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a b s t r a c t

For a fixed value of a parameter k ≥ 2, the Maximum k-Edge-Colorable Subgraph Problem
consists in finding k edge-disjointmatchings in a simple graph,with the goal ofmaximising
the total number of edges used. The problem is known to be APX-hard for all k, but there
exist polynomial time approximation algorithms with approximation ratios tending to 1
as k tends to infinity. Herein we propose improved approximation algorithms for the cases
of k = 2 and k = 3, having approximation ratios of 5/6 and 4/5, respectively.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The Maximum k-Edge-Colorable Subgraph Problem (k-ECS) is a well-studied variant of classical edge coloring in which
the goal is to assign colors from the range {1, . . . , k} to asmany edges of the input graph as possible, preserving the constraint
that adjacent edges must receive different colors. Formally, the problem may be stated as follows.

Maximum k-Edge-Colorable Subgraph Problem (k-ECS)

Input : A simple graph G.
Solution: A subgraph SOL ⊆ G together with a legal k-edge-coloring of SOL .
Goal: Maximise the number of edges of SOL .

Edge coloring techniques are used to model many real-world problems of resource allocation, such as scheduling
of tasks requiring the cooperation of two processors, file transfer operations, and assignment of channels for satellite
communication [7,13,16]. The optimisation criterion of k-ECS describes situations in which there exists a fixed limit of k on
the number of available resources (e.g. time slots or communication channels) and the quality of the solution is expressed
in terms of the proportion of input which is handled within these constraints. Some specific cases of k-ECS also have other
applications; for example, the 2-ECS problem is closely related to the so-called 2-Factor Packing Problem which is used to
model certain geometrical guarding problems in grids [1].
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1.1. Notation and preliminaries

We will assume that all considered graphs are simple (without multiple edges or loops). For a given graph H , let V (H)
denote its vertex set and E(H) its edge set; for the input instance G we simply use the symbols V = V (G) and E = E(G).
The number of neighbours of a vertex v ∈ V (H) is the degree degH v of the vertex; the maximum vertex degree in graph H
is denoted∆(H). Graph H is called subcubic if∆(H) ≤ 3. Unless otherwise stated, amaximum element in a family of graphs
is a graph from this family having the maximum number of edges. For a set S ⊆ V (H), the maximum subgraph of H having
vertex set S is said to be induced by S and is denoted H[S].
Let f , g : V → N be integer functions on the vertex set of G fulfilling the relation f (v) ≤ g(v) for all v ∈ V . A subgraph

F ⊆ G is called an [f , g]-factor in G if V (F) = V and f (v) ≤ degF v ≤ g(v) for all v ∈ V . The term k-matching, for some
constant k ∈ N, is equivalent to a [0, k]-factor, and a 1-matching is simply known as a matching. We note that the problem
of finding a maximum [f , g]-factor in a graph can be solved in polynomial time (cf. [20] for a survey of approaches).
When considering the k-ECS problem, the symbol OPT is used to denote some arbitrarily chosen (but fixed) k-colorable

subgraph of Gwhich constitutes an optimal solution to k-ECS for G, and SOL denotes some k-colorable subgraphwhichmay
be returned as a solution by the currently considered algorithm. An algorithm is said to be an α-approximation algorithm
(α ≤ 1) if |E(SOL )|

|E(OPT )| ≥ α for all possible input instances and all possible executions of the algorithm.

1.2. State-of-the-art results

The k-ECS problem is known to be APX-hard for all k ≥ 2 [5,11,14] (cf. [7] for a detailed discussion). In view of this,
several simple approximation algorithms, working for all k, have recently been proposed; two of these are briefly outlined
below.
• The greedy strategy (cf. e.g. [7,10]) runs in k steps. In the ith step, a maximum matchingMi is selected in graph G and its
edges are colored with color i, added to the solution SOL , and removed from graph G. The approximation ratio of this
method is 1− (1− k−1)k, and this result holds even when G is allowed to be a multigraph.
• The k-matching-based algorithm [3,7] first finds a maximum k-matching F in the input graph G. Subgraph F is then edge-
colored with at most∆(F)+1 = k+1 colors using Vizing’s algorithm [15], and all the edges of F , except for those which
in the coloring of F received the least often used color, form the solution SOL . The algorithm achieves an approximation
ratio of k

k+1 ; note that this ratio tends to 1 as k tends to infinity.

In the special case of k = 2, the 2-ECS problem can be equivalently defined as the problem of finding a maximum
subgraph ofGwhose connected components are isolated vertices, paths, and cycles of even length. 2-ECS is known to beAPX-
hard even for the restricted class of 2-connected subcubic graphs, and it remains NP-hard even for 2-connected subcubic
planar graphs [1]. In general, a 34 -approximate solution is achieved by the greedy strategy (putting k = 2). However, a
slight modification of the k-matching-based algorithm is a 45 -approximation, and this ratio has recently been improved to
468
575 ≈ 0.814 by Chen and Tanahashi [3] using an extension of the same approach. An algorithm with a ratio of

28∆(G)−12
35∆(G)−21 ,

providing a further improvement for graphs of maximum degree∆(G) ≤ 10 only, has also been put forward [1].
Several other variants of the k-ECS problem have been studied as well. Algorithms with an approximation ratio which

tends to 1 as k tends to infinity have also been proposed for the case when G is allowed to be a multigraph [7,19].
Approximation results for k-ECS in the on-line model of computation were presented in [6].
Contribution and outline of the paper. In Section 2 we propose a new polynomial time approximation algorithm for 2-ECS
with an approximation ratio of 56 , thus improving the earlier

468
575 -approximation approach from [3]. In Section 3 we propose

a simple 45 -approximation algorithm for 3-ECS; to the best of our knowledge, this is the first result better than the trivial
3
4 -approximation approach to this problem. The closing section contains some remarks on possible extensions of the applied
techniques.

2. Approximation algorithm for 2-ECS

The proposed approach to 2-ECS is stated in the form of Algorithm 1, and an illustration of its execution is presented in
Fig. 1. In the following subsections we proceed to show that Algorithm 1 achieves an approximation ratio of p

p+1 , and that
all the steps of the algorithm can be implemented to run in polynomial time when we set the value of parameter p = 5.

2.1. Analysis of approximation ratio

In Step 1 of the algorithm we compute a 2-matching F such that all of its connected components are paths, even cycles,
or odd cycles of length at least p. Observe that the additional assumption given in Step 1 can easily be fulfilled for any graph
G. Initially, we find any maximum 2-matching F , and then perform a local modification of F for each pair of vertices {v,w}
which violates the assumption, namely, edge {v,w} is added to F and one of the two edges incident to v in the odd cycle is
removed from F . Since each such modification decreases the number of odd cycles in F , a suitable 2-matching F is obtained
after a finite number of iterations.
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Algorithm 1 Approximation algorithm for 2-ECS in input graph G
1. Find a maximum 2-matching F ⊆ G having no odd cycles of length less than p (parameter p should be chosen so that a
polynomial-time subroutine exists for this step). Select F in such a way that for any two vertices v,w ∈ V , such that v
belongs to an odd cycle of F and degF w < 2, we have {v,w} /∈ E(G).

2. Find a matching R ⊆ Gwhich fulfills the following conditions:
• all edges of R have either exactly one end-vertex belonging to some odd cycle of F , or two end-vertices belonging to
two different odd cycles of F .
• R is incident to the maximum possible number of odd cycles of F .
Subject to the above conditions, matching R should be minimal (in terms of inclusion).

3. Define subgraph H ⊆ G as H = (V , E(F) ∪ E(R)).
4. Return a maximum 2-edge-colorable subgraph of H as the solution SOL .

C1 C2 C3

a

b

Fig. 1. Exemplary execution of Algorithm 1 for p = 5: (a) input graph G (all edges), maximum 2-matching F (bold edges, |E(F)| = 17), an optimal solution
OPT to the 2-ECS problem for G (dashed edges, |E(OPT )| = 16); (b) maximum 2-matching F (bold edges), matching R (thin edges), subgraph H (all edges;
H = (V , E(F) ∪ E(R)) in this case), final solution SOL (dashed edges, |E(SOL )| = 15).

For an odd cycle component C ⊆ F we define the set N(C) of outer-neighbouring edges of cycle C as the set of edges of G
which have exactly one end-vertex in the vertex set of C . Let Γ denote the set of odd cycle components of F . For a subgraph
G′ ⊆ G, we denote by Γ (G′) ⊆ Γ the set of all odd cycles C ∈ Γ such that G′ is incident to C , i.e. E(G′) ∩ N(C) 6= ∅; the
set of all the remaining odd cycles is denoted Γ (G′) = Γ \ Γ (G′). In the example in Fig. 1(a) we have Γ = {C1, C2, C3},
Γ (OPT ) = {C2, C3}, Γ (OPT ) = {C1}.

Lemma 2.1. The size of an optimal solution to 2-ECS in G can be bounded as:

|E(OPT )| ≤ |E(F)| − |Γ (OPT )|. (1)

Proof. When Γ (OPT ) = ∅ the claim is obviously true since OPT is a 2-matching in G and F is a maximum 2-matching in
G. Now, consider an arbitrary cycle C ∈ Γ (OPT ); let |V (C)| = 2a + 1. Since OPT does not contain any edges from N(C),
and a 2-edge-colorable graph on 2a + 1 vertices has at most 2a edges, it follows that |E(OPT )| = |E(OPT [V \ V (C)])| +
|E(OPT [V (C)])| ≤ |E(OPT [V \ V (C)])| + 2a = |E(OPT [V \ V (C)])| + |V (C)| − 1. By repeating the same procedure for all
cycles C ∈ Γ (OPT ), we eventually obtain:

|E(OPT )| ≤ |E(OPT [V ′])| +

 ∑
C∈Γ (OPT )

|V (C)|

− |Γ (OPT )|, (2)

where V ′ = V \
⋃
C∈Γ (OPT ) V (C). For factor F we may write |E(F [C])| = |V (C)| for all C ∈ Γ (OPT ), and consequently:

|E(F)| = |E(F [V ′])| +
∑

C∈Γ (OPT )

|V (C)|. (3)
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Observe that OPT [V ′] is a 2-matching in G[V ′], and F [V ′] is a maximum 2-matching in G[V ′]. Hence |E(OPT [V ′])| ≤
|E(F [V ′])| and the claim follows directly from this bound and relations (2) and (3). �

Lemma 2.2. For the matching R constructed in Step 2 of Algorithm 1 we have |Γ (R)| ≥ 1
2 |Γ (OPT )|.

Proof. Consider the subsetA of edges ofOPT which are outer-neighbouring for at least one odd cycle,A = OPT ∩
⋃
C∈Γ N(C).

First, observe thatΓ (A) = Γ (OPT ). Since A is 2-edge colorable, it can be decomposed into twomatchings A1 and A2. Clearly,
|Γ (A1)|+|Γ (A2)| ≥ |Γ (A)| = |Γ (OPT )|, sowithout loss of generalitywe can assume that |Γ (A1)| ≥ 1

2 |Γ (OPT )|. Moreover,
all edges of A1 either have exactly one end-vertex in an odd cycle component of F , or both end-vertices in different odd cycle
components of F . Thus by the definition and the maximality of matching R, we obtain |Γ (R)| ≥ |Γ (A1)| ≥ 1

2 |Γ (OPT )|. �

When considering Steps 3 and 4 of the algorithm it is convenient to introduce a contraction operation with respect to F ,
defined as follows: for a subgraph G′ ⊆ G, its contraction graph G′F has a vertex set corresponding to the set of connected
components of F , and two vertices C1, C2 are connected by an edge if for some two vertices v1 ∈ V (C1) and v2 ∈ V (C2) of G′
there exists an edge {v1, v2} ∈ E(G′). Vertices of G′F corresponding to odd cycle components of F are called odd cycle vertices.
In this notation, Lemma 2.2 may be restated as follows.

Corollary 2.1. The contraction graph HF = (V , E(F) ∪ E(R))F has |Γ | odd cycle vertices, and exactly |Γ (R)| ≥ 1
2 |Γ (OPT )| of

these vertices are not isolated vertices.

By the minimality of matching R, we conclude that removing any edge from HF would violate the property expressed by the
above corollary, which means that all components of HF with more than one vertex have to be stars, of order at least 2, in
which all non-central vertices are odd cycle vertices (for the star of order 2 the center is chosen so as tomeet this condition).
Therefore graph H may be represented in the form of a union of connected components, H =

⋃
Ci∈C
Ci ∪

⋃
Si∈S
Si, where:

• each connected component belonging to set C is an odd cycle component of F ,
• each connected component S belonging to set S must be a support graph, where a support graph is by definition one of
the following graphs:
– an even cycle or path which appears as a subgraph of F (∆(S) ≤ 2),
– a star-of-cycles graph formed by connecting a connected subgraph of F (known as the center of S) with edges of R to
some non-zero number of odd cycle components of F (∆(S) = 3).

In the example (Fig. 1(b)) both of the connected components of H are support graphs from S, and C = ∅.
In the contraction graph of H , odd cycle vertices are isolated if and only if they correspond to a component in set C. For

any component S ∈ C∪S, denote by o(S) the number of odd cycle vertices contained in S. Taking into account Corollary 2.1
we immediately obtain:∑

Si∈S

o(Si) = |Γ (R)| ≥
1
2
|Γ (OPT )|, (4)

|C| =
∑
Ci∈C

o(Ci) ≤ |Γ | −
1
2
|Γ (OPT )| = |Γ (OPT )| +

1
2
|Γ (OPT )|, (5)

where we used the obvious fact that o(C) = 1 for all C ∈ C. For any component S ∈ C ∪ S, denote by f (S) the number of
edges of F contained in S; we have:

f (C) ≥ p, for all C ∈ C. (6)

Next, let s(S) be the size of a maximum 2-edge-colorable subgraph of S. It is clear that for any C ∈ C we can write:

s(C) = f (C)− 1. (7)

A similar expression now needs to be derived for components S ∈ S, taking into account their simple structural properties
as support graphs.

Lemma 2.3. For any support graph S we have:

s(S) ≥
p · f (S)+ o(S)

p+ 1
. (8)

Proof. To simplify notation, we will use the plain symbols f , o, and s when referring to graph S. Notice that the sought
condition may be equivalently rewritten as (p + 1)(f − s) ≤ f − o; we will concentrate on proving this version by
induction with respect to o. The claim clearly holds when S contains no odd cycles, since S is then an even cycle or path
of F (o = 0, f = s). Now, let SC ⊆ S be the connected subgraph of F forming the center of S, let l = |E(SC )|, and let
t = |E(S[V (S) \ V (SC )])| = f − l be the total number of edges in all odd cycles attached to the center of S. We need to
consider two cases.
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First, suppose that no two edges of R which belong to S have end-vertices which are neighbours in SC . Depending on
whether SC is an even cycle, a path, or an odd cycle, we have the following possibilities.

1. SC is an even cycle. Then clearly l ≥ 2o. We can define a 2-edge-colorable subgraph in S by taking all edges of F belonging
to S and discarding exactly one edge belonging to each odd cycle, hence s ≥ f − o. We may therefore write:

(p+ 1)(f − s) ≤ (p+ 1)o ≤ p · o+ l− o ≤ t + l− o = f − o,

which completes the proof in this case.
2. SC is a path. Recall that by the assumption made in Step 1 of the algorithm, no edge of G can connect an odd cycle of F
with an end-vertex of SC , hence as before we have l ≥ 2o. All the relations follow as in the previously considered case.

3. SC is an odd cycle. Then l ≥ 2o− 1 (recall that SC is also counted when calculating o). We can define a 2-edge-colorable
subgraph in S by taking all edges of F belonging to S, adding one edge connecting SC with an arbitrarily chosen odd cycle
in S, and then appropriately discarding exactly one edge from each odd cycle, hence s ≥ f + 1 − o. We therefore once
again obtain the sought inequality:

(p+ 1)(f − s) ≤ (p+ 1)(o− 1) ≤ p(o− 1)+ l− o ≤ t + l− o = f − o.

Next, suppose that there exists an edge e ∈ E(SC ) such that some two edges e1 ∈ E(R) ∩ E(S) and e2 ∈ E(R) ∩ E(S) are
incident to different end-vertices of e. Let C1, C2 ⊆ S be the odd cycle components of F attached to the other end-vertices
of e1 and e2, respectively. Consider the graph S ′ = S[V (S) \ (V (C1) ∪ V (C2))] formed by removing the edges e, e1, e2, and
the cycles C1 and C2 from S. Depending on whether SC was a cycle or a path, S ′ is either a support graph or a disjoint union
of two support graphs. Thus, denoting f ′ = f (S ′), o′ = o(S ′), and s′ = s(S ′), by the induction hypothesis we immediately
have (p+ 1)(f ′ − s′) ≤ f ′ − o′. Comparing the parameters of S ′ with S we obtain relations f ′ = f − 1− |E(C1)| − |E(C2)|,
o′ ≥ o − 3. Moreover, s ≥ s′ + |E(C1)| + |E(C2)|, since any 2-edge-colorable subgraph of S ′ can be extended to a 2-edge-
colorable subgraph of S by augmenting it with edges e1, e2, all but one edges from the cycle C1 and all but one edges from
the cycle C2. We therefore have:

(p+ 1)(f − s) ≤ (p+ 1)(f ′ + 1+ |E(C1)| + |E(C2)| − (s′ + |E(C1)| + |E(C2)|))
= (p+ 1)(f ′ − s′)+ p+ 1 ≤ f ′ − o′ + p+ 1
≤ f − 1− |E(C1)| − |E(C2)| − (o− 3)+ p+ 1 ≤ f − o− (p− 3) ≤ f − o,

which completes the proof. �

Taking into account relations (1) and (4)–(8) we finally obtain the sought bound on the approximation ratio:

|E(SOL )|
|E(OPT )|

≥
(1) |E(SOL )|

|E(F)| − |Γ (OPT )|
=

∑
Si∈S
s(Si)+

∑
Ci∈C
s(Ci)∑

Si∈S
f (Si)+

∑
Ci∈C
f (Ci)− |Γ (OPT )|

≥
(7) and (8)

p
∑
Si∈S

f (Si)+
∑
Si∈S

o(Si)

p+1 +
∑
Ci∈C
f (Ci)− |C|∑

Si∈S
f (Si)+

∑
Ci∈C
f (Ci)− |Γ (OPT )|

≥
(6)

p
∑
Si∈S

f (Si)+
∑
Si∈S

o(Si)

p+1 + |C|p− |C|∑
Si∈S
f (Si)+ |C|p− |Γ (OPT )|

≥
(4)

p
∑
Si∈S

f (Si)+
1
2 |Γ (OPT )|

p+1 + |C|p− |C|∑
Si∈S
f (Si)+ |C|p− |Γ (OPT )|

≥
(5)

p
∑
Si∈S

f (Si)+|C|−|Γ (OPT )|

p+1 + |C|(p− 1)∑
Si∈S
f (Si)+ |C|p− |Γ (OPT )|

=
p
p+ 1

+ |Γ (OPT )| ·
p− 1
p+ 1

·
1∑

Si∈S
f (Si)+ |C|p− |Γ (OPT )|

≥
p
p+ 1

,

where the last bound holds because
∑
Si∈S
f (Si)+ |C|p > |Γ | ≥ |Γ (OPT )|.

Proposition 2.1. Algorithm 1 finds a p
p+1 -approximate solution to the 2-ECS problem.

2.2. Algorithm complexity

Proposition 2.2. Algorithm 1 with parameter p = 5 can be implemented with polynomial running time.

Proof. By applying the algorithm of Hartvigsen [9] as a subroutine, we can in polynomial time find a maximum 2-matching
which has no cycles of length 3. This clearly allows us to perform Step 1 of the algorithm with parameter p = 5 also in
polynomial time.
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a b c

Fig. 2. Example of construction of auxiliary graph G′: (a) odd cycle C ⊆ F on 2a + 1 = 5 vertices, (b) local replacement of C in G′ , (c) values of vertex
functions f and g for the [f , g]-factor.

Step 2 of the algorithm can be implemented by solving the maximum weighted [f , g]-factor problem in a graph
G′ = (V ′, E ′), where sets V ′ and E ′, functions f , g : V ′ → N, and edge weights c : E ′ → N are chosen as follows. First,
we put V ′ = V and assign to E ′ the set of all edges from which matching R is to be selected by the algorithm, i.e., the set
of all edges of G having either exactly one end-vertex belonging to an odd cycle of F , or two end-vertices belonging to two
different odd cycles of F . For all v ∈ V we put f (v) = g(v) = 1. Next, for each odd cycle C ⊆ F , V (C) = {v1, . . . , v2a+1},
we add to V ′ two new vertices uC andwC , and to E ′ edge eC = {uC , wC } (known as the counting edge) and edges {vi, uC } for
all 1 ≤ i ≤ 2a+ 1 (known as star edges), see Fig. 2 for an illustration. For vertex uC we put f (uC ) = 0 and g(uC ) = 2a+ 1,
while for vertex wC we put f (wC ) = 0 and g(wC ) = 1. Finally, weights are assigned to edges from E ′ as follows: c(eC ) = 1
for counting edges, and c(e) = 0 for all other edges.
Observe that anymatching within G′[V ] can be extended to an [f , g]-factor on G′ simply by adding certain star edges and

counting edges to the matching; conversely, any [f , g]-factor on G′ restricted to vertex set V is a matching in G′[V ]. Now,
let R′ be a maximumweight [f , g]-factor in G′ (note that some [f , g]-factor in G′ always exists since the set of all star edges
in the graph constitutes a trivial solution to the problem). Since graph G′ has O(|V (G)|) vertices, the maximum weighted
factor computed in this step can be found in polynomial time [17]. It is easy to see that for any odd cycle component C ⊆ F ,
R′ contains the counting edge eC if and only if R′ contains at least one edge with one end-vertex in V (C) and the other end-
vertex in some other component of F . The weight of R′ is thus equal to the number of odd cycle components of F incident
to R′[V ]. By the maximality of the weight of R′, we have obtained that R′[V ] is a matching in G′[V ] incident to the maximum
possible number of odd cycle components of F . So, Step 2 is complete when we choose R as any subset of R′[V ], minimal in
terms of inclusion, which is adjacent to the same number of odd cycle components of F as R′[V ].
Steps 3 and 4 of the algorithm can be performed in linear time, taking into account the discussion from Section 2.1.

In Step 4 we can easily find an optimal 2-edge-colorable subgraph of H taking advantage of the special structure of the
connected components ofH which are paths, cycles, or stars-of-cycles. A 2-edge-colorable subgraph inH , having a sufficient
number of edges to guarantee the overall p

p+1 -approximation ratio of Algorithm 1, can also be obtained simply by applying
the procedure implied by the proof of Lemma 2.3. �

Combining Propositions 2.1 and 2.2 we obtain the final result of this section.

Theorem 2.1. The 2-ECS problem admits a polynomial-time 56 -approximation algorithm.

3. Approximation algorithm for 3-ECS

A simple 45 -approximation approach to the 3-ECS problem is presented in the form of Algorithm 2. In Step 1 we compute
a maximum 3-matching F ⊆ G, which provides an upper bound on the size of the optimum solution to the problem,
|E(F)| ≥ |E(OPT )|. We now show that the sought solution SOL to 3-ECS can simply be chosen as an appropriate subgraph
of F .

Proposition 3.1. For any subcubic graph F there exists a 3-edge-colorable subgraph SOL ⊆ F such that |E(SOL )| ≥ 4
5 |E(F)|.

Proof. If F is triangle-free, then the claim holds since by a result of Bondy and Locke [2] any triangle-free subcubic graph has
a bipartite subgraph on a 45 part of its edges, and a subcubic bipartite graph is 3-edge-colorable. When F is not triangle-free,
consider the slight modification of this approach applied in the construction of SOL in Steps 2-7 of Algorithm 2. We can
write |E(F)| = d + t + |E(F ′′)|, where d and t denote the number of edges of F contained in the removed diamonds and
contracted triangles in Steps 2 and 3, respectively. Then the size of the 3-edge-colorable subgraph SOL is equal to the sum
of the size of subgraph |E(B)| = |E(B′′)| ≥ 4

5 |E(F
′′)|, the number t of edges in the triangles, and the number 45d of edges in

the four-vertex cycles of the diamonds; clearly, |E(SOL )| ≥ 4
5 |E(F)|. �
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Algorithm 2 Approximation algorithm for 3-ECS in input graph G
1. Find a maximum 3-matching F ⊆ G.
2. Obtain diamond-free subcubic graph F ′ from F by iteratively removing all subgraphs isomorphic to diamonds (Fig. 3(a))
from F .

3. Obtain subcubic graph F ′′ from F ′ by iteratively contracting all triangles in F ′ into single vertices (Fig. 3(b)).
4. Find a bipartite subgraph B′′ ⊆ F ′′ such that |E(B′′)| ≥ 4

5 |E(F
′′)|, using the algorithm of Bondy and Locke [2].

5. Edge color B′′ using 3 colors.
6. Map the edges of B′′ into the edges of the corresponding subgraph B of F , retaining a correct 3-edge-coloring of B.
7. Extend the 3-edge-coloring of B to all triangles of F which were contracted in Step 3, and to the four-vertex cycles of all
the diamonds removed in Step 2 (relevant cases are shown in Fig. 3(c) and (d)). Return the final edge-colored subgraph
as the solution SOL .

a b

c d

Fig. 3. Handling of triangles in a subcubic graph: (a) a diamond subgraph, (b) contraction of a triangle, (c) extending the coloring to a de-contracted
triangle, (d) extending the coloring to the four-vertex cycle of a re-inserted diamond. Dashed edges may but need not appear in the graph.

Table 1
Best known approximation ratios of algorithms for k-ECS.

k-ECS k = 2 k = 3 k = 4 k = 5 k = 6 k→∞

ratio 5/6 4/5 4/5 5/6 6/7 → 1
Theorem 2.1 Theorem 3.1

The running time of Algorithm 2 is determined by Step 1, which can be solved in O(|V |1/2|E|2) time using an algorithm
formaximum k-matchingwhere k is constant [8]. All the remaining operations are restricted to subcubic graphs and require
O(|V |2) time; in particular Step 4 makes use of a subroutine implied by the proof of Bondy and Locke [2], while Step 5 can
be solved by a linear-time algorithm for edge-coloring bipartite graphs of bounded degree [4]. We can therefore write the
following theorem.

Theorem 3.1. The 3-ECS problem admits an O(|V |1/2|E|2)-time 45 -approximation algorithm.

4. Final remarks

A comparison of the best known approximation ratios achieved by algorithms for k-ECS for different values of k is given
in Table 1. The values for k = 2 and k = 3 correspond to the results described in the paper, whereas for k ≥ 4 the ratios are
obtained by applying the simple k-matching-based k

k+1 -approximation algorithm outlined in the introduction.
The k-ECS problem appears to have a fundamentally different nature depending on the parity of k. For odd values of k

it may be possible to improve the approximation ratio simply by carefully edge-coloring the maximum k-matching, trying
to use color k + 1 as seldom as possible. For even values of k such an improvement probably cannot be applied in general
(since then only a k

k+1 proportion of the edges of the clique Kk+1 can be edge-colored with k colors). It is interesting to ask
whether a generalisation of the techniques used herein for the cases of k = 2 and k = 3 could be applied for other even and
odd values of k, respectively.
Considerations concerning 3-ECS in Section 3 lead naturally to the following extremal problemwhich is of some interest

in its own right:what is the proportion % of edges of a subcubic graph which can always be colored with 3 colors? This question
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was probably first formulated in [12], where a bound useful for graphs of small dominating number was provided. In the
general case, the properties of bipartite subgraphs of triangle-free subcubic graphs discussed in Section 3 lead to the lower
bound% ≥ 4

5 . In follow-upwork on the subject available at the timeof preparation of these proofs, by substantially extending
the techniques proposed in Section 3, Rizzi [18] has established that % = 6

7 .
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