example, the instantaneous frequency

A. Mean Convergence Properties changes were deterministic and governed by

The purpose of this experiment was to examine the steady- w(t) = 0.1 4 0.02sin(0.001¢) (46)

state mean convergence properties of the algorithm: i.e., the frequency was subject to small sinusoidal variations

« For two choices of the plant: the dynamic Guo-Bodsoaround the “nominal” frequency, = 0.1. Fig. 3 shows the
plant K,(¢~'), given by (22), and its non-inertial results obtained for the Guo-Bodson plant (22) and a typical
counterpart, represented by the time-varying static gajtihe same in all cases) realization of noisg & 0.1). The
kp(t) = Kp(e*j““)) — to check to what extent static control algorithm, adopted from [4], was used in Fig. 3(a) with
approximation of dynamic plants, exploited in our anahe following settingswy = 0.1, k, = K, (e/%1), d(0) = 1,
lytical study, affects the obtained results. 1(0) = 0.05, ¢, = 0.01, p = 0.9995, ftmax = 0.1, 7(0) = 100.

« For three choices of magnitude erroig|(= 0.5,1,2) The analogous settings for the “full-size” frequency-adaptive
and two choices of phase errorg[3] = 0°,45°) — algorithm in Fig. 3(b) werek, = K,(e/%!), d(0) = 1,
to check sensitivity of the cancellation scheme to differefi(0) = 0.05, 7(0) = 0.05, ¢, = 0.01, p, = p, = 0.9995,
kinds of modeling errors. tmax = 0.1, r,(0) = r,;(0) = 100. The adopted upper

o For three speeds of frequency variation,( = 4 - bounds orju| andn play the role of “safety valves”. When, for
107%,1075,4-10~5) — to check how the obtained resultsexample,|zi(t)| is allowed to exceeg,,., = 0.1, the closed-
depend on the rate of frequency variation. loop system is prone to occasional bursts caused by local
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TABLE |
MEAN CONVERGENCE RESULTS FOR DIFFERENT MAGNITUDE AND PHASE ERRORS
CONTROL ALGORITHM BASED ON THE SUBSTITUTIONG = cu/,u, STATIC SYSTEM.

Tw Hd = 14 B=1 B=2 B=05

|pB] | Argluf] n lpB] | Argluf] i lnB] | Arglpf] ]

4-10-6 | 0.0075 | 0.0079| 0.2° 0.0081 | 0.0079| 0.2° 0.0080 | 0.0079| 0.2° 0.0080
-10-5 | 0.0119 | 0.0123| 0.2° 0.0112 | 0.0123| 0.2° 0.0112 | 0.0123| 0.2° 0.0112
4-1075 | 0.0241 | 0.0244| 0.2° 0.0195 | 0.0244| 0.2° 0.0195 | 0.0244| 0.2° 0.0195

—

ow | ha=na f=cr/t 5 =207/ B =05e7/"

(18] | Arglug] 7 Bl | Arg[up] il 2Bl | Arguf] 7

4-10-¢ | 00075 | 0.0079| 00° | 0.0081| 0.0078| 0.0° | 0.0082| 0.0079| 0.0° | 0.0081
.10~° | 00119 | 0.0123| —0.1° | 0.0112| 0.0123| —0.1° | 0.0112| 0.0123| —0.1° | 0.0113
4.10-5 | 00241 | 0244 | —02° | 00192| 0.0244| —02° | 0.0192| 0.0244| —0.2° | 0.0192

—_

TABLE I
MEAN CONVERGENCE RESULTS FOR DIFFERENT MAGNITUDE AND PHASE ERRORS
CONTROL ALGORITHM BASED ON THE SUBSTITUTIONS = ¢;,/pt, DYNAMIC SYSTEM.

Ow Hd = Nd B=1 B=2 B =05

[pB] | Argluf] n lnB| | Arglpf] ] lnB] | Arglpf] 7
4-10-6 | 0.0075 | 0.0082| —1.4° | 0.0073| 0.0082| —1.4° | 0.0073| 0.0082| —1.4° | 0.0073

1-10~% | 0.0119 | 0.0129| —1.2° | 0.0102| 0.0129| —1.2° | 0.0102| 0.0129| —1.2° | 0.0102
4-1075 | 0.0241 | 0.0255| —1.4° | 0.0177| 0.0255| —1.4° | 0.0177| 0.0255| —1.4° | 0.0177
Ow Hd = Nd B =el™/4 B =2eim/4 B =0.5eI7/1
|pB] | Argluf] n |nB] | Arglpf] 7 lnB] | Arglpf] n
4.10°6 0.0075 0.0083| —1.6° 0.0071 | 0.0083 —-1.6° 0.0072 | 0.0084 | —1.7° 0.0072
11075 | 0.0119 | 0.0129| —1.5° | 0.0101| 0.0129| —1.5° | 0.0101| 0.0129| —1.4° | 0.0101
-10~% | 0.0241 | 0.0255| —1.5° | 0.0177| 0.0255| —1.5° | 0.0177| 0.0255| —1.5° | 0.0177

instabilities. The simplified frequency-adaptive algorithm in signal by means of adjusting the magnitude and phase

Fig. 3(c) was run withy = 0.05. For all control algorithms, the of the reference signal(t).
gain adjustment mechanisms were switched on at the inst&itice, in the case considered, the reference is neither available,
t = 100. nor can it be synthesized (the instantaneous frequendytof

Note the relatively poor performance of the simpler coris unknown and possibly time-varying), it is replaced with the
troller [Fig. 3(a)], which does not have enough degrees eéconstructed disturbance signal
freedom to compensate all modeling errors. Basically, such ~ =
a controller works satisfactorily only at moments when the d(t) = ALE[y(t) — Kp (¢ )u(t)]
instantaneous frequency is close to the nominal (assumedlere ALE denotes adaptive line enhancer, an algorithm that
frequency. Note also that, after the initial convergence pericgktracts sinusoidal waveforms from noisy measurements [12].
the magnitude of the estimated gaift) stays at its maximum  Comparison was performed for the same plant that was

allowable level. In contrast with this, the results obtained fafescribed in Part | — the first-order inertial system with a
the frequency-adaptive control algorithms [Figs. 3(b) and 3(cfjme-varying pole”, governed by
are satisfactory at all times. The simplified algorithm yields y(t) = o(t)y(t — 1) + 0.0952u(t — 1)

only slightly worse results than the “full-size” algorithm.
S ? o(t) = 0.7 4+ 0.25sin(0.0003t).

C. Comparison with the Adaptive FXLMS Algorithm The gmpllt_udea(_t) and the instantaneous frequencyt) of
the sinusoidal disturbance

We will compare our algorithm with the FXLMS-based T w(r)
solution, described in some detail in Part | of this paper. The d(t) = a(t)e’ &=
FXLMS canceller consists of two loops: were changing according to

1) ;I;]he sy?ft_e_m itder}tificf_at_iton_ IOO[T, providing e(s;ig;atesdofl a(t) = 1+ 0.25in(0.002¢)
e coefficients of a finite impulse response mode B ]
of the plant:iK,(¢~') = 32, ki~ (to guarantee plant w(t) = 0.3 +0.035in(0.001¢).
identifiability, a low-intensity random perturbation, e.g.Fig. 4 shows the results obtained in the absence of measure-
white noise sequence, is added to the input signal). ment noise ¢, = 0) for the xXSONIC algorithm and the well-
2) The direct control loop, which forms the compensatintuned adaptive FXLMS algorithm (for a typical realization of
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Arg(uB)[°]
E,
Arg(W[°]
§

— 40 7 T + T ;
Fig. 2. Behavior of the disturbance rejection algorithm — results of a typice = 28' ]
simulation experiment. (a) In the absence of modeling errors. (b) In th © ‘ZOWWWWW
presence of modeling errors. < 40 L L L L L
5 10 15 20 25
0.15 ? T + T ?
3 O-low
0.05 . . . . .
5 10 15 20 25
t [x10°]

auxiliary noise). The noiseless case is the one most frequen.y
encountered in the literature on acoustic disturbance suppres- (c)

sion. xXSONIC was used with the following deS|gn.parameter|§-g. 3. Performance of adaptive disturbance rejection in the presence of
¢y = 0.01,p, = p, = 0.9995, k, = 1, none of which had a frequency variations. (a) Algorithm based on the constant-known-frequency
strong influence on the simulation results. The best settings fardel. (b) Frequency-adaptive disturbance rejection algorithm. (c) Simplified
FXLMS, determined by means of extensive numerical seardifauency-adaptive algorithm.

were equal tou; = 0.02 (adaptation step-size in the system

identification loop), .2 = 0.15 (adaptation step-size in the According to Fig. 4, XSONIC yields considerably better
control loop), ands2, = 0.001 (variance of auxiliary noise). cancellation results than FXLMS — the corresponding root-
The order of the FIR filter was set t/ = 32 (for M < 20, Mean-squared output error is equal 0034 (virtually the

the closed-loop system was unstable). Finally, the adapt®@me for the simplified algorithm), compared @®085 for

line enhancer, which is a part of the FXLMS-based cancellérXLMS (improvement by 8 dB).

was based on a carefully tuned multiple frequency tracker,In the presence of measurement noisg € 0.1), xXSONIC
described in [5]. It should be stressed, that the performanceadfiers practically the same cancellation efficiency aswied-
FXLMS cannot be improved by further reducing the variandeinedFXLMS (u; = 0.02, 2 = 0.1, 02, = 0.001) — the root-

of the auxiliary noise. mean-squared output errors for xSONIC, simplified xSONIC,
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Fig. 4. Real part of the disturbance signal (top) and cancellation results
obtained for the xSONIC algorithm (middle) and the adaptive FXLMS
algorithm (bottom).

and adaptive FXLMS are equal t©1032, 1.041, and1.032,
respectively.

As already remarked in Partl of this paper, since in practice
FXLMS seldom is optimally tuned, the comparison presented
above is rather unfair for xSONIC.

d()+v(t)

D. Acoustic Experiment

A real-world acoustic active noise control experiment was
conducted using the proposed regulator. The instantaneous fre- _g1 ) , , |
guency of the artificially generated disturbance was changing 0 5 - . 15 20
sinusoidally between 241 and 250 Hz, with a period of 20 s.

The error mlcrOphone_ was located approximately 1 m aw% 5. Power spectral density of the signal before (solid line) and after
from the source of disturbance and 15 cm from the noig@tted line) disturbance cancellation (top figure) and the corresponding time-
canceling loudspeaker. The system was operated at a sampliefgain measurements (three lower figures).
rate of 1 kHz. The nominal filter gairk, was set tol. The
remaining parameters were chosen as follogs:= 0.01,
pu = 0.999, p;, = 0.99, tmax = 0.05. Fig. 5 shows the results.
After an initial convergence phase, which lasted for about 1$1] ﬁ R.YFUII(Iek S.dJ. E_Ili?DtI, andlz.glg. NelsoActive control of vibration

H : ew YOrkK: Acaademic Press, .
the .Closed_IOOp S¥Stem reached its S.teady_State beha\”or' T;%f S. J. Elliott and P. A. Nelson, “Active noise controllEEE Signal
achieved rate of disturbance attenuation was approximately Process. Mag.vol. 10, pp. 12-35, Oct. 1993.
dB. [3] S. M. Kuo and D. R. Morgarmctive Noise Control Systems: Algorithms

In the experiment described above, the rate of frequency and DSP Implementations New York: Wiley, 1996.

- .. . i] M. Niedzwiecki and M. Meller, “A new approach to active noise and
variation was limited by a I_arge processing (_jelay, equal t0" yipration control - Part I: the known frequency case,” submittedEEE
60 sampling intervals (we did not use specialized hardware). Trans. on Signal Process.

However, our simulation tests show that for smaller delayd? P Tichavsk and P. Handel, “Two algorithms for adaptive retrieval of

. . . . slowly time-varying multiple cisoids in noise/[EEE Trans. on Signal
XSONIC can satisfactorily track persistent (e.g., linear) fre-  process vol. 43, pp. 1116-1127, May 1995.

y(®)
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APPENDIX
DERIVATION OF (9)

According to [5], when carrying out the ALF analysis of
(6), one should examine the dependencé\dft) and A& (t)
on v(t) andw(t), neglecting higher than first-order terms of
all quantities listed above, including all cross-terms.

o~

To arrive at the recursive formula fakd(t)d*(t), note that
Ad(t) = d(t) — Bd(t|t — 1) = /= Dd(t — 1)
— Bl =i A= 1g(4 — 1| ¢ — 2)

~

+ pAd(t — 1) + po(t — 1))
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obtainse=74«(t=1) =~ 1 _ jAG(t—1) which, after substitution
in (47) and neglecting all higher-order terms, leads to the

following approximation

Ad(t) = Vgt — 1)

— B[ — GAG(t - 1))d(t — 1] - 2)
B ﬁﬂejw(t—l)Agl\(t —1)— /Buejw(tfl)v(t _

o~

Furthermore, sincd(t — 1|t —2) = [d(t — 1) — Ad(t —1)]/8,
after substitution, regrouping, and neglecting the term propor-

tional to AG(t — 1)Ad(t — 1), one obtains
Ad(t) = D[1 — Bu]Ad(t — 1)

+ /DA — DAD(E — 1) — Bued“ Dyt — 1)

Finally, after multiplying both sides of (48) byi*(t) =
e~ 7@(t=1d*(t — 1), one arrives at the first recursion of (9).

To derive the second recursion, note that
St+1]t) =t t — 1) +ng(t)

where

d(t + 1| t)e—@t =D ]

dit|t —1)
=TIm {log

~

Assuming that the cancellation errdxd(¢) is small, which

~

means thati(t) = pd(t|t — 1), one arrives at

o(t) = Tm {uﬂy(t) ] _ ;12 Im| pBAd(t)d* (t) ]

d(t)
It (1))

Combining (49) with (50), one obtains

o~

S(t+1]t) =t t— 1)+ % Tm| uBAd(t)d* (t) ]

+ = Il pBo(t)d" (1),

Finally, subtracting this equation (sidewise) fran(t + 1) =
w(t) +w(t + 1), one arrives at the second recursion of (9).

1+A“y(t)]}glm lA
dtlt—1) qtlt—1)
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