

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Note

A note on the weakly convex and convex domination numbers of a torus

Joanna Raczek*, Magdalena Lemańska*

Department of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

ARTICLE INFO

Article history:
Received 25 March 2009
Received in revised form 25 May 2010
Accepted 3 June 2010
Available online 5 July 2010

Keywords: Domination number Convex sets Torus

ABSTRACT

The distance $d_G(u, v)$ between two vertices u and v in a connected graph G is the length of the shortest (u, v) path in G. A (u, v) path of length $d_G(u, v)$ is called a (u, v)-geodesic. A set $X \subseteq V$ is called weakly convex in G if for every two vertices $a, b \in X$, exists an (a, b)-geodesic, all of whose vertices belong to X. A set X is convex in G if for all $a, b \in X$ all vertices from every (a, b)-geodesic belong to X. The weakly convex domination number of a graph G is the minimum cardinality of a weakly convex dominating set of G, while the convex domination number of a graph G is the minimum cardinality of a convex dominating set of G. In this paper we consider weakly convex and convex domination numbers of tori.

© 2010 Elsevier B.V. All rights reserved.

1. Definitions

Here we consider simple, undirected and connected graphs G = (V, E) with |V| = n. The open neighbourhood $N_G(v)$ of a vertex $v \in V$ is the set of all vertices adjacent to v and the closed neighbourhood $N_G[v]$ of a vertex $v \in V$ is the set $N_G(v) \cup \{v\}$. A subset $N_G(v) \cup \{v\}$ of $N_G(v) \cup \{v\}$ is dominating if every vertex of $N_G(v) \cup \{v\}$ has at least one neighbour in $N_G(v) \cup \{v\}$ be the minimum cardinality of a dominating set of $N_G(v) \cup \{v\}$ of a dominating set of $N_G(v) \cup \{v\}$ and $N_G(v) \cup \{v\}$ has at least one neighbour in $N_G(v) \cup \{v\}$ be the minimum cardinality of a dominating set of $N_G(v) \cup \{v\}$ has at least one neighbour in $N_G(v) \cup \{v\}$.

The distance $d_G(u, v)$ between two vertices u and v in a connected graph G is the length of the shortest (u, v) path in G. A (u, v) path of length $d_G(u, v)$ is called a (u, v)-geodesic.

A set $X \subseteq V$ is called *weakly convex* in G if for every two vertices $a, b \in X$, exists an (a, b)-geodesic, all of whose vertices belong to X. A set X is *convex* in G if for all $a, b \in X$ all vertices from every (a, b)-geodesic belong to X. A set $X \subseteq V$ is a *weakly convex dominating set* in G if G is weakly convex and dominating. Further, G is a *convex dominating set* if it is convex and dominating. The *weakly convex domination number* $Y_{\text{con}}(G)$ of a graph G is the minimum cardinality of a weakly convex dominating set of G, while the *convex domination number* $Y_{\text{con}}(G)$ of a graph G is the minimum cardinality of a convex dominating set of G. Convex and weakly convex domination numbers were first introduced by Topp [4].

2. Cartesian product

The Cartesian product of two graphs G_1 and G_2 , denoted by $G = G_1 \square G_2$, is the graph with vertex set $V(G) = V(G_1) \times V(G_2)$, where two vertices (u_1, u_2) , (v_1, v_2) are adjacent in $G_1 \square G_2$ if and only if the following holds:

(a)
$$u_1 = v_1$$
 and $u_2v_2 \in E(G_1)$,
(b) $u_2 = v_2$ and $u_1v_1 \in E(G_2)$.

For $v_i \in V(G_2)$, G_1^i denotes the subgraph of $G_1 \square G_2$ induced by $V(G_1) \times \{v_i\}$ and we call G_1^i the *i*th copy of G in $G_1 \square G_2$. If $V(G_2) = \{v_1, \ldots, v_n\}$, then G_1^i and G_2^i are *neighbouring copies* in $G_1 \square G_2$ if $v_i v_j \in E(G_2)$. The Cartesian product of two cycles C_m and C_n is called a *torus*, if $m \geq 3$ and $n \geq 3$. The problem of domination in a torus was considered in [5]. The bondage

^{*} Corresponding author.

E-mail addresses: gardenia@pg.gda.pl (J. Raczek), magda@mif.pg.gda.pl (M. Lemańska).

Fig. 1. The case (a).

number and signed domatic number of a torus is studied in [2] and in [3], respectively. Here we consider weakly convex and convex domination numbers of a torus.

In 1963 Vizing conjectured that $\gamma(G_1 \square G_2) \geq \gamma(G_1)\gamma(G_2)$ for every two graphs G_1 and G_2 . In [1] it was proven that the following Vizing-type inequality for the convex domination number is true.

Theorem 1 ([1]). For connected graphs G_1 and G_2 ,

$$\gamma_{\text{con}}(G_1)\gamma_{\text{con}}(G_2) \leq \gamma_{\text{con}}(G_1 \square G_2).$$

It is easy to verify that the convex domination number of a cycle C_m on m > 6 vertices equals m. Hence, Theorem 1 implies what follows.

Corollary 2. Let C_m and C_n be cycles on $m \ge 6$ and $n \ge 6$ vertices, respectively. Then

$$\gamma_{\text{con}}(C_m \square C_n) = mn.$$

A similar result may be proven for the weakly convex domination number.

Theorem 3. Let C_m and C_n be the cycles on $m \ge 7$ and $n \ge 7$ vertices, respectively. Then

$$\gamma_{\text{wcon}}(C_m \square C_n) = mn.$$

Proof. Let $G = C_m \square C_n$, where $V(G) = \{(x_i, y_i) : x_i \in V(C_m), y_i \in V(C_n), 1 \le i \le m, 1 \le j \le n\}$ and $m, n \ge 7$. Suppose $\gamma_{\text{wcon}}(G) < mn$. Let D be a minimum weakly convex dominating set of G. Since |D| < mn we assume, without of loss of generality, that $(x_3, y_3) \notin D$. Then (x_3, y_3) belongs to the $((x_3, y_2), (x_3, y_4))$ -geodesic and thus $(x_3, y_2) \notin D$ or $(x_3, y_4) \notin D$. Without loss of generality, let $(x_3, y_2) \notin D$. Similarly, (x_3, y_3) belongs to the $((x_3, y_1), (x_3, y_4))$ -geodesic and thus we let $(x_3, y_1) \notin D$. Further, (x_3, y_3) belongs to the $((x_2, y_3), (x_4, y_3))$ -geodesic so, without loss of generality, we let $(x_2, y_3) \notin D$. Each $((x_2, y_2), (x_3, y_4))$ -geodesic contains (x_3, y_3) or (x_3, y_2) or (x_2, y_3) , so $(x_2, y_2) \notin D$ or $(x_3, y_4) \notin D$.

- (a) If $(x_2, y_2) \notin D$, then $(x_4, y_2) \in D$ dominates (x_3, y_2) . Moreover, since D is weakly convex, $(x_1, y_2) \notin D$. However this implies that $(x_2, y_1) \in D$ which is a contradiction, because no $((x_2, y_1), (x_4, y_2))$ -geodesic is contained in D. (See Fig. 1, some edges in the figures are omitted to make them more clear.)
- (b) If $(x_3, y_4) \notin D$, then $(x_4, y_3) \in D$ dominates (x_3, y_3) . Moreover, since D is weakly convex, $(x_1, y_3) \notin D$ and $(x_2, y_4) \notin D$. However, this implies that $(x_2, y_2) \in D$ which is a contradiction, because no $((x_2, y_2), (x_4, y_3))$ -geodesic is contained in D. (See Fig. 2.)

The following propositions give exact values for the convex domination number and the weakly convex domination number for a torus $G = C_m \square C_n$, where $n \in \{3, 4, 5, 6\}$. We start with a lemma.

Lemma 4. Let $G = C_m \square C_n$, where $n \ge 3$ and $m \ge 5$. Let D be a minimum weakly convex dominating set of G such that $(x_3, y_i) \not\in C_n$ D for $j \in \{1, 2, 3\}$. Then, without loss of generality, $(x_i, y_j) \notin D$ for $i \in \{2, 3\}, j \in \{1, 2, 3\}$ and $(x_1, y_2) \in D$, $(x_4, y_2) \in D$.

Proof. Let G and D be defined as above. Since D is dominating, (x_3, y_2) has a neighbour in D. Without loss of generality let $(x_4, y_2) \in D$. Since $m \ge 5$, each $((x_2, y_1), (x_4, y_2))$ -geodesic contains (x_3, y_1) or (x_3, y_2) , so the weak convexity of D implies that $(x_2, y_1) \notin D$. By similar arguments, $(x_2, y_3) \notin D$ and $(x_2, y_2) \notin D$. Hence, $(x_1, y_2) \in D$ dominates (x_2, y_2) . (See Fig. 3.)

Proposition 5. *Let* $G = C_m \square C_3$, *where* $m \ge 3$. *Then*

$$\gamma_{\text{wcon}}(G) = \gamma_{\text{con}}(G) = m.$$

Proof. Since $\gamma_{con}(G) \geq \gamma_{wcon}(G) \geq \gamma(G) = 3$ and the set $\{(x_2, y_1), (x_2, y_2), (x_2, y_3)\}$ is a convex dominating set of G, the result is true for m=3. Let $G=C_m\square C_3$, where $m\geq 4$ and denote $V(G)=\{(x_i,y_j):x_i\in V(C_m),y_j\in V(C_3),1\leq i\leq m\}$

Fig. 2. The case (b).

Fig. 3. Illustration for the Lemma 4.

 $m, 1 \le j \le 3$ }. We show that $D = \{(x_i, y_1) : 1 \le i \le m\}$ is a minimum convex and weakly convex dominating set of G. It is obvious that D is convex and dominating, so $\gamma_{wcon}(G) \le \gamma_{con}(G) \le m$. Suppose D is not a minimum weakly convex dominating set of G. Then there exists a weakly convex dominating set $D' \subseteq V(G)$ such that |D'| < |D| = m. However, it is possible to verify that for $C_4 \square C_3$ we cannot find a weakly convex dominating set of cardinality at most 3. Hence, in what follows we assume $m \ge 5$. Since |D'| < m, there exists an index i such that all three vertices of $V(C_3^i)$ do not belong to D'. Without loss of generality, let i = 3. By Lemma 4, we obtain that $(x_l, y_k) \notin D'$ for $l \in \{2, 3\}, k \in \{1, 2, 3\}$ and $(x_1, y_2) \in D'$, $(x_4, y_2) \in D'$ (See Fig. 4.)

Recall that $\gamma_{\text{wcon}}(C_k) = k$ for $k \ge 7$. For this reason, since D' is weakly convex and $d_G((x_1, y_2), (x_4, y_2)) \le 3$, we conclude that $m \le 6$. Hence, |D'| < 6. Since D' is dominating, $(x_1, y_1), (x_1, y_3), (x_4, y_1), (x_4, y_3) \in D'$. However, this implies that $|D'| \ge 6$, a contradiction. Therefore, $\gamma_{\text{wcon}}(G) = \gamma_{\text{con}}(G) = m$. \square

Proposition 6. *Let* $G = C_m \square C_4$, *where* $m \ge 7$. *Then*

$$\gamma_{\text{wcon}}(G) = \gamma_{\text{con}}(G) = 2m.$$

Proof. Let $G = C_m \square C_4$, where $m \ge 7$ and denote $V(G) = \{(x_i, y_j) : x_i \in V(C_m), y_j \in V(C_4), 1 \le i \le m, 1 \le j \le 4\}$. We show that $D = \{(x_i, y_j) : 1 \le i \le m, 1 \le j \le 2\}$ is a minimum weakly convex and convex dominating set of G. It is obvious that D is convex and dominating, so $\gamma_{\text{wcon}}(G) \le \gamma_{\text{con}}(G) \le 2m$. Suppose D is not a minimum weakly convex dominating set of G. Then there exists a weakly convex dominating set $D' \subseteq V(G)$ such that |D'| < |D| = 2m. Then there exists an index I is uch that at least three vertices of I is under the vertices of I is I in I

The straightforward, albeit technical proof of the following observation is omitted.

Observation 7. The weakly convex domination number and convex domination numbers of the Cartesian product of C_m and C_4 , where $m \in \{4, 5, 6\}$, are also equal to 2m.

Proposition 8. *Let* $G = C_m \square C_5$, *where* $m \ge 5$. *Then*

$$\gamma_{\text{wcon}}(G) = \gamma_{\text{con}}(G) = 3m.$$

Proof. Let $G = C_m \square C_5$, where $m \ge 5$ and denote $V(G) = \{(x_i, y_j) : x_i \in V(C_m), y_j \in V(C_5), 1 \le i \le m, 1 \le j \le 5\}$. We show that $D = \{(x_i, y_j) : 1 \le i \le m, 1 \le j \le 3\}$ is a minimum convex and weakly convex dominating set of G. It is obvious that G is convex and dominating, so G is a minimum weakly convex dominating set

Fig. 4. The $C_m \square C_3$ (some edges are omitted).

Fig. 5. Case (a) of $C_m \square C_5$.

of G. Then there exists a weakly convex dominating set $D' \subset V(G)$ such that |D'| < |D| = 3m. Therefore, there exists an index i such that at least three vertices of $V(C_5^i)$ do not belong to D'. Since D' is weakly convex, those three vertices induce a P_3 in G. Without loss of generality, let $(x_3, y_1), (x_3, y_2), (x_3, y_3) \notin D'$. Now, by Lemma 4, we obtain that $(x_l, y_k) \notin D'$ for $l \in \{2, 3\}, k \in \{1, 2, 3\}$ and $(x_1, y_2) \in D', (x_4, y_2) \in D'$. Again we conclude that $m \le 6$.

If $(x_4, y_3) \notin D'$, then $(x_3, y_4) \in D'$ and so no $((x_4, y_2), (x_3, y_4))$ -geodesic is contained in D'. Thus we conclude that $(x_4, y_3) \in D'$. By similar reasoning and symmetry we obtain that $(x_1, y_3) \in D'$, $(x_4, y_1) \in D'$ and $(x_1, y_1) \in D'$. Further, since D' is weakly convex, we have that $(x_5, y_k) \in D'$ for $k \in \{1, 2, 3\}$ and if m = 6 then, additionally, $(x_6, y_k) \in D'$ for $k \in \{1, 2, 3\}.$

- (a) Suppose $(x_3, y_4) \in D'$. Then (x_4, y_4) belongs to the $((x_3, y_4), (x_4, y_3))$ -geodesic that does not contain vertices from V(G) - D', so $(x_4, y_4) \in D'$. Similarly, considering the $((x_3, y_4), (x_1, y_3))$ -geodesic outside of D' we conclude that $(x_1, y_4) \in D'$ and $(x_2, y_4) \in D'$. This implies that $(x_5, y_4) \in D'$, $(x_5, y_5) \in D'$, $(x_4, y_5) \in D'$ and $(x_1, y_5) \in D'$ (see Fig. 5). Then $|D'| \ge 17$ for m = 5 and $|D'| \ge 20$ for m = 6. However this contradicts |D'| < 3m.
- (b) Thus, $(x_3, y_4) \notin D'$. If $(x_2, y_4) \in D'$, then each $((x_2, y_4), (x_4, y_3))$ -geodesic would contain vertices from V(G) D', so $(x_2, y_4) \notin D'$. If $(x_4, y_4) \notin D'$, then $(x_3, y_5) \in D'$ dominates (x_3, y_4) . However, each $((x_3, y_5), (x_4, y_3))$ -geodesic contains vertices from V(G)-D'. Thus, $(x_4,y_4)\in D'$. Similarly we obtain that $(x_1,y_4)\in D'$. Since D' is weakly convex, $(x_5, y_4) \in D', (x_1, y_5) \in D', (x_4, y_5) \in D'$ and $(x_5, y_5) \in D'$ (see Fig. 5). Thus, $|D'| \ge 15$ for m = 5. If m = 6, then $(x_6, y_k) \in D'$ for $k \in \{1, 2, ..., 5\}$ and thus $|D'| \ge 20$. However both cases contradict the fact that |D'| < 3m(Fig. 6). \Box

Our last result for the Cartesian product of two cycles concerns only weakly convex domination.

Proposition 9. *Let* $G = C_m \square C_6$, *where* $m \ge 6$. *Then*

$$\gamma_{\text{wcon}}(G) = 4m$$
.

Proof. Let $G = C_m \square C_6$, where $m \ge 6$ and denote $V(G) = \{(x_i, y_i) : x_i \in V(C_m), y_i \in V(C_6), 1 \le i \le m, 1 \le j \le 6\}$. We show that $D = \{(x_i, y_i) : 1 \le i \le m, 1 \le j \le 4\}$ is a minimum weakly convex dominating set of G. It is obvious that D is weakly convex and dominating, so $\gamma_{\text{wcon}}(G) \leq 4m$. Suppose D is not a minimum weakly convex dominating set of G. Then there exists a weakly convex dominating set $D' \subseteq V(G)$ such that |D'| < |D| = 4m and therefore there exists an index i such that at least three vertices of $V(C_6^i)$ do not belong to D'. Since D' is weakly convex, those three vertices induce a P_3 in

Fig. 6. Case (b) of $C_m \square C_5$.

Fig. 7. Case (a): subcase $(x_3, y_5) \in D'$ of $C_6 \square C_6$.

G. Without loss of generality, let (x_3, y_1) , (x_3, y_2) , $(x_3, y_3) \notin D'$. Now, by Lemma 4, we obtain that $(x_l, y_k) \notin D'$ for $l \in \{2, 3\}$ and $k \in \{1, 2, 3\}$ and $(x_1, y_2) \in D'$, $(x_4, y_2) \in D'$. Again we conclude that $m \le 6$.

Moreover, by similar reasoning as in the proof of previous proposition, we obtain that $(x_l, y_k) \in D'$ for $l \in \{1, 4, 5, 6\}$ and $k \in \{1, 2, 3\}.$

- (a) If $(x_3, y_4) \in D'$, then by considering $((x_3, y_4), (x_4, y_3))$ -geodesics we conclude that $(x_4, y_4) \in D'$. Similarly, (x_1, y_4) and (x_2, y_4) belong to a $((x_3, y_4), (x_1, y_3))$ -geodesic and thus they belong to D'. If $(x_3, y_5) \in D'$, then each $((x_3, y_5), (x_4, y_1))$ geodesic in D' contains (x_4, y_6) , so $(x_4, y_6) \in D'$ and further $(x_4, y_5) \in D'$. Similarly, each $((x_3, y_5), (x_1, y_1))$ -geodesic in D' contains (x_1, y_6) , so $(x_1, y_6) \in D'$ and further $(x_1, y_5) \in D'$ and thus $(x_2, y_5) \in D'$ (see Fig. 7). Since D' is weakly convex, (x_2, y_6) , $(x_3, y_6) \in D'$ or (x_5, y_6) , $(x_6, y_6) \in D'$. In both situations $|D'| \ge 24 = 4m$, a contradiction. Therefore we conclude $(x_3, y_5) \notin D'$. Since D' is weakly convex, $(x_3, y_6) \notin D'$. If $(x_2, y_5) \in D'$, then each $((x_2, y_5), (x_4, y_1))$ -geodesic would contain vertices of V(G) - D' which is impossible. Thus $(x_2, y_5) \notin D'$ and further $(x_2, y_6) \notin D'$. Since D' is dominating, $(x_1, y_6) \in D'$, $(x_4, y_6) \in D'$. Moreover, the weakly convexity of D' implies that $(x_l, y_5) \in D'$ for $l \in \{1, 4, 5, 6\}$ and $(x_l, y_6) \in D'$ for $l \in \{5, 6\}$ (see Fig. 8). However then $|D'| \ge 24$, a contradiction.
- (b) If $(x_3, y_4) \notin D'$, then by the similar reasoning as in the proof of Proposition 8, we obtain that $(x_2, y_4) \notin D'$ and $(x_1, y_4) \in D'$ for $l \in \{1, 4, 5, 6\}$. Now, the rest of the proof is similar to the proof of the Case (a) and (b) of Proposition 8. \square

Fig. 8. Case (a): subcase $(x_3, y_5) \notin D'$ of $C_6 \square C_6$.

Acknowledgement

We thank the referee for suggestions which improved the quality of this paper.

References

- [1] J. Cyman, M. Lemańska, J. Raczek, Graphs with convex domination number close to their order, Discuss. Math. Graph Theory 26 (2006) 307-316.
- [2] Liying Kang, Moo Young Sohn, Hye Kyung Kim, Bondage number of the discrete torus $C_n \times C_n$, Discrete Math. 303 (2005) 80–86.
- [3] D. Meierling, L. Volkmann, S. Zitzen, The signed domatic number of some regular graphs, Discrete Appl. Math. 157 (8) (2009) 1905–1912.
- [4] J. Topp, Personal communication, Gdańsk University of Technology, 2002.
- [5] D.M. Van Wieren, Critical cyclic patterns related to the domination number of the torus, Discrete Math. 307 (2007) 615-632.

