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Abstract

The equations for multiple-trapping carrier transport, corresponding to the
time-of-flight method, are approximately solved under assumption that the ma-
jority of carriers is in thermal quasi-equilibrium. The solutions show a Gaussian
shape of the carrier packet. For dispersive transport regime, mean velocity of
the carrier sheet decreases in time and its dispersion grows faster than the
square root of time. The accuracy of obtained formulas is verified by a Monte
Carlo calculations for exponential and Gaussian trap distributions. A satisfac-
tory agreement is obtained up to the effective carrier transit-time, provided that
trap density falls-off sufficiently fast in the energy gap. A new method of de-
termining the energetic trap profiles in disordered solids from the time-of-flight
measurements is proposed.
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1. Introduction

The time-of-fight (TOF) technique is a straightforward, frequently applied
method of investigating the carrier transport in low-conductivity solids, both
crystalline and amorphous. The sample is sandwiched between two electrodes
with a constant voltage applied, and the excess carriers are generated by a short
light pulse. The carrier motion in the sample induces a current transient in the
measuring circuit. From the form of transient, as well as from its dependence
on experimental parameters, the information about carrier transport mechanism
can be inferred.

As regards disordered solids, there exist two basic mechanisms of carrier
transport — multiple trapping (MT) and hopping. In the case of MT the tran-
sitions of carriers between extended states and localized states (traps) gap occur,
whereas in the case of hopping the straightforward carrier transitions between
localized states take place. For both mechanisms, the carrier transport may
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be either Gaussian or dispersive. The first transport regime is characterized
by constant velocity and Gaussian shape of carrier sheet in a solid, the second
one — by gradual decrease of mean velocity and extremely large dispersion of
carrier packet. The first successful theory of dispersive transport was devel-
oped by Scher and Montroll [1], who attributed this phenomenon to very slow
equilibration of charge carriers over localized states.

The Scher-Montroll theory initiated extensive investigations on dispersive
transport (for earlier works, see the reviews [2, 3]). In spite of this, some prob-
lems seem to be still unresolved. In particular, this concerns the simplified
description of MT dispersive transport, given by Tiedje and Rose [4] and by
Orenstein and Kastner [5]. Their main idea was that, for specific trap distribu-
tions, the majority of trapped carriers is in thermal quasi-equilibrium with the
free carriers. This approach was utilized in many subsequent papers. However,
its validity was questioned by Arkhipov et al [6], since it does not describe the
broadening of carrier packet. The main aim of the present paper is to resolve
this controversy.

2. Transport equations

The present investigations are based on the standard MT model, assuming
very small trap occupancy, electric field uniformity in the sample as well as
negligible carrier diffusion. It should have in mind that the first assumption
may be incorrect in the final stage of carrier transport, due to gradual filling of
deeper traps. However, the analytical description of MT transport, taking into
account the saturation of trap occupancy, is difficult. Only some special cases
were studied so far [7].

In the following formulas, the free and trapped carrier densities are denoted
by n (z, t) and nt (z, t), respectively, where z = x/µ0E is the reduced space
variable (x is the space variable, µ0 — the free carrier mobility and E — the
electric field strength) and t is the time variable. The MT carrier transport can
be described by the continuity equation:

∂

∂t
[n (z, t) + nt (z, t)] +

∂n (z, t)

∂z
= 0, (1)

and the equation relating the free and trapped carrier densities [8]:

nt (z, t) =

∫ t

0

Φ (t′)n (z, t − t′) dt′. (2)

Here, the function Φ (t) determines the probability that carrier is trapped in a
time unit and remains in trap until time t. This function is given by the formula

Φ (t) = Ct

∫

∞

0

Nt (ε) exp [−t/τr (ε)] dε, (3)

where Ct is the carrier capture coefficient, Nt (ε) is the trap density at the energy
level ε per unit energy, and

τr (ε) = ν−1
0 exp (ε/kT ) (4)
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is the mean lifetime of trapped carrier (ν0 is the frequency factor, k — the Boltz-
mann constant and T — the sample temperature). The energy ε is measured
from the edge of allowed band.

The current intensity I (t), registered in TOF experiment, equals the con-
duction current intensity in the sample, averaged over its thickness. Therefore

I(t) =
I0

n0τ0

∫ τ0

0

n(z, t) dz, (5)

where n0 is the density of generated carriers, averaged over sample thickness,
τ0 = d/µ0E and I0 = en0µ0ES are, respectively, the carrier time-of-flight and
the initial current intensity in a trap-free sample (with d being the sample
thickness, e — the elementary charge and S — the sample cross-sectional area).
For times smaller than the effective carrier transit time τe through the sample,
Eq. (5) may be rewritten as

I(t) = I0
dz̄ (t)

dt
, t < τe, (6)

where the dash denotes averaging over spatial carrier distribution. The transit
time τe is implicitly given by the formula

z̄ (τe) = τ0. (7)

3. Thermal quasi-equilibrium approximation

The progress of carrier thermalization in trapping states is characterized by
the demarcation level ε0 (t) [4, 5, 8], defined implicitly by the formula τr [ε0 (t)] =
1.8t, which gives

ε0 (t) = kT ln (1.8ν0t) . (8)

The level approximately separates the traps with equilibrium (ε < ε0 (t)) and
non-equilibrium (ε > ε0 (t)) occupancy.

In the case of weakly dispersive transport, when the approximate thermal
equlibrium between free carriers and majority of trapped carriers is established,
Eq. (2) describing trapping/detrapping kinetics can be simplified. If the trap
density decreases sufficiently fast in the energy gap, the main contribution to
the integral in Eq. (3) should proceed from the energy region ε < ε0 (t). The
argument of exponential function in the integrand is then much larger than unity
for almost all values of energy ε, and the function Φ (t) should differ significantly
from zero only for a very small time values. The free carrier density in Eq. (2)
can be then replaced by the initial terms of its Taylor series,

n (z, t− t′) ≈ n (z, t) − t′
∂n (z, t)

∂t
. (9)

This results in approximate equation, describing carrier trapping/detrapping
processes,

nt (z, t) ≈
[

Θ−1 (t) − 1
]

n (z, t)− τs (t)
∂n (z, t)

∂t
, (10)
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where the functions:

Θ−1 (t) = 1 + Ct

∫

∞

0

Nt (ε) τr (ε) [1 − exp [−t/τr (ε)]] dε, (11)

τs (t) = Ct

∫

∞

0

Nt (ε) τ2
r (ε) {1 − [1 + t/τr (ε)] exp [−t/τr (ε)]} dε. (12)

In Eqs. (11) and (12) the last factors in integrands may be approximated
by the unit step function, H [ε0 (t) − ε], provided that the functions Nt (ε) τr (ε)
and Nt (ε) τ2

r (ε) vary sufficiently slowly with energy. Then:

Θ−1 (t) ≈ 1 + Ct

∫ ε0(t)

0

Nt (ε) τr (ε) dε, (13)

τs (t) ≈ Ct

∫ ε0(t)

0

Nt (ε) τ2
r (ε) dε. (14)

It should be stressed that both integrals are calculated over the energy interval
0 ≤ ε ≤ ε0 (t), where trapped carriers are in thermal quasi-equilibrium.

The equations equivalent to Eq. (10), with the last term omitted, were
obtained in [4, 5] under assumption of exact thermal equilibrium between free
carriers and carriers trapped in the energy region ε ≤ ε0 (t). As already indi-
cated, this approach was criticized [6], because it does not describe the spatial
carrier dispersion. The mentioned term approximately takes into account the
deviations of carrier densities from their equilibrium values. It will be seen that
presence of the term results in the finite spread of carrier packet.

4. Solution of transport equations

The approximate solution of the equations identical to (1) and (10) was
already obtained in the paper [9], dealing with non-isothermal carrier transport,
and has the form of:

n (z, t) ≈
n0τ0Θ (t)

2 [πξ (t)]1/2
exp

{

−
[z − ζ (t)]

2

4ξ (t)

}

, (15)

nt (z, t) ≈
[

Θ−1 (t) − 1
]

n (z, t) , (16)

where the functions

ζ (t) =

∫ t

0

Θ (t′) dt′, (17)

ξ (t) =

∫ t

0

τs (t′)Θ3 (t′) dt′. (18)

Thus, in considered approximation, the carrier packet has a Gaussian shape.
The ‘centroid’ and the RMS spread of carrier distribution are given respectively
by the formulas

z̄ (t) = ζ (t) , (19)
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σ (t) = [2ξ (t)]1/2 . (20)

The above results constitute straightforward extension of those obtained for
Gaussian carrier transport [10, 11]. In such a case the functions Θ (t) and τs (t)
are constant, which implies that z̄ (t) ∝ t and σ (t) ∝ t1/2.

Inserting the free carrier density (15) into integral (5) one obtains the formula
for intensity of current transient,

I(t) =
I0Θ (t)

2

{

1 + erf

[

τ0 − ζ (t)

2ξ1/2 (t)

]}

, (21)

where erf (. . .) is the error function. The initial current decay and the effective
carrier transit time τe, corresponding approximately to the transition to faster
final current decay, are given by

I (t) ≈ I0Θ (t) , t < τe, (22)

ζ (τe) = τ0. (23)

From Eqs. (15)-(17) as well as Eqs. (22)-(23) it follows that the effective
mobility of carrier packet, determined by the trapping/detrapping events, is
given by µeff (t) = µ0Θ (t). The concept of effective carrier mobility in the case
of dispersive transport was introduced in [4, 5] and the present study confirms
its validity.

5. Functions z̄ (t) and σ (t) for model trap distributions

In this section the formulas, determining the ‘centroid’, z̄ (t), and the RMS
dispersion, σ (t), of carrier packet for some model distributions of traps are
given. These functions almost completely characterize the carrier transport in
the initial time interval, t ≤ τe. In particular, the z̄ (t) function determines the
form of current transient for t < τe, as well as the transit time τe (see Eqs.
(6)-(7)).

The mentioned functions are calculated for the exponential distribution,

Nt (ε) =
Ntot

kTc
exp

(

−
ε − ε0

t

kTc

)

, ε ≥ ε0
t , (24)

and for the special case of Gaussian distribution,

Nt (ε) =
2Ntot

π1/2kTc
exp

[

−

(

ε − ε0
t

kTc

)2
]

, ε ≥ ε0
t . (25)

In both expressions Ntot stands for the total density of traps, the characteristic
temperature Tc determines the rate of trap density decrease with energy and
ε0

t denotes the lower limit of trap distribution (Nt (ε) = 0 for ε < ε0
t ). The

‘cut-off’ in the trap density is introduced for calculational convenience in the
numerical simulations of carrier transport. The simulation results are presented

5

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


in the next section. The majority of formulas is derived under the assumptions
that t ≫ τ0

r (with τ0
r = τr

(

ε0
t

)

) and, in the case of approximate formulas, that
Θ (t) ≪ 1.

For exponential trap distribution (24) and dispersive transport regime, cor-
responding to the value of parameter α = T/Tc < 1, the functions z̄ (t) and
σ (t) may be calculated exactly. This can be done, making use of the general
solutions of MT equations in terms of Laplace transforms [10, 12], as well as of
some results given in [1]. The obtained formulas have the form:

z̄ (t) =
τt

Γ2 (1 + α) Γ (1 − α)

(

t

τ0
r

)α

, α < 1, (26)

σ (t) =

[

2

Γ (1 + 2α)
−

1

Γ2 (1 + α)

]1/2
τt

Γ (1 + α) Γ (1 − α)

(

t

τ0
r

)α

, α < 1,

(27)
where τt = 1/CtNtot denotes the mean trapping time of free carriers and Γ (. . .)
is the Euler gamma function. On the other hand, the functions z̄ (t) and σ (t),
calculated from Eqs. (19)-(20), are as follows:

z̄ (t) ≈
(1 − α) τt

1.8α2

(

1.8t

τ0
r

)α

, α < 1, (28)

σ (t) ≈

[

(1 − α)
3

1.8α3 (2 − α)

]1/2

τt

(

1.8t

τ0
r

)α

, 0.5 < α < 1. (29)

Therefore, the exact and approximate expressions for z̄ (t) and σ (t) differ solely
in multiplicative coefficients, which proves to some extent the correctness of
present approach. It is seen that the velocity of carrier packet ‘centroid’,
dz̄ (t) /dt, decreases in time, which is the characteristic feature of dispersive
transport.

For exponential distribution of traps with α > 1 the carrier transport regime
is commonly regarded as Gaussian. In this case the exact formulas for z̄ (t) and
σ (t) probably cannot be obtained. The approximate formulas have the form:

z̄ (t) ≈
(α − 1) τtt

ατ0
r

, α > 1, (30)

σ (t) ≈

[

(α − 1)
3

0.9 (2 − α) (3 − α)

]1/2
τt

α

(

1.8t

τ0
r

)(3−α)/2

, 1 < α < 2, (31)

σ (t) ≈

[

2 (α − 1)
3

(α − 2)

]1/2
τt

α

(

t

τ0
r

)1/2

, α > 2. (32)

Since the velocity of the carrier packet ‘centroid’ is constant, the carrier trans-
port may be in fact considered Gaussian. However, for 1 < α < 2 the dispersion
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of carrier packet increases faster than the square root of time, contrary to the
case of pure Gaussian transport.

For Gaussian trap distribution (25), the formulas determining considered
functions are:

z̄ (t) ≈
exp

(

−1/4α2
)

τtt

[1 + erf (1/2α)] τ0
r

, (33)

σ (t) ≈
exp

(

1/8α2
)

{2 [1 + erf (1/α)]}1/2 τt

[1 + erf (1/2α)]
3/2

(

t

τ0
r

)1/2

, (34)

where the parameter α = T/Tc and erf (. . .) is the error function. These
formulas are derived under more restrictive assumption than before, that is
t ≫ exp

[

(1 + α) /α2
]

τ0
r . The carrier transport in this time region is Gaussian

for arbitrary value of α. However, if the density of traps decays slowly with
energy, so that α < 1, the time of carrier thermalization might be very long. In
this case gradual transition from dispersive to Gaussian transport regime should
occur. The idea of such transition was primarily introduced in [13].

6. Numerical results

In order to verify the accuracy of formulas determining current transients
and related quantities, Monte Carlo simulations of MT carrier transport are
performed. The utilized procedure is similar to that described in [14]. In the
following figures numerical results (denoted by points) are compared with an-
alytical results (denoted by lines). In calculations the exact formulas (11)-(12)
for the functions Θ (t) and τs (t) are used. The integrals (17)-(18), determining
the functions ζ (t) and ξ (t), are computed numerically.

Figs. 1 and 2 show several current transients, obtained for exponential (24)
and Gaussian (25) trap distributions, respectively. The arrows mark the effective
transit time τe, calculated from Eq. (23). As expected, for both distributions
the accuracy of analytical solutions improves with the increase of parameter α.
In the time interval t < τe the relative difference between current intensities,
calculated numerically and analytically for smaller values of α, remains constant
for exponential distribution and decreases for Gaussian one. In the time region
t ≥ τe the accuracy of analytical results is better for the Gaussian distribution.
This is explained by the fact that in the case of exponential distribution the ratio
of carrier densities, captured in the energy intervals ε < ε0 (t) and ε > ε0 (t)
(with ε0 (t)−ε0

t ≫ kT ), is constant and carrier transport still remains dispersive.
In the case of Gaussian distribution the mentioned ratio increases in time and
the transition from dispersive to Gaussian transport regime takes place.

Fig. 3 presents the time evolution of the total carrier density, ntot (z, t) =
n (z, t)+nt (z, t), in the sample for exponential trap distribution with α = 0.75.
In this case the spatial carrier distribution, computed numerically, differs re-
markably from Gaussian distribution, given by Eqs. (15)-(16). Nevertheless,
the positions of ‘centroids’ of both distributions are nearly the same, which
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explains the similarities of current transients, calculated analytically and nu-
merically for t < τe.

Fig. 4 shows the trapped carrier densities per energy unit, n′

t (z, t, ε), aver-
aged over sample thickness, for exponential distribution of traps with α = 0.75.
One should expect that the energetic distribution of trapped carriers is given
by the relationships: n′

t (t, ε) ∝ Nt (ε) τr (ε) for ε < ε0 (t) and n′

t (t, ε) ∝ Nt (ε)
for ε > ε0 (t). In the case of exponential trap distribution the relationships
take the form of: n′

t (t, ε) ∝ exp (ε/kT − ε/kTc) for ε < ε0 (t) and n′

t (t, ε) ∝
exp (−ε/kTc) for ε > ε0 (t). In figure the sloping full and dashed lines corre-
spond respectively to these relationships, whereas the horizontal lines mark the
position of demarcation level ε0 (t). It is seen that the energetic distribution
of trapped carriers, computed numerically, is in good agreement with above
predictions.

7. Conclusions and final remarks

In this paper, approximate description of the current transients, registered
by the TOF method, is given for the case of MT quasi-equilibrium carrier trans-
port. The obtained formulas are verified by comparison with some exact for-
mulas, as well as with results of simulations of MT transport for model trap
distributions. The agreement is quite satisfactory, provided that trap density
decreases sufficiently fast with energy.

The main aim of TOF measurements in disordered solids is the determination
of energetic distribution of traps and their parameters. Several methods of
analysis of experimental data may be used for this purpose (see, for example, the
review [15]). Basing on results obtained in present paper, yet another method
can be proposed. Making use of Eqs. (8), (13) and (22) and assuming that
Θ (t) ≪ 1, one obtains the formula:

d

dt

[

Q0

I (t)

]

≈ 1.8τ0CtNt [ε0 (t)] , t < τe. (35)

Here, Q0 is the total charge generated in the sample, equal to the area under
the curve I (t) versus t. The above formula enables us to calculate the function
µ−1

0 CtNt [ε0 (t)]. The value of frequency factor ν0, necessary for determination
of demarcation energy ε0 (t) (see Eq. (8)), may be found from the TOF mea-
surements at several temperatures. For proper value of ν0, all calculated trap
distributions should coincide, provided that the temperature dependencies of
µ0, Ct and ν0 are negligible.
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Figure 1: Current transients, calculated for exponential trap distribution (24) and several
values of α = T/Tc. Other calculation parameters: τ0/τt = 104, ν0τ0 = 106, ε0

t
/kT = 20.

Points and lines denote numerical and analytical results, respectively, whereas arrows indicate
effective transit times τe.

Figure 2: Current transients, computed for Gaussian trap distribution (25) and several values
of α = T/Tc. Other calculation parameters: τ0/τt = 104, ν0τ0 = 106, ε0

t
/kT = 20. The

notations are as in Fig. 1.
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Figure 3: Spatial carrier distribution for several times, calculated for exponential trap distri-
bution (24) with α = 0.75. The values of remaining parameters are as in Fig. 1. Points and
lines mark numerical and analytical results, respectively.

Figure 4: Energetic distribution of carriers for two times, computed for exponential trap
distribution (24) with α = 0.75. The values of remaining parameters are as in Fig. 1. Points
and lines denote numerical and analytical results, respectively. Sloping full and dashed lines
refer, respectively, to quasi-equlibrium and non-equilibrium carrier distributions.
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