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[1] When the unsaturated flow equation is solved with the finite difference method,
the water flux between two adjacent nodes of the grid is approximated with a discrete form
of Darcy’s law. It requires the average value of the hydraulic conductivity in the
considered grid block. Since the hydraulic conductivity in unsaturated soil is a highly
nonlinear function of the water potential, the nodal conductivities can vary by multiple
orders of magnitude, which makes the choice of the appropriate averaging procedure
a nontrivial task. In this paper we present a new method to calculate the internodal
conductivity for an arbitrary type of the conductivity function and arbitrary large grid size.
It is based on the analysis of approximate profiles of the water potential head for steady
flow between nodes. Numerical experiments show that the method is reasonably
accurate for a wide range of soil types, for both steady and unsteady flow simulations.

Citation: Szymkiewicz, A. (2009), Approximation of internodal conductivities in numerical simulation of one-dimensional
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1. Introduction

[2] Many applications of civil and environmental engi-
neering require numerical simulation of the water flow in
the unsaturated zone of soil. The unsaturated flow is
commonly described with the Richards’ equation (RE),
based on the assumption that the air phase in soil is at
constant atmospheric pressure. Numerical solution of RE is
not trivial, due to nonlinear relations between the soil water
potential head, volumetric water content, and hydraulic
conductivity. This paper focuses on the problems caused
by the nonlinear dependence of the hydraulic conductivity
on the water potential head, occurring in the finite differ-
ence solution of one-dimensional RE. Since the values of
the hydraulic conductivity at two adjacent nodes can vary
by several orders of magnitude, some kind of average
conductivity should be used in order to approximate the
water flux between nodes with a finite difference formula.
The most popular approach seems to be the standard arith-
metic mean of the nodal values; however, it can produce
significant errors in some situations [e.g., Haverkamp and
Vauclin, 1979; Baker et al., 1999; Belfort and Lehmann,
2005]. Alternative propositions include, among others, the
geometric, upstream-weighted, and integrated means. Com-
parisons of various approximations can be found in the
literature [e.g., Haverkamp and Vauclin, 1979; Srivastava
and Guzman-Guzman, 1995;Miller et al., 1998; Belfort and
Lehmann, 2005], but the conclusions are difficult to gener-
alize, since in each case numerical simulations were per-
formed for a limited number of soil materials and grid sizes.

[3] A consistent framework for the assessment of various
averaging schemes is provided by the so-called Darcian
mean approach [Warrick, 1991]. In this method the average
internodal conductivity is calculated from the Darcy’s law
assuming steady state flow between two adjacent nodes,
which leads to very accurate results. This concept was
further developed by Baker [1995, 2000], Baker et al.
[1999], and Gastó et al. [2002], who approximated the
Darcian means either as a weighted average of the integrat-
ed mean and the conductivity of the upper node or as a
weighted average of the two nodal conductivities. The
formula of Gastó et al. [2002] is simple to implement, but
it can be applied neither for an arbitrary type of the
conductivity function nor for arbitrary large spatial steps.
The method of Baker [2000] does not have these limita-
tions, but it is relatively complex in implementation. In this
paper we propose a scheme which can be applied to any
type of the conductivity function and requires only a little
more numerical effort than the integrated mean approach.

2. Background

[4] The one-dimensional (1-D) form of RE can be written
as follows [e.g., Kutı́lek and Nielsen, 1994; Warrick, 2003]:

@q hð Þ
@ t
þ @ q
@ z
¼ 0 ð1aÞ

q ¼ �K hð Þ @ h

@ z
� g

� �
; ð1bÞ

where h is the soil water potential head (negative in the
unsaturated zone), q(h) is the volumetric water content, q is
the volumetric water flux, K(h) is the hydraulic conductiv-
ity, and g is the cosine of the angle between the z axis and
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the direction of the gravity force. For vertical flow g = 1 and
for horizontal flow g = 0, while for flow in an inclined
column g assumes intermediate values. If mass forces other
than gravity are present (e.g., during flow in a centrifuge), g
may assume values larger than one [e.g., Caputo and
Nimmo, 2005]. Equations (1a) and (1b) should be
complemented by specifying the hydraulic functions,
relating q, h, and K [e.g., Brooks and Corey, 1964; Mualem,
1976; van Genuchten, 1980].
[5] In order to solve equations (1a) and (1b) numerically,

the finite difference method is often used. The solution
domain is discretized with a number of nodes (Figure 1),
and the water fluxes between adjacent nodes are approxi-
mated according to the following formula:

qUL ¼ �KAV

hL � hU

zL � zU
� g

� �
¼ �KAV

D h

D z
� g

� �
; ð2Þ

where the indices U and L refer to the upper and the lower
nodes, respectively, and KAV is the average internodal
conductivity. This spatial discretization scheme can be
combined with a number of approaches for the discretiza-
tion in time, ranging from the relatively simple (and most
common) first-order fully implicit Euler scheme [e.g., Celia
et al., 1990; Šimůnek et al., 1998] to the sophisticated high-
order backward difference formulae [e.g., Miller et al.,
1998]. Regardless of the method used for the discretization
in time, the overall accuracy of the numerical scheme
depends very much on the spatial discretization error, which
in turn is mostly determined by the method of estimating
KAV. A similar problem arises when the finite element

method is used for spatial discretization of RE. In such a
case, the average conductivity over a single element has to
be estimated. Some of the most popular choices for KAV

include

Arithmetic mean [e.g., Celia et al., 1990; van Dam and
Feddes, 2000]

KARIT ¼ 0:5 KU þ KLð Þ ð3aÞ

Geometric mean [e.g., Haverkamp and Vauclin, 1979]

KGEOM ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
KUKL

p
ð3bÞ

Upstream-weighted mean [e.g., Forsyth et al., 1995;
Oldenburg and Pruess, 1993]

KUPS ¼
KU ; if

D h

D z
� g � 0

KL; if
D h

D z
� g > 0

8><
>: ð3cÞ

Integrated mean [e.g., Srivastava and Guzman-Guzman,
1995; Miller et al., 1998]

KINT ¼
1

hL � hUð Þ

Z hL

hU

K yð Þdy ¼ F hLð Þ � F hUð Þ
hL � hUð Þ ; if hU 6¼ hL

KU ; if hU ¼ hL

;

8<
:

ð3dÞ

where F(h) denotes the Kirchhoff transformed variable,

F hð Þ ¼
Z h

�1
K yð Þdy :

Other, less often used averaging schemes include harmonic
mean [Oldenburg and Pruess, 1993; Manzini and Ferraris,
2004], computing conductivity from the arithmetic average
of nodal saturations [Miller et al., 1998] or nodal potential
heads [Haverkamp and Vauclin, 1979], or numerical
approximations to KINT based on low-order quadratures
[Srivastava and Guzman-Guzman, 1995]. Previous research
has shown that none of the averaging schemes listed above
produces satisfactory results in the whole range of grid
sizes, soil textures, and flow directions. Most of the studies
reported up till now focused on vertical infiltration into dry
soil, and showed that inaccurate estimation of KAV may lead
to considerable overestimation or underestimation of the
position of the wetting front [Haverkamp and Vauclin,
1979; Warrick, 1991; Belfort and Lehmann, 2005]. More-
over, for large Dz the underestimation of KAV produce
oscillatory solutions, inadmissible from the physical point
of view [Baker et al., 1999; Szymkiewicz, 2007].
[6] It is known that the value of KAV depends on the ratio

of capillary to gravity forces at the scale of a single grid
block [Warrick, 1991; Zaidel and Russo, 1992; Baker,
2000]. The integrated mean KINT is an accurate approxima-
tion of KAV for capillary-dominated flow, either horizontal
(g = 0) or vertical with jDh/Dzj � g [e.g., Miller et al.,
1998; Belfort and Lehmann, 2005]. On the other hand, for
gravity-dominated infiltration (large Dz) good results are
obtained with the upstream-weighted mean KUPS [Forsyth
et al., 1995; Baker et al., 1999]. Upstream weighting is also

Figure 1. Spatial discretization of one-dimensional
unsaturated flow equation with the finite difference method.
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the preferred choice for advection-dominated two-phase
flow [Helmig and Huber, 1996]. This observation motivated
some authors [e.g., Zaidel and Russo, 1992] to split the total
water flux in two parts: a diffusive one (capillarity-related)
and an advective one (gravity-related) and to use different
approximations of the internodal conductivity for each
component:

qUL ¼ �KCAP

hL � hU

D z
þ KGRAV g; ð4Þ

where KCAP and KGRAV correspond to the capillary-driven
and gravity-driven part of the total flux, respectively. Zaidel
and Russo [1992] used the standard arithmetic mean KARIT

for KGRAV. For KCAP they developed an asymptotic weighted
approximation, which can be used for soils described by van
Genuchten–Mualem hydraulic functions. Zhang and Ewen
[2000] used a similar scheme with KINT for KCAP and KARIT

or KUPS for KGRAV. If the capillary and gravity forces act in
the opposite directions, care should be taken that q has the
sign consistent with the sign of the total hydraulic gradient
(Dh/Dz � g). Otherwise, nonphysical inverse fluxes may
occur for some combinations of KCAP and KGRAV. To avoid
this problem, Ross [2003] recommended using a weighted
arithmetic mean for KGRAV, with adjustable weighting
coefficients.
[7] Accurate estimation of KAV is possible using the

concept of Darcian means introduced by Warrick [1991].
When solving an unsteady flow problem, the internodal
conductivity KAV for any pair of nodes should be chosen in
such a manner that the water flux obtained with equation (2)
is equal to the water flux for the steady state flow between
the two nodes. The steady flow is described by the follow-
ing equation:

� @

@ z
K hð Þ @ h

@ z
� g

� �� �
¼ 0; zU � z � zL ð5aÞ

with the boundary conditions

h zUð Þ ¼ hU ð5bÞ

h zLð Þ ¼ hL: ð5cÞ

[8] Depending on the complexity of the K(h) function,
the steady state problem given by equations (5a) and (5b)
can be solved either analytically [Baker, 1995] or numeri-
cally [Warrick, 1991; Baker, 2000; Gastó et al., 2002],
yielding the fine-scale pressure distribution h(z) between the
two nodes zU and zL and the corresponding value of qSTEADY,
which is constant within the interval. The Darcian conduc-
tivity is then computed as

KDAR ¼
�qSTEADY

hL � hUð Þ=Dz� gð Þ : ð6Þ

It is impossible to use this approach directly for practical
purposes, as the numerical solution of the steady state flow
equation for each pair of nodes is a problem in itself and
would excessively lengthen the time of computations for the
unsteady problem. Thus Warrick [1991] and later Gastó et

al. [2002] proposed expressing the internodal conductivity
as a weighted arithmetic mean of the nodal values:

KGASTO ¼ wKU þ 1� wð ÞKL; ð7Þ

where the weighting coefficient w 2 h0;1i is chosen in such
a way that KAV � KDAR. Gastó et al. [2002] found w to be a
function of four variables: KU, KL, Dz/hg, and n, where hg
and n are soil-dependent parameters appearing in Brooks-
Corey and van Genuchten–Mualem conductivity functions.
Additionally, the function w contains five fitting parameters
obtained by a numerical calibration procedure. While
accurate and useful in many situations, the approach of
Gastó et al. [2002] has some limitations. First, the fitting
parameters are provided only for the standard functions of
Brooks-Corey and van Genuchten–Mualem (with connec-
tivity parameter equal to 0.5). For any other type of function
a separate calibration procedure would be necessary, which
involves a considerable numerical effort. Second, the
method cannot be used for Dz � hg because the empirical
formula may produce negative values of w and KGASTO [see
Gastó et al., 2002, equations (8a), (9), (10)]. This may be
inconvenient for coarse textured soils, characterized by
small values of hg (of the order of a few centimeters).
[9] Another type of Darcian averaging scheme was

developed by Baker [1995], Baker et al. [1999], and Baker
[2000]. The internodal conductivity is written as

KBAKER ¼ 1� wvð ÞKINT þ wvKU ; ð8Þ

where wv is a weighting coefficient from the range h0,1i. In
contrast to equation (7), equation (8) defines the internodal
conductivity as a linear combination of its actual limit
values. The weighting coefficient wv is given by a relatively
complex analytical formula and requires that the conduc-
tivity function K(h) be inverted to compute an intermediate
value of the water potential head corresponding to the
geometric mean of the nodal conductivities, h(K =

ffiffiffiffiffiffiffiffiffiffiffiffi
KUKL

p
).

Some of the conductivity functions (including the widely
used van Genuchten–Mualem function) cannot be inverted
analytically, and thus additional numerical effort is required
to compute KAV.
[10] One should note that even if a simple conductivity

averaging scheme is used, the error related to incorrect
approximation of the fluxes can be significantly reduced by
grid refinement in the zones where large gradients of water
potential are expected. In typical hydrological simulations,
improvement can be obtained by local grid refinement near
the soil surface [e.g., van Dam and Feddes, 2000]. More
sophisticated adaptive schemes have been also developed,
where the grid is dynamically refined during the solution,
according to the formal estimation of the spatial discretiza-
tion error [Miller et al., 2006]. Despite the utility of these
methods, it seems that there still is interest in developing
conductivity averaging schemes yielding accurate results for
a wide range of Dz values and K(h) functions, which can be
relatively easily implemented into existing numerical codes,
often based on low-order spatial and temporal approxima-
tions [e.g., Šimůnek et al., 1998; Belfort and Lehmann,
2005; Pei et al., 2006]. On the other hand, if more accurate
conductivity averaging schemes were used in conjunction
with spatially adaptive approaches, one could expect an
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increase in their efficiency, since the required accuracy
would be achieved with a lower level of grid refinement.

3. Approximation of the Internodal Conductivity
for Various Types of Flow

3.1. Limit Values of the Internodal Conductivity

[11] The results reported by Warrick [1991], Baker [2000,
2006], and Gastó et al. [2002] suggest that the most
accurate approximation of KAV is given by the Darcian
mean, corresponding to the steady flow between two nodes.
Thus the method developed here is based on the analysis of
steady state distribution of the potential head, h(z), between
zU and zL. The shape of the potential profile depends on the
type of flow. Three major cases can be distinguished
[Warrick and Yeh, 1991]: Dh/Dz < 0 (Figure 2a), g > Dh/
Dz > 0 (Figure 2b), and Dh/Dz > g (Figure 2c).
[12] The first case corresponds to infiltration in dry soil.

The second case describes either drainage or infiltration
toward a nearby water table. The third case represents
vertical uptake of water by capillary forces. For simplicity
these types of flow will be called infiltration, drainage, and
capillary rise, respectively. For each type of flow the
capillary gradient Dh/Dz varies in a specific range. Previ-
ous research [Baker et al., 1999; Baker, 2000, 2006] allows
us to determine the values of KAV corresponding to the limit
values of Dh/Dz:

Infiltration

KAV ! KINT for
Dh

Dz
! �1 and KAV ! KU for

Dh

Dz
! 0

Drainage

KAV ! KU for
Dh

Dz
! 0 as well as for

Dh

Dz
! g

Capillary rise

KAV ! KU for
Dh

Dz
! g and KAV ! KINT for

Dh

Dz
!1:

[13] The above relations and the difference in shapes of
the potential head profiles shown in Figure 2 suggest that a
different approximating formula is needed for each of the
three types of flow. Note that two other cases are possible,
when Dh = 0 and Dh/Dz = g, respectively. In each of these
cases KAV = KU.

3.2. Infiltration

[14] The internodal conductivity for infiltration should
vary between KINT and KU, depending on the ratio of the
capillary and gravity forces at the grid block scale. For a
gravity-dominated flow, oscillations may arise in the
numerical solution if the applied averaging method under-
estimates KAV with respect to the Darcian mean. This effect
can be explained by the example of a simple numerical grid
shown in Figure 3a. The grid is composed of three nodes,
z0, zU, and zL. Let us denote the fluxes in the upper and
lower part of the domain by q(1) and q(2), respectively, and
the corresponding internodal conductivities by KAV

(1) and KAV
(2).

For steady flow the physically admissible solutions are
shown by solid lines. They are obtained when the value
of the potential hU at the intermediate note zU is between
hA = (hL + h0)/2 and h0. The value of hU should be such that
the flux at point zU is continuous. The case of hU = hA
corresponds to the saturated flow with KAV

(1) = KAV
(2) and

uniform hydraulic gradient in the domain. For unsaturated
flow KAV

(1) > KAV
(2) and with hU = hA, one has q(1) > q(2), and

thus hU should be greater than hA. In the limit one can arrive
at hU = h0, and consequently q(1) = KU. If the applied
method of averaging underestimates KAV

(2), it may happen
that even in such a case one has still q(1) > q(2). In order to
equilibrate the two fluxes, hU would then assume values
larger than h0, producing oscillations in the numerical
solution (indicated by the dashed line in Figure 3a). Obvi-
ously, the maximum possible amplitude of the oscillations
will not exceed Dz, since for hU = h0 + Dz one obtains the
hydrostatic potential distribution between z0 and zU, and
thus q(1) = 0 < q(2). A similar analysis based on three-point
grid was carried out by Baker [2006] to show deficiencies of
many commonly used averaging methods. In the present
paper it is further developed to derive a more accurate
approximation of the internodal conductivity. It should be
noted that oscillation-free solution is ensured when KAV

(2) is
approximated in such a manner that q(2) � q(1) for hU = h0,
which can be written as

g KU � �K 2ð Þ
AV

hL � hU

Dz
� g

� �
ð9Þ

K
2ð Þ
AV �

g KU

g �Dh=Dz
; ð10Þ

where Dh = hL � hU < 0. Equation (10) represents a
sufficient, although not necessary condition for a non-

Figure 2. Approximate forms of the steady state water potential head profiles for different types of flow
[after Warrick and Yeh, 1991].
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oscillating solution. In some situations physically admis-
sible profiles can be obtained for smaller values of KAV

(2), but
the use of the presented approximation guarantees an
oscillation-free solution for all cases. Note that previously
some authors recommended using the upstream-weighted
mean KUPS to eliminate oscillations for gravity-driven
infiltration [Forsyth et al., 1995] or for advection-dominated
two-phase flow [Helmig and Huber, 1996]. For downward
infiltration KUPS = KU, and thus the inequality (10) is
satisfied, but the value of the interblock conductivity can
be significantly overestimated. The right-hand side of
equation (10) represents the minimum value of KAV

(2), which
ensures oscillation-free solution and gives a more accurate
estimation of KAV

(2).
[15] As Dh/Dz ! �1, the limit value of KAV

(2) given
by equation (10) tends to 0. In such a case, however, we can
use the integrated mean KINT to estimate KAV. The general
formula for approximating KAV between two adjacent nodes
zU and zL has thus the following form:

KAV ¼ max KINT ;
g KU

g � hL � hUð Þ=Dz

� �
; ð11Þ

which allows us to obtain the correct limit values of KAV for
Dh/Dz ! �1 and Dh/Dz ! 0. Note that the analysis
presented remains valid for a nonuniform nodal spacing. In
such a case the value of Dz in equation (11) will simply be
different for each pair of nodes.

3.3. Drainage

[16] A similar estimation for KAV as given by equation
(10) can be derived for the case of drainage flow. Consider

the numerical grid shown in Figure 3b. Physically admis-
sible water potential profiles correspond to the range of hU
2 hh0, hAi, where hA = (h0 + hL)/2. In unsaturated conditions
KAV
(1) is smaller than KAV

(2). Thus the hydraulic gradient in the
lower part of the domain should be smaller. In the limit case,
when hU = h0, the average conductivity between nodes zU
and zL should fulfill the following condition:

g KU � �K 2ð Þ
AV

hL � hU

Dz
� g

� �
; ð12Þ

which implies

K
2ð Þ
AV �

g KU

g �Dh=Dz
: ð13Þ

If KAV
(2) is overestimated and does not satisfy equation (13),

the water fluxes q(1) and q(2) equilibrate for hU < h0 (the
minimum possible value being hU = hL � Dz, which gives
q(2) = 0). As in the previous case, equation (13) represents a
sufficient, but not necessary condition to obtain oscillation-
free solution.
[17] Note that as Dh/Dz approaches g, the limit value of

KAV
(2) provided by equation (13) tends to infinity. For such a

case another estimation is required. To this order let us
consider an approximate water potential head profile within
a single grid block between zU and zL, assuming that Dz is
larger than Dh only by a small value dz, i.e., the hydrostatic
distribution of the water potential is approached (Figure 4).
We introduce an intermediate point zR, which divides the
grid block in two unequal intervals hzU, zRi and hzR, zLi. For

Figure 3. Approximate profiles of the water potential head in the numerical solution of steady (a)
infiltration and (b) drainage, for g = 1 Solid lines represent physically admissible profiles, and dashed
lines represent physically inadmissible oscillatory profiles resulting from underestimation (Figure 3a) or
overestimation (Figure 3b) of the internodal conductivity between nodes zU and zL.
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linear potential distribution the value of hR would be equal
to hB = (hL � (Dh)2/(gDz)). In unsaturated conditions the
potential head hR should be between hU and hB = (hL �
(Dh)2/(gDz)). From Figure 4 we may assume that the
hydraulic gradient within the segment hzR, zLi is approx-
imately the same as the hydraulic gradient between zU
and zL, and both of them are close to zero, [(hL � hR)/
(zL � zR) � g] � [(hL � hU)/(zL � zU) � g] ! 0. On the
other hand, for the conditions close to the hydrostatic state
the value of the internodal conductivity approaches the
conductivity of the upper node. Thus the average conduc-
tivity in the segment hzR, zLi is approximately K(hR) = KR.
The value of KR is not known; it lies between KU and KB.
Let us assume KR � KB (if one assumed KR equal to KU,
then the conductivity for the whole grid block would be
equal KU, which is correct only for the limit case when

Dh/Dz = g). Consequently the water flux between zR and
zL is estimated as

q 2ð Þ � �KR

hL � hR

Dz� dz
� g

� �
� �KB

hL � hU

Dz
� g

� �
: ð14Þ

For steady flow the flux q(2) should be equal to the average
flux in the domain qUL = �KAV [(hL � hU)/Dz � g], which
implies

KAV ¼
�q 2ð Þ

hL � hUð Þ=Dz� g
� KB ¼ K hL � Dhð Þ2= gDzð Þ

� �
:

ð15Þ

For Dh! Dz, equation (15) gives the expected limit value
KAV! KU, while for Dh� Dz equation (15) gives KAV!
K(hL) = KL (which is an overestimation). In order to
estimate KAV with a reasonable accuracy for an arbitrary
value of Dh/Dz from the range (0; g) it is suggested to
take the smaller value of the two estimations given by
equations (13) and (15):

KAV ¼ min
g KU

g �Dh=Dz
; K hL � Dhð Þ2= gDzð Þ
� �� �

: ð16Þ

3.4. Capillary Rise

[18] The physically admissible steady state profiles for
capillary rise are shown in Figure 5. In this case an error in
the estimated value of KAV does not produce oscillations.
Actually, the difference between the smaller conductivity in
the upper part and the larger conductivity in the lower part
of the domain can be always compensated for by the fact
that the hydraulic gradient in the lower part can be set
arbitrarily close to zero (hydrostatic state), thus enabling us
to equilibrate fluxes. Consequently, no limit values for KAV

similar to the ones given by equation (10) or (13) can be
derived. However, one can still use the approximate shape
of the steady state pressure profile to derive a reasonably
accurate estimation for KAV. Consider the situation shown in
Figure 5. The interval (zU, zL) is divided by the point zR,
located at some small distance dz below zU. We assume that

Figure 5. Approximate steady state profile of the water potential head within a single grid block during
capillary rise (g = 1).

Figure 4. Approximate steady state profile of the water
potential head within a single grid block during drainage
when Dh/Dz approaches g = 1.
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the lower part of the profile is close to the hydrostatic
state, which implies KAV

(2) = K(hR). For the upper part of the
profile we assume that hR � hU � g(zR � zU), implying
capillary-dominated flow and consequently KAV

(1) = KINT
(1) =R hR

hU
K(y)dy /(hR � hU). The average internodal conductiv-

ity will be equal to the weighted harmonic mean of KAV
(1)

and KAV
(2):

KAV ¼
Dz K

1ð Þ
AVK

2ð Þ
AV

Dz� dzð ÞK 1ð Þ
AV þ dzK 2ð Þ

AV

: ð17Þ

The value of dz can be obtained from the flux continuity
condition at node zR:

�K 1ð Þ
AV

Dh� gDz

dz
� g

� �
¼ �K 2ð Þ

AV

gDz

Dz� dz
� g

� �
: ð18Þ

Equation (18) represents a quadratic equation for dz, with
one positive and one negative root. The positive root is

dz ¼
�Dhþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dhð Þ2þ4 K

2ð Þ
AV =K

1ð Þ
AV � 1

� �
g Dh� gDzð ÞDz

r

2 g K
2ð Þ
AV =K

1ð Þ
AV � 1

� � :

ð19Þ

Substituting equation (19) into (17) one obtains the final
estimation for KAV.

3.5. Summary

[19] The proposed method for calculating the internodal
conductivity can be summarized in form of the following
pseudocode:

define function FK(h)
// hydraulic conductivity as function of the water potential
head

define function FKintegrated(h1,h2)
// integrated mean conductivity
input hU, hL, zU, zL, Gamma
Dh = hL�hU, Dz = zL�zU, KU = FK(hU), KL = FK(hL)
if (Dh = = 0.0) or (Dh = = Gamma*Dz) then

// uniform or hydrostatic h distribution
KAV = KU
else if (Dh/Dz < 0) then
// infiltration
K1 = FKintegrated(hU,hL)
K2 = Gamma*KU/(Gamma�Dh/Dz)
KAV = max(K1,K2)
else if (Dh/DZ < Gamma)
// drainage
K1 = Gamma*KU/(Gamma�Dh/Dz)
K2 = FK(hL�Dh*Dh/(Gamma*Dz))
KAV = min(K1,K2)
else
// capillary rise
K1 = FKintegrated (hU, hL�Dz)
K2 = FK(hL�Gamma*Dz)
A = sqrt(Dh*Dh+4*(K2/K1�1)*Gamma*(Dh-
Gamma*Dz)*Dz)�Dh

B = 2*Gamma*(K2/K1�1)
Dz1 = A/B
KAV = Dz*K1*K2/((Dz�Dz1)*K1+Dz1*K2)
end if

[20] The algorithm requires two user-defined functions:
one for the hydraulic conductivity (FK(h)) and one for the
integrated mean conductivity (FKintegrated(h1,h2)). Such a
procedure can be easily implemented into existing numer-
ical codes based on finite difference or low-order finite
element approximation of the water fluxes.

4. Accuracy Assessment for Steady Flow

[21] The accuracy of the proposed method has been
evaluated by comparison with the Darcian mean approach.
Darcian means provide the exact values of the internodal
conductivity for steady flow and have been shown to be a
very good approximation also for transient flow problems
[Warrick, 1991; Baker, 2000; Gastó et al., 2002]. The
comparisons were performed for a wide range of soil types,
grid sizes, and potential heads.
[22] Fifteen soils were chosen, characterized by a variety

of conductivity functions. The conductivity function for
each soil is expressed as K(h) = KSKREL(h), where KS is
the conductivity at saturation and KREL is the dimensionless
relative conductivity. KS is essentially a scaling factor and
was assumed equal to unity in each case. The parameters of
the KREL(h) functions are listed in Table 1.
[23] Soils 1–4 were taken from the soil database in

HYDRUS-1D software [Šimůnek et al., 1998] and corre-
spond to the typical examples of sand, sandy loam, silty loam,
and silty clay, as reported by Carsel and Parrish [1988].
They are described by the van Genuchten [1980] retention
function with Mualem [1976] conductivity function:

SE ¼ 1þ h=hg
�� ��n� 	�m

; ð20aÞ

KREL ¼ SLE 1� 1� S
1=m
E

� �m� �2
; ð20bÞ

where SE is the effective saturation, hg is a parameter related
to the average pore size, n is a parameter related to the pore
size distribution, m = 1 � 1/n, and L is the connectivity
parameter (L = 0.5 for Soils 1–4).

Table 1. Hydraulic Parameters of the Soils Used for Accuracy

Evaluation

Soil
Equations
for KREL(h)

hg (cm)
(or A [ ])

n [ ]
(or l [ ]) m h [ ] L [ ]

1 (20a), (20b) 6.9 2.680 0.627 . . . 0.50
2 (20a), (20b) 13.3 1.890 0.471 . . . 0.50
3 (20a), (20b) 50.0 1.410 0.291 . . . 0.50
4 (20a), (20b) 200.0 1.090 0.083 . . . 0.50
5 (21a), (21b) 7.2 0.592 . . . 5.88 . . .
6 (21a), (21b) 14.7 0.322 . . . 8.71 . . .
7 (21a), (21b) 20.7 0.211 . . . 11.98 . . .
8 (21a), (21b) 34.2 0.127 . . . 18.25 . . .
9 (20a), (20b) 38.5 2.230 0.552 . . . �1.28
10 (20a), (20b) 24.5 1.190 0.160 . . . �6.97
11 (20a), (21b) 30.2 7.000 0.710 7.00 . . .
12 (20a), (21b) 6.2 2.970 0.327 5.05 . . .
13 (22) 1.175 � 106 4.740 . . . . . . . . .
14 (23) 1.0 . . . . . . . . . . . .
15 (23) 100.0 . . . . . . . . . . . .
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[24] The next four soils (5–8) are also taken from Hydrus
1D database and represent the same four textural classes as
soils 1–4, but this time characterized by Brooks and Corey
[1964] hydraulic functions:

SE ¼ h=hg
�� ���l; ð21aÞ

KREL ¼ S
h
E; ð21bÞ

where l is a parameter depending on soil texture and h =
2.5 + 2/l. In equations (21a) and (21b) hg corresponds to
the air entry pressure. The equations are valid for h < hg,
while for h � hg the medium is fully saturated with SE = 1
and KREL = 1.
[25] Soils 9 and 10 correspond to the sand and clay from

Schaap and Leij [2000], who proposed an improved con-
ductivity function, which is given by equations (20a) and
(20b) with the connectivity parameter L assuming negative
values.
[26] Soils 11 and 12 are described by the model of

Fuentes et al. [1992]. It consists of van Genuchten type
retention function, equation (20a) with n = 1 � 2/m,
combined with a Brooks-Corey type conductivity function
equation (21b), with an independent parameter h. Soil 11
represents Hostun H38 sand used in the experiments
described by Szymkiewicz et al. [2008], while soil 12 is
the Chernobyl soil from the paper of Lassabatere et al.
[2006].
[27] Soil 13 is taken from the paper by Haverkamp et al.

[1977]. It is described by the following conductivity function:

KREL ¼ A Aþ hj jnð Þ�1; ð22Þ

where A is an empirical parameter.
[28] Finally, soils 14 and 15 are characterized by expo-

nential conductivity function [Gardner, 1958], which
assumes the following form:

KREL ¼ exp h=hg
� 	

: ð23Þ

[29] For each soil the steady state flow equation has been
solved for all the possible combinations of hU, hL, and Dz
from the following sets of values: hU, hL = {�1 mm, �1 cm,
�10 cm, �1 m, �10 m, � 100 m} and Dz = {1 mm, 1 cm,
2 cm, 10 cm, 20 cm, 50 cm, 1 m, 10 m, 100 m}, excluding
the cases when hL � hU = Dz or when one of the nodal
relative conductivities was lower than 10�12. While the
values of Dz = 10 m or 100 m seem exceedingly large for
any practical purpose, they were included to verify the
overall flexibility of the new approximation. For soils
described by the Brooks-Corey retention function the value
of hg was subtracted from the values of hU and hL, in order
to keep unsaturated conditions in the whole domain. In
order to ensure high accuracy, numerical solutions of the
steady state flow equation were performed on fine grids
consisting of up to 6001 nodes. The fluxes between nodes
were approximated using the integrated conductivity aver-
age KINT; however, for such a fine grid the method of
internodal conductivity estimation virtually did not influ-
ence the results. The nonlinear system of equations resulting
from spatial discretization was solved using the Newton

method. In order to ensure convergence we choose the
initial approximation of h(z) resembling the expected steady
state profile, as shown in Figure 2. The iterative process was
stopped when the water fluxes throughout the domain
became uniform, i.e., the largest relative difference between
fluxes at any two nodes did not exceed 0.1%.
[30] For any single combination of hU, hL, and Dz the

flux obtained from the solution of the steady flow problem
allows us to compute the Darcian mean conductivity KDAR

from equation (6), which is considered as the reference
value of the internodal conductivity. It can be used to
compute the error of any other approximation of KAV,
according to the following formula:

E ¼ log
KAV

KDAR

: ð24Þ

The error is expressed in terms of logarithm to facilitate
comparisons of the relative errors, which can differ by
several orders of magnitude, and to give equal weight to
both overestimation and underestimation errors. In order to
evaluate the performance of the averaging methods for large
sets of results, the following error measures were introduced:

Root mean square error

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
i¼1

E2
i

 !vuut
Maximum observed error (largest overestimation)

MAXE ¼ max Eið Þi¼1::M
Minimum observed error (largest underestimation)

MINE ¼ min Eið Þi¼1::M ;

where M is the number of results in the considered set.
[31] The results of the accuracy analysis are presented in

Tables 2 and 3. The error measures were computed for the
following averaging methods: standard arithmetic mean
(KARIT, equation (3a)), geometric mean (KGEOM, equation
(3b)), upstream-weighted mean (KUPS, equation (3c)), inte-
grated mean (KINT, equation (3d)), the method of Baker
[2000] (KBAKER), the method of Gastó et al. [2002]
(KGASTO), and the proposed new method (KNEW). Table 2
presents root-mean-square error (RMSE) values obtained
with different averaging methods for each of the 15 soils
and the average RMSE for the ensemble of soils. Note that
KGASTO was computed only for soils 1–8, which are
described by the standard Brooks-Corey or Mualem–van
Genuchten functions, and only for the cases where Dz � hg
for the considered soil. KBAKER was computed only for the
cases where the function K(h) can be inverted analytically,
i.e., for soils 5–8 and 11–15. It can be seen that the
methods based on Darcian means, i.e., KGASTO, KBAKER,
and KNEW give significantly smaller errors than the other
methods. Note that the errors are expressed in terms of
logarithm, and thus RMSE = 0.16 corresponds to 45%
relative error in the value of KAV, while RMSE = 1.0
corresponds to 1000% relative error in KAV. KNEW gives
the lowest average value of RMSE for most of the consid-
ered soils (except soils 14 and 15) and the lowest average
RMSE for the ensemble of soils. Soils 14 and 15 are
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characterized by exponential K(h) function, for which the
formula of Baker [1995, 2000] provides exact values of the
Darcian means. In this case the Darcian means KDAR

computed numerically from the solution of the steady state
problem are in perfect agreement with KBAKER (RMSE of
the order of 10�5), which confirms the accuracy of the
numerical method used to compute KDAR. On the other
hand, KNEW performs better than KBAKER for soils 11 and 13,
characterized by a distinct air-entry pressure. This observa-
tion is consistent with the results shown by Baker et al.
[1999] for soil 13. The method of Gastó et al. [2002] also
gave a small value of the average RMSE, between the
values obtained for KNEW and KBAKER. The other averaging
methods produce significantly larger errors. It should be
noted, however, that KGEOM and KINT seem to have consid-
erable advantage over KARIT and KUPS for fine-textured soils
(soils 3, 4, 7, 8 and 10), which explains the recommendation
for KGEO by Haverkamp and Vauclin [1979].
[32] More insights into the performance of various meth-

ods can be gained from Table 3. It shows the values of
RMSE computed for the ensemble of soils for the three
types of flow (infiltration, drainage, and capillary rise) and
three different ranges of grid block sizes Dz (small, medi-
um, and large). Again, one can see that the methods based
on the steady state solutions give in general much smaller
errors that the simple averaging methods (KARIT, KGEOM,

KUPS, and KINT). Overall, KNEW generated the smallest
values of RMSE for all three ranges of Dz. As far as the
performance for various types of flow is considered, KNEW

is more accurate than either KGASTO or KBAKER for infiltra-
tion and capillary rise, while for drainage it is inferior to
KGASTO but still superior to KBAKER. It should be remem-
bered, however, that this order of accuracy is based on
averaged results, and can be different for some particular
cases.
[33] Table 3 shows that for specific conditions even

simple averaging methods can be quite accurate. KINT is
very accurate for small Dz and moderately accurate for
medium Dz. Indeed, KINT was recommended by some
authors as the best approximation method for infiltration
on relatively fine numerical grids [Miller et al., 1998;
Belfort and Lehmann, 2005]. For large Dz, KUPS seems to
be the most accurate of the simple approximations. KUPS is
also an accurate estimation for drainage flow, since in this
case it corresponds to KU, which is the correct limit value
for the internodal conductivity for drainage, for both large
and small Dz (see section 3.1). For the capillary rise, on the
other hand, KUPS corresponds to KL, which is outside the
limit values of the internodal conductivity (KINT, KU). Thus
for the capillary rise KUPS produces the largest error, while
KGEOM and KINT seem to be better approximations in this
case.
[34] The two rightmost columns of Table 3 show the

values of maximum and minimum error obtained with the
corresponding method for the whole range of calculations.
The extreme case is represented by the error of 10.5 orders
of magnitude for KARIT, corresponding to the drainage in
soil 12 with large Dz. Other simple methods can also
underestimate or overestimate the internodal conductivity
by several orders of magnitude, for a particular set of nodal
pressures, Dz, and soil parameters. KBAKER generated errors
of over 4 orders of magnitude, but they were limited to soils
11 and 13. On the other hand, the largest error generated by
KNEW is only 1.5 order of magnitude (315% of relative error
in the value of KAV). KGASTO is similarly accurate, but it
should be noted that it cannot be applied to all soils.

5. Examples of Unsteady Flow Simulations

5.1. Numerical Implementation

[35] In order to evaluate the performance of the proposed
averaging method for unsteady flow simulation it has been
implemented in a numerical code solving the one-dimen-

Table 3. Average RMSE Values Obtained for the Ensemble of Soils for Various Ranges of Grid Sizes and Various Types of Flow

Method

RMSE

Minimum
Observed

Error (MINE)

Maximum
Observed

Error (MAXE)

Dz Flow Type

Small
(1 mm, 1 cm, 2 cm)

Medium
(10 cm, 20 cm, 50 cm)

Large
(1 m, 10 m, 100 m) Infiltration Drainage

Capillary
Rise

KNEW 0.04 0.13 0.17 0.04 0.22 0.11 �1.50 0.11
KBAKER 0.07 0.38 0.49 0.11 0.51 0.49 �4.30 4.47
KGASTO 0.33 0.22 0.19 0.33 0.09 0.26 �1.24 1.60
KARI 1.13 1.33 2.17 0.86 2.57 1.74 �2.89 10.50
KGEOM 0.84 0.89 1.55 1.26 1.29 0.77 �5.38 5.40
KUPS 1.34 1.44 1.10 1.04 0.27 1.96 �6.05 8.18
KINT 0.09 0.62 1.68 0.57 1.90 0.64 �3.23 8.55

Table 2. RMSE Values for Different Soils Obtained With Various

Averaging Methodsa

Soil KNEW KBAKER KGASTO KARIT KGEOM KUPS KINT

1 0.16 . . . 0.38 2.09 1.69 1.19 1.66
2 0.14 . . . 0.32 1.81 1.35 1.29 1.22
3 0.12 . . . 0.33 1.58 0.89 1.48 0.79
4 0.09 . . . 0.20 1.16 0.47 1.21 0.46
5 0.14 0.31 0.52 2.21 1.43 1.89 1.25
6 0.12 0.18 0.32 1.67 0.89 1.56 0.82
7 0.11 0.14 0.24 1.46 0.70 1.41 0.51
8 0.10 0.11 0.17 1.24 0.54 1.25 0.53
9 0.12 . . . . . . 1.52 0.90 1.40 0.78
10 0.06 . . . . . . 0.83 0.39 0.96 0.30
11 0.15 0.66 . . . 2.12 2.23 0.31 1.87
12 0.16 0.40 . . . 2.31 1.93 1.53 0.87
13 0.15 0.75 . . . 1.60 1.39 1.05 1.18
14 0.11 0.00 . . . 0.70 0.70 0.49 0.52
15 0.13 0.00 . . . 1.44 1.14 0.50 1.20
Average 0.12 0.36 0.29 1.61 1.14 1.30 1.01

aRMSE, root-mean-square error.
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sional unsaturated flow equation, based on the mass-con-
servative approach of Celia et al. [1990]. The domain is
discretized with N nodes, in such a manner that the
outermost nodes are located at the physical boundaries of
the domain. Then finite volumes are built around each of the
nodes, with interfaces located at midpoints between adja-
cent nodes. The discrete analog of RE is as follows:

Vi

q jþ1
i � q j

i

Dt
þ Siþ1=2 q

jþ1
iþ1=2 � Si�1=2 q

jþ1
i�1=2 ¼ 0 ð25aÞ

with

q
jþ1
iþ1=2 ¼ �K

jþ1
AV

h
jþ1
iþ1 � h

jþ1
i

Dz
� g

 !
; ð25bÞ

where j is the time step index, i is the node index, Vi is the
volume of the cell associated with node i, q denote
internodal fluxes and Si±1/2 are the interfacial areas between
adjacent finite volumes (for flow in Cartesian coordinates,
Si±1/2 is equal to 1). The nonlinear equation for each time
step (25a) is solved iteratively by the Newton method [e.g.,
Miller et al., 1998], which appears to be more robust than
the Picard method commonly used in numerical solvers of
RE [e.g., Celia et al., 1990; Šimůnek et al., 1998; van Dam
and Feddes, 2000]. The convergence criterion is specified

in terms of the maximum allowable difference in the
potential heads between two subsequent iterations. In all
simulations except the reference solutions the error
tolerance was set to (0.1 cm + 0.01jhj), while for the
reference solutions it was decreased 10 times. The time step
size was adjusted according to the performance of the
nonlinear solver [Šimůnek et al., 1998; van Dam and
Feddes, 2000], in such a way that if the number of iterations
is smaller than 3 then the step size is multiplied by 1.25 and
when the number of iterations is higher than 7 the time step
is divided by 1.25. Moreover, the maximum and minimum
allowable time step sizes are specified.
[36] Numerical solution of RE requires multiple evalua-

tions of the nonlinear functions of water potential, i.e., q(h),
K(h), and for KINT, KBAKER, and KNEW, also F(h). An
efficient approach is to interpolate the values of these
functions from a precomputed table [Šimůnek et al., 1998;
Miller et al., 1998]. In the examples shown below, we used
linear interpolation, with the interpolation nodes nonuni-
formly spaced, to obtain greater density in the range of
greater variability of the functions (for water potential head
close to 0 or to the air-entry pressure head). Preliminary
tests with Hermite spline [Miller et al., 1998] showed
convergence problems for test problems 1 and 2.
[37] The overall efficiency of the numerical solution of

RE depends on multiple factors. While the scheme pre-
sented here performed well in all test cases, further
improvement can be possibly achieved by using more
advanced time-integration and time stepping schemes, as
shown by Miller et al. [1998]. A detailed examination of the
performance of the proposed approach combined with more
sophisticated discretization schemes is beyond the scope of
this paper.

5.2. Test Problem 1: Infiltration in Sand With Constant
Head Boundary Condition

[38] The first test concerns infiltration into a 5-m-deep
dry sand layer. The SE(h) and KREL(h) functions correspond
to soil 5 (Table 1). The saturated conductivity isKS = 21 cm/h.
The volumetric water content q is related to the effective
saturation SE by the formula SE = (q � qR)/(qS � qR), where
the saturated water content qS = 0.430 and the residual water
content qR = 0.045. The initial condition is specified as
h(z, t = 0) = �750 cm (q = 0.069). At the upper boundary a
constant potential head is applied h = �7.5 cm, which
correspond to near-saturated conditions (q = 0.422), while
the lower boundary is maintained at the initial potential
head. The reference numerical solution is obtained with
KINT and Dz = 0.05 cm. For such a fine discretization all
examined conductivity averaging methods lead to very
similar results. The results of simulations for coarser dis-
cretizations are shown in Table 4. The solutions are com-
pared with the reference one in terms of the norm of the
error in water potential head eh and the error in the
cumulative infiltration, eQ, which are computed as

eh ¼
1

N

XN
i¼1

hi � hi;ref
� 	2 !0:5

; ð26aÞ

eQ ¼ 1� Qin

Qin;ref

� �
	 100%; ð26bÞ

Table 4. Results of the Numerical Simulations for Test Problem 1

Method eh (cm) eQ (%) Max(Dh/Dz) [ ] MB (%) Time (s)

Dz = 50 cm
KNEW 2.06E+2 �1.6 0 9.1E-12 0.69
KBAKER 2.16E+2 +1.6 0 2.0E-6 1.05
KGASTO . . . . . . . . . . . . . . .
KARIT 1.38E+2 �15.8 0.195 4.5E-3 0.76
KGEOM 3.48E+2 �99.4 0 5.5E-6 0.66
KUPS 2.62E+2 +9.3 0 3.5E-14 0.67
KINT 3.64E+2 �99.7 0 1.2E-1 0.95

Dz = 20 cm
KNEW 1.07E+2 �1.6 0 3.1E-8 0.68
KBAKER 1.40E+2 +2.1 0 3.9E-4 0.96
KGASTO 1.49E+2 +3.3 0 2.1E-4 0.95
KARIT 1.24E+2 �2.3 0.130 1.6E-5 1.22
KGEOM 3.83E+2 �93.8 0 7.8E-7 1.29
KUPS 1.85E+2 +5.6 0 1.3E-4 0.87
KINT 2.05E+2 �32.4 0.117 6.0E-3 1.31

Dz = 10 cm
KNEW 6.71E+1 �1.6 0 8.0E-13 1.04
KBAKER 1.01E+2 +0.9 0 4.5E-4 0.96
KGASTO 8.48E+1 �1.2 0 9.8E-7 1.30
KARIT 1.01E+2 �0.2 0.019 2.5E-7 0.96
KGEOM 3.59E+2 �77.8 0.430 1.4E-5 0.94
KUPS 1.43E+2 +3.7 0 1.1E-8 1.03
KINT 9.44E+1 �9.3 0.101 4.4E-2 2.08

Dz = 5 cm
KNEW 3.55E+1 �1.6 0 5.1E-8 16.8
KBAKER 7.35E+1 +0.1 0 8.0E-8 27.5
KGASTO 6.16E+1 �1.1 0 4.8E-6 26.9
KARIT 9.04E+1 +0.1 0.004 1.4E-8 15.5
KGEOM 2.95E+2 �51.3 0.264 2.9E-3 19.4
KUPS 1.19E+2 +2.4 0 1.3E-8 17.5
KINT 3.61E+0 �2.9 0.160 9.3E-6 19.2

Dz = 1 cm
KNEW 2.18E+1 �0.3 0 3.7E-4 18.6
KBAKER 2.98E+1 �0.2 0 1.2E-4 30.2
KGASTO 2.75E+1 �0.2 0 4.8E-6 42.4
KARIT 4.41E+1 +0.2 0 5.6E-9 17.2
KGEOM 2.92E+1 +0.9 0 1.1E-4 35.2
KUPS 6.32E+1 �0.4 0 1.9E-5 16.7
KINT 2.67E+1 �0.4 0 5.9E-5 17.5
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where N is the number of nodes for the considered
discretization, hi is the water potential at node i obtained
from the considered solution, hi,ref is the potential head at
the same node obtained from the reference solution, Qin is
the total amount of infiltrated water obtained by numerical
integration of the infiltration flux for the considered
solution, and Qin,ref is the corresponding value obtained
from the reference solution. As an additional measure of the
quality of solution we provide information on the maximum
gradient of the water potential head in the domain, max
(Dh/Dz). For the considered case it should not exceed zero;
positive values indicate unphysical oscillations. Moreover,
information on mass balance and computational time is
provided. The mass balance error MB is computed as

MB ¼
VOLfinal � VOLinit � Qin þ Qout

�� ��
min VOLfinal � VOLinit

�� ��; Qin � Qoutj j
� 	 ; ð27Þ

where VOLfinal and VOLinit denote the final and initial
amount of water in the domain and Qin and Qout are
cumulative fluxes at the top and the bottom of the layer. The
simulation time is the clock time, which includes the time
necessary to generate the interpolation table (with F(h)
values in the case of KINT, KBAKER and KNEW). In this case
an interpolation table with 50 nodes was used (h from
�7.3 cm to �1000 cm), while the time step was allowed to
vary from 1e-15 to 0.01 h. All simulations reported in this
paper were carried out on a Pentium 4 2.00-GHz machine
with 1 GB RAM.
[39] Table 4 shows very large differences between the

solutions obtained with various averaging methods on
coarse grids (Dz = 50 cm and 20 cm). A visual illustration
is provided by Figure 6, where the water potential head
profiles are compared for Dz = 50 cm. KINT and KGEOM

underestimate the position of the wetting front, while other

methods overestimate it. The best result with respect to the
position of the wetting front is obtained with KARIT, which is
also confirmed by the lowest value of eh. However, this
method produces unphysical overshoot of the potential head
behind the wetting front. This oscillation is better seen in
Figure 6b, where the horizontal axis scale is enlarged. In
this case the overshoot is relatively small; much larger
oscillations were reported for vertical infiltration with KARIT

[Baker et al., 1999; Baker, 2006]. Nevertheless, KARIT

predicts positive potential heads in the domain, which are
outside the range resulting from the initial and boundary
conditions. KNEW and KBAKER produce oscillation-free sol-
utions, very close to each other. While they both overesti-
mate the position of the wetting front, the error is smaller
than for all other methods, except KARIT. Note also that only
KNEW and KBAKER predict accurate amount of infiltration
even on the coarsest grid (for this case, KGASTO produced
negative values of conductivity and the solution did not
converge). As the grid is refined, the errors diminish
significantly. Still, oscillations appear in solutions obtained
with KARIT, KGEOM, and KINT even for Dz = 5 cm, as shown
by positive gradients of potential head in Table 4. Despite
the oscillations, KARIT is able to predict the amount of
infiltrated water with slightly higher accuracy than other
methods for Dz = 5 cm and 10 cm. For all grids KNEW gives
the best or second best approximations of the reference
solution in terms of eh, while eQ is also relatively small. The
differences in computational time between various
approaches become more pronounced only for the finest
discretizations (Dz = 5 cm and 1 cm). In all cases simu-
lations with KNEW required similar time as with KARIT, while
KGASTO and KBAKER required significantly more time on
finer grids (up to over 100% for KGASTO with Dz = 1 cm).
The mass balance was satisfied for all methods, with errors
lower than 1%, which is also the case for all the following
examples. Note, however, that even a perfect mass balance

Figure 6. Test problem 1. (a) Water potential head profiles after 3 h of infiltration for Dz = 50 cm,
obtained with various averaging methods. (b) Zoomed profiles, showing the oscillation obtained with
KARIT.
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does not ensure accurate estimation of the amount of
infiltrated water.

5.3. Test Problem 2: Drainage in Sand

[40] In the second test drainage in the same sand layer
was simulated. Initially the layer was assumed quasi-satu-
rated with a uniform distribution of the water potential
head h (z, t = 0) = �7.5 cm. This value was kept constant at
the lower boundary, while at the upper boundary a no-flow
condition (q = 0) was imposed. In this case a dense
interpolation table with 1000 nodes covering the values of
the potential head from �7.5 to �200 cm was required. The
maximum allowable time step was 0.1 h. The results of the
simulations are listed in Table 5. The presented parameters
are similar to those from test problem 1, eQ representing the
error in cumulative amount of drained water, and the mini-
mum value of the potential head gradient min (Dh/Dz)
indicating the magnitude of oscillations (only nonnegative
gradients are physically admissible). Figures 7a and 7b
show the potential head profiles obtained on the coarsest
grid (Dz = 50 cm) for the simple averaging methods and for
the averaging methods based on Darcian means, respectively.
It can be seen that KARIT, KGEOM, and KINT produce large
oscillations in the potential head profile, while all of them

predict the amount of drained water with remarkably high
accuracy (better than KNEW and KBAKER). On the other hand,
both KNEW and KBAKER lead to solutions relatively close to
the reference one. Again, such a coarse discretization is
outside the range of applicability of KGASTO. While a
convergent solution was obtained with this method, it is
clearly inaccurate. For finer grids, however, KGASTO showed
similar behavior to KNEW and KBAKER. KNEW produced the
best or second best results in terms of eh for all cases except
Dz = 5 cm. For this discretization KNEW is inferior to all
other methods, except KUPS, both in terms of eh and eQ,
albeit the differences are not large. It should be noted that in
the considered case KARIT, KGEOM and KINT outperform all
three methods based on Darcian mean (KNEW, KGASTO, and
KBAKER), while for Dz = 1 cm all methods produce rather
similar results.

5.4. Test Problem 3: Infiltration in Sand With Variable
Boundary Condition

[41] This example is taken from the paper by van Dam
and Feddes [2000]. A 40-cm-deep sandy soil layer is
considered, with van Genuchten–Mualem parameters a =
0.0245 cm�1, n = 1.507, qS = 0.43, qR = 0.01, KS = 17.5 cm/
d, and the connectivity parameter L = �0.14. Initially the
soil is very dry with q = 0.1 (h = �832.5 cm). At the surface
a constant infiltration flux equal to 100 cm/d is imposed,
until the surface grid block becomes saturated. From this
time on, a constant head h = 0 cm is imposed at the surface,
and the infiltration flux gradually decreases.
[42] The reference numerical solution for this case was

obtained on a fine grid of 0.05 cm. For such a fine
discretization, virtually the same results were produced with
KINT and KARIT. The reference solution predicts the total
amount of infiltration equal to 3.69 cm, with ponding
condition occurring at t = 0.006 day. These values are
somewhat different from the reference solution presented
by van Dam and Feddes [2000] for Dz = 0.1 cm, but they
were confirmed by simulation with independent numerical
code HYDRUS-1D [Šimůnek et al., 1998]. HYDRUS-1D is
based on the finite element discretization with mass-lump-
ing and arithmetic averaging of the nodal conductivites,
which results in a scheme equivalent to KARIT. Indeed, very
good agreement was observed between the solutions from
HYDRUS-1D and from the author’s code with KARIT for the
whole range of discretizations, including the reference
solution. The discrepancy with respect to the results of van
Dam and Feddes [2000] might be partly explained by the
fact that in their numerical scheme the values of hydraulic
conductivities were not updated in the iteration procedure,
in contrast to the author’s code and HYDRUS-1D.
[43] In order to evaluate the performance of various

averaging schemes, simulations were carried out with
Dz = 1 cm, 5 cm, and 10 cm. The interpolation table had
50 entries, and the maximum time step was 0.001 day. In
Table 6 the cumulative infiltration Qin and the time to
ponding tp is shown for each solution, together with the
mass balance error and the simulation time. It can be seen
that KNEW offers a significant improvement over KARIT,
especially for coarser grids. In contrast to the results
reported by van Dam and Feddes [2000] KARIT seem to
give nonnegligible errors even for Dz = 1 cm. KINT gives
virtually the same results as KNEW, since for capillary

Table 5. Results of the Numerical Simulations for Test Problem 2

Method eh (cm) eQ (%) Min(Dh/Dz) [ ] MB (%) Time (s)

Dz = 50 cm
KNEW 3.80E+0 �5.6 0 2.8E-1 0.64
KBAKER 4.66E+0 �6.3 0 2.9E-1 0.80
KGASTO 9.80E+0 �2.2 0 2.9E-1 0.70
KARIT 1.05E+1 +1.8 �0.687 6.6E-2 0.70
KGEOM 5.27E+0 �2.2 �0.397 3.0E-1 0.64
KUPS 5.06E+0 �6.6 0 2.9E-1 0.61
KINT 6.77E+0 �1.3 �0.507 2.5E-1 0.63

Dz = 20 cm
KNEW 4.97E-1 �1.1 0 2.6E-1 0.71
KBAKER 1.28E+0 +2.0 0 2.8E-1 0.76
KGASTO 1.58E+0 �2.1 0 2.9E-1 0.70
KARIT 1.39E+0 +0.1 �0.315 1.1E-1 0.66
KGEOM 7.74E-1 �0.2 �0.164 3.0E-1 0.74
KUPS 1.84E+0 �2.4 0 2.9E-1 0.67
KINT 9.31E-1 �0.1 �0.213 3.1E-1 0.90

Dz = 10 cm
KNEW 2.99E-1 +0.1 0 2.7E-1 0.82
KBAKER 4.36E-1 �0.6 0 2.9E-1 0.93
KGASTO 3.96E-1 �0.4 0 3.0E-1 0.86
KARIT 2.09E-1 +0.3 0 3.1E-1 0.78
KGEOM 1.22E-1 +0.1 0 3.1E-1 0.80
KUPS 9.01E-1 �1.0 0 3.0E-1 0.77
KINT 1.36E-1 +0.1 0 2.7E-1 1.27

Dz = 5 cm
KNEW 1.92E-1 +0.3 0 2.8E-1 1.02
KBAKER 1.44E-1 �0.1 0 3.0E-1 1.23
KGASTO 1.22E-1 �0.1 0 3.0E-1 1.42
KARIT 5.71E-2 +0.1 0 3.0E-1 0.90
KGEOM 4.02E-2 +0.1 0 2.9E-1 0.93
KUPS 4.62E-1 �0.5 0 3.0E-1 0.89
KINT 4.01E-2 0.0 0 2.4E-1 1.73

Dz = 1 cm
KNEW 2.68E-2 +0.2 0 2.8E-1 2.51
KBAKER 2.69E-2 0.0 0 1.9E-1 3.81
KGASTO 3.32E-2 +0.1 0 2.9E-1 2.75
KARIT 2.92E-2 +0.1 0 2.9E-1 1.91
KGEOM 2.96E-2 +0.1 0 2.9E-1 2.30
KUPS 1.31E-1 0.0 0 2.9E-1 1.99
KINT 1.94E-2 0.0 0 1.6E-1 2.52
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dominated flow KNEW ! KINT, according to equation (11).
The largest errors were produced by the upstream mean
KUPS. This case is outside the domain of applicability of
KGASTO and KBAKER.

5.5. Test Problem 4: Evaporation From Sand With
Variable Boundary Condition

[44] This example is also taken from van Dam and
Feddes [2000]. The same soil profile is considered. Initially
the soil is moderately wet (q = 0.191, h = �200 cm) and the
initial value of the potential head is maintained at the lower
boundary. At the surface a constant evaporation rate of 0.5
cm/d is applied until the top node dries up to the value of
potential head hcrit = �137,700 cm. At this moment the
boundary condition is changed to constant head h = hcrit,
and consequently the actual evaporation rate decreases. The
same set of numerical simulations as in the previous
example was carried out. Again, in this case the reference
solutions (Dz = 0.05 cm) provided by HYDRUS-1D and the
author’s code with KINT and KARIT are very close to each
other, yielding the cumulative evaporation of 0.89 cm and
the time at which the surface dries up to the value of hcrit
equal to 0.51 day. These values are different from the
reference values shown in the paper by van Dam and
Feddes [2000], while for Dz = 1 cm and 5 cm both
HYDRUS-1D and the author’s code with KARIT produced
results very close to the ones from the mentioned paper.
[45] The numerical simulations were performed with

interpolation table containing 100 entries covering the
h range up to hcrit. The maximum allowable time step was
0.1 day. In the comparison between various averaging
methods we used similar criteria as in test problem 3,
including the cumulative evaporation Qev and the time to

drying td. They are listed in Table 7, together with infor-
mation on mass balance and simulation time. In this case
KARIT gives significant error even for Dz = 1 cm, while
KNEW and KINT lead to solutions much more accurate than
KARIT for all grid sizes. For the considered K(h) function and
Dz values KNEW computed from equation (17) closely
approaches KINT, giving practically the same results.

6. Discussion

6.1. Comparison With Existing Methods

[46] The results of calculations presented in sections 4
and 5 show that the most important advantage of the

Figure 7. Test problem 2: Water potential head profiles after 30 h of drainage for Dz = 50 cm, obtained
(a) with the simple averaging methods and (b) with the methods based on Darcian means.

Table 6. Results of the Numerical Simulations for Test Problem 3

Method Qin (cm) tp (d) MB (%) Time (s)

Dz = 10 cm
KNEW 3.12 0.017 8.3E-1 1.09
KARIT 5.98 0.032 4.2E-3 0.95
KGEOM 2.30 0.017 3.7E-1 0.75
KUPS 7.13 0.041 8.7E-4 0.73
KINT 3.11 0.017 8.4E-1 0.71

Dz = 5 cm
KNEW 3.46 0.009 2.0E-1 0.72
KARIT 4.88 0.020 2.3E-3 0.71
KGEOM 2.91 0.008 1.0E+0 0.67
KUPS 5.82 0.027 1.1E-3 0.71
KINT 3.46 0.009 2.0E-1 0.72

Dz = 1 cm
KNEW 3.68 0.006 4.9E-4 1.20
KARIT 3.88 0.009 1.3E-3 1.98
KGEOM 3.66 0.002 6.2E-2 1.48
KUPS 4.29 0.012 4.5E-4 0.85
KINT 3.68 0.006 4.9E-4 1.01
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proposed method is its ability to produce relatively accurate
results for a wide range of flow scenarios. This does not
mean that the method is always superior to all the existing
approaches. As shown in Tables 4–7, in many cases a
similar or superior accuracy can be achieved using a simpler
method. However, none of the simple averaging schemes
(KARIT, KGEOM, KUPS, KINT) is able to produce satisfactory
results in all cases. For example, KINT gave very good
results for test problems 3 and 4, but produced very
inaccurate solutions for test problem 1 with Dz = 20 and
50 cm, and oscillatory solutions (though accurate in terms
of cumulative flux) for test problem 2 with Dz = 20 and 50.
On the other hand KARIT produced solutions that were
relatively accurate in terms of cumulative fluxes in test
problems 1 and 2, but showed significant unphysical
oscillations for coarser grids. In contrast, for test problems
3 and 4 KARIT was relatively inaccurate in terms of the
cumulative fluxes even for Dz = 1 cm.
[47] Compared with the existing averaging methods

based on Darcian mean concept (KBAKER and KGASTO), the
proposed scheme offers a comparable accuracy, and slightly
better efficiency in terms of computational times on finer
grids (Tables 4 and 5). However, KGASTO can be used only
for the functions of Brooks-Corey and van Genuchten–
Mualem (with the connectivity parameter L = 0.5), and
cannot be used for arbitrarily large grid sizes. The method of
Baker [2000] can be used for arbitrary Dz and theoretically
for any type of K(h) function, but requires inversion of the
conductivity function to obtain h(K), which in general can
be done only numerically (although the use of an interpo-
lation table could speed up the process). Moreover, the
comparisons with steady state solutions shown in section 4
indicate that the for some particular soil types the errors
generated by KBAKER can be significantly larger than with
the new approach [cf. Baker et al., 1999].
[48] The results also show that when a sufficiently fine

grid is used, the choice of averaging schemes does not affect
significantly the accuracy of the solution. If this is the case,
simple averaging schemes like KARIT can actually outper-
form more complex approaches based on the Darcian mean
concept, and the latter ones do not offer any advantage
(Table 5, Dz = 5 cm). However, it is difficult to estimate a

priori what size of grid is sufficiently fine to obtain an
accurate solution, independent of the averaging scheme. For
instance, in the cases presented here, the ‘‘safe’’ value of Dz
can be assumed as 1 cm for test problem 1 and 10 cm for
test problem 2, while in test problems 3 and 4 significant
differences occurred even for Dz = 1 cm, and diminished
only in fine-scale solutions with Dz = 0.1 or 0.05 cm. Thus
it seems convenient to use an averaging method which does
not produce unphysical or largely inaccurate results even for
coarser grids. An alternative approach would be to use a
spatially adaptive numerical method with dynamic grid
refinement, controlled by the estimation of spatial discreti-
zation error [e.g., Miller et al., 2006]. Such an approach can
be expected to be more accurate (especially in terms of the
wetting or drying front position) than any coarse grid
solution, albeit at the expense of additional algorithmic
complexity.

6.2. Variably Saturated Flow

[49] An algorithm for computing internodal conductivi-
ties should also account for the case when a part of the grid
block between two neighboring nodes is fully saturated, i.e.,
the water potential is positive (or greater than the air-entry
pressure) at one of the nodes [e.g., Pei et al., 2006]. In such
a case it has been suggested to find an approximate position
of the boundary between the saturated and unsaturated zone
and to compute the average conductivity as the harmonic
mean of the values for the saturated and unsaturated part
[Gastó et al., 2002]. In the saturated region it is assumed
that the conductivity is constant and equal to KS, while in
the unsaturated region one of the available averaging
methods is used. It should be noted that when the method
proposed in this paper is used, there is no need to search for
the position of the saturated-unsaturated interface, because
the analysis of the steady state profiles presented in section
3 holds also when a part of the grid block is fully saturated.
Let us consider, for instance, vertical infiltration when the
potential head at the lower node is negative, while the
potential at the upper node is at first equal to zero and then
positive. The higher the potential at the upper node, the
closer KAV should be to KS. Most of the averaging methods,
however, will predict the same value of KAV in the two
cases, since the conductivity at the upper node remains
equal to KS as the potential increases from zero to a positive
value. However, when the integrated mean KINT is used, in
the second case the value of KAV will be closer to KS, as
results from equation (3d). Consequently, according to
equation (11), the method proposed here should be able to
reproduce the dependency of KAV on the value of the
positive potential at the upper node. A similar analysis
holds for drainage and capillary rise. These considerations
are confirmed by comparison with numerical solution of the
steady flow problem for saturated-unsaturated conditions.
The computations were carried out for soil 1, with Dz =
{1 mm, 1 cm, 2 cm, 10 cm, 20 cm, 50 cm, 1 m, 10 m, 100 m}
and hU, hL = {±1 mm, ±1 cm, ±10 cm, ±1 m, ±10 m,
±100 m} (in each case the nodal potentials had opposite
signs). The resulting RMSE values were 0.04 for infiltra-
tion, 0.003 for drainage, and 0.2 for the capillary rise. Thus
it seems that the method can be used in the whole range of
the water potentials, including the positive ones.

Table 7. Results of the Numerical Simulations for Test Problem 4

Method Qev (cm) td (d) MB (%) Time (s)

Dz = 10 cm
KNEW 1.35 2.24 3.8E-2 0.90
KARIT 2.48 4.84 3.8E-2 0.90
KGEOM 1.07 2.08 3.1E-1 0.78
KUPS 2.50 >5 5.4E-8 0.80
KINT 1.35 2.24 3.8E-2 0.75

Dz = 5 cm
KNEW 1.07 1.34 1.7E-1 0.83
KARIT 1.89 3.00 2.2E-2 0.69
KGEOM 0.69 1.21 1.2E-1 0.82
KUPS 2.10 3.57 9.1E-2 0.84
KINT 1.07 1.35 9.5E-2 0.87

Dz = 1 cm
KNEW 9.00 0.63 9.5E-1 0.95
KARIT 1.12 1.14 3.8E-2 0.80
KGEOM 0.59 0.57 6.1E-1 0.83
KUPS 1.26 1.41 6.3E-3 0.82
KINT 8.90 0.68 4.3E-2 0.85
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6.3. Heterogeneous Soils

[50] While all the presented examples concerned homog-
enous media, the proposed method of computing KAV can be
used also for heterogeneous (layered) soils. For such type of
media two approaches to spatial discretization can be
distinguished. In the first one the nodes are located at
material interfaces (boundaries of the layers). Thus the layer
of soil between the adjacent nodes is always homogeneous
[Gastó et al., 2002]. The proposed method can be applied
directly in this case, the only modification being that
different K(h) functions have to be used in different parts
of the profile, while for a node located at the material
interface the term Viqi in equation (25a) should be split in
two parts, corresponding to the two subregions of the finite
volume. In the second case the nodes are placed in such a
way that the material interfaces are located between them.
In such a situation the method cannot be used directly, due
to the existence of the discontinuity in K(h) function. In
order to find the approximate shape of the steady state
profile one has to introduce an auxiliary variable h*
representing the water potential head at the material inter-
face. The value of the interface potential can be computed
from the flux continuity condition, i.e., assuming that the
water fluxes at both sides of the interface should be equal.
The flux continuity condition represents a nonlinear equa-
tion with respect to h*. Its solution allows us to compute the
water flux over the interface and consequently the average
conductivity. This type of algorithm was used by Desbarats
[1995], Romano et al. [1998], and Brunone et al. [2003].
Desbarats [1995] used an analytical solution of the steady
flow equation for exponential K(h) function to derive a
Darcian type of approximation for KAV, similar to the one of
Baker [1995]. Romano et al. [1998] and Brunone et al.
[2003] used geometric averaging to estimate the fluxes at
both sides of the interface. Since the geometric mean is
known to be inaccurate in many situation (see the examples
above), one could expect some improvement if the method
proposed in this paper were used in the framework of the
approach of Romano et al. [1998] and Brunone et al.
[2003]. A detailed evaluation of the performance of the
proposed method for heterogeneous media is outside the
scope of this paper and is a subject of ongoing research.

6.4. Multidimensional Problems

[51] The proposed method of conductivity averaging
has been derived and was intended to be used for one-
dimensional simulation. However, its application can be
extended for some types of multidimensional problems.
For a structured grid consisting of rectangular cells, a
simple finite volume scheme similar to equations (25a)
and (25b) can be used, resulting in well-known five-point
stencil for 2-D flow and seven-point stencil for 3-D flow
[e.g., Gastó et al., 2002; Szymkiewicz et al., 2008]. The
fluxes in vertical directions can be approximated using
the proposed method, while the horizontal fluxes are best
approximated with the integrated mean KINT [Baker,
2000; Gastó et al., 2002]. This scheme is applicable for
isotropic or orthotropic media (with off-diagonal compo-
nents of the conductivity tensor equal to zero). The
proposed method cannot be directly applied for unstruc-
tured meshes and anisotropic media. However, it seems
clear that also in such cases the method of conductivity

averaging should take into account the local balance of
capillary and gravity forces, and the results presented here
can provide some suggestions for the choice of the
averaging method from the available schemes.

7. Conclusions

[52] A new method for approximating internodal conduc-
tivity in the numerical solution of one-dimensional unsatu-
rated flow equation is proposed. The method is based on
approximation of the steady state water potential head
distribution between adjacent nodes, according to the Dar-
cian mean concept. Compared with the existing Darcian
approaches, the proposed method shows a similar perfor-
mance and a wider range of applicability. Numerical sim-
ulation showed that Darcian methods are particularly
advantageous for coarser grids, ensuring oscillation-free
and relatively accurate solutions even for large spatial steps.
While simple averaging schemes, like arithmetic mean,
show similar or even superior performance on sufficiently
fine grids, the critical grid size for which they lead to
acceptable results is difficult to establish a priori, and
depends very much on the conditions of flow and type of
soil.
[53] The proposed method makes use of the integrated

mean of the hydraulic conductivity, which requires addi-
tional preprocessing and implementation of an interpolation
procedure. Moreover, the application of the method for
multidimensional cases is generally limited to simple rect-
angular grids. Despite these limitations, the method seems
to be, at least in some cases, a useful alternative to the
existing averaging methods, as it can be applied for arbitrary
type of conductivity function and arbitrary large grid sizes.
Finally, it should be noted that the proposed method can be
used for relatively accurate estimation of steady state water
fluxes across layers of soils or other porous materials.

[54] Acknowledgments. The author wish to thank three anonymous
reviewers for their valuable suggestions and comments.
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(2008), Two-scale modeling of unsaturated water flow in a double-
porosity medium under axisymmetric conditions, Can. Geotech. J., 45,
238–251, doi:10.1139/T07-096.

van Dam, J. C., and R. A. Feddes (2000), Numerical simulation of infiltra-
tion, evaporation and shallow groundwater levels with the Richards
equation, J. Hydrol., 233, 72–85, doi:10.1016/S0022-1694(00)00227-4.

van Genuchten, M. (1980), A closed form equation for predicting the
hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44,
892–898.

Warrick, A. W. (1991), Numerical approximation of Darcian flow through
unsaturated soil, Water Resour. Res., 27, 1215–1222, doi:10.1029/
91WR00093.

Warrick, A.W. (2003), Soil Water Dynamics, Oxford Univ. Press, NewYork.
Warrick, A. W., and T.-C. J. Yeh (1991), One-dimensional, steady vertical
flow in a layered soil profile, Adv. Water Resour., 13, 207 – 210,
doi:10.1016/0309-1708(90)90042-3.

Zaidel, J., and D. Russo (1992), Estimation of finite difference interblock
conductivities for simulation of infiltration into initially dry soils, Water
Resour. Res., 28, 2285–2295, doi:10.1029/92WR00914.

Zhang, X., and J. Ewen (2000), Efficient method for simulating gravity-
dominated water flow in unsaturated soils, Water Resour. Res., 36(9),
2777–2780, doi:10.1029/2000WR900182.

����������������������������
A. Szymkiewicz, Faculty of Civil and Environmental Engineering,

Gdansk University of Technology, Narutowicza 11/12, Gdańsk 80-233,
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