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ABSTRACT 

In this paper we discuss the discrepancies between results reported in the literature in the context of 

dynamics of shell structure composed of three intersecting plates. The shell structure is subjected to a 

system of spatially uniformly distributed dead loads of prescribed time variation. Once the forces die out 

the structure experiences free motion. The comparison of reported solutions from literature shows that the 

total energy in free motion has different values, despite the fact that the same material, geometry and 

loads have been used. The aim of study is to address the issue by referring own results to that known from 

literature.  

1. THE PROBLEM

The example discussed here belong to the tumbling flexible structures. In literature a spaghetti

problem was first modeled and analyzed in [1] and then in [2], [3], [4] using rod formulation. These 

works gave an impulse for analyzing this type of problems using various rod and shell formulations. The 

ultimate goal and the culmination of the works by Simo and Vu-Quoc on flying flexible structures, with 

application to satellite dynamics, can be found in [5]. 

The example discussed here, see Fig. 1, is concerned with motion (without gravity loads) of irregular 

shell structure subjected to spatial system of uniformly distributed dead loads of given time variation. 

After the driving loads die out the structure experiences free motion where, by definition, the total energy, 

linear momentum vector and angular momentum vector of the structure must remain constant. The 

problem has been studied, among others, in [6], [7] and [8], yet in the latter reference the load was 

defined differently than in the two former papers. Consequently, the results from [8] can not be discussed 

directly here. The comparison of results reported in [6] and [7] indicates significant discrepancies 

between computed total energy of the structure. The reported values are respectively: approximately 70 

and approximately 20. What makes the matter interesting is that in both papers the same geometrical, 

material and load parameters are reported to have been used.  

That the structure is composed of orthogonally intersecting plates and experiences unlimited rotations 

and translations make the example a challenging task for every shell theory incorporating the sixth degree 

of freedom, the finite elements elaborated within that theory and temporal integration schemes. The lack 

of boundary constraints excludes the use of finite elements with uniform reduced or selective reduced 

integration of matrices, with uncontrolled spurious zero-energy forms. Consequently higher order 

elements, or elements specially formulated to minimize locking effect, should be employed. 
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We have tried to study the example on the grounds of 6-parameter geometrically and statically exact 

nonlinear shell theory and temporal integration schemes that have been discussed in the following 

references: [9][10][11][12][13][14][15][16]. The main aspects of the underlying theory of shells are 

briefly presented in Appendix A.  

Nonetheless, despite the fact that we have used the material, load and geometrical parameters as 

reported in [6] and [7] our computed values of total energy in free motion do not coincide with any value 

reported in the literature. This fact has been already addressed in [17]. 

2. SOLUTIONS 
 

The shell in general is a three dimensional body merely of specific geometry. As such it obeys usual 

balance laws of continuum mechanics expressed by, among others, quantities: mass m , resultant force 

vector F , linear momentum vector L , resultant moment vector M  and moment of momentum vector 

J . In shell structures, as in every mechanical system, the universal laws of mechanics must be satisfied. 

These laws are: balance of mass 

 [ ] 2

1
( ) 0t

t
m t =  (1) 

balance of linear momentum 

 [ ] 22

1 1

( ) ( )
tt

t t
t τ dτ= ∫L F  (2) 

balance of angular momentum 

 [ ] 22

1 1

( ) ( )
tt

t t
t τ dτ= ∫J M  (3) 

where [ ] 2

1
2 1( ) ( ) ( )t

t
τ t t≡ −f f f . In structural dynamics problems the mass is preserved and thus will be not 

dealt with here. The laws of conservation of momenta may be rewritten as 

 2

1
2 1( ) ( ) ( )

t

t
t t t dt− − =∫ 0L L F   and for (0) = 0L ,   

0
( ) ( )

t
t τ dτ− =∫ 0L F  (4) 
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1
2 1( ) ( ) ( )

t

t
t t t dt− − =∫ 0J J M   and for (0) = 0J ,   

0
( ) ( )

t
t τ dτ− =∫ 0J M  (5) 

In the above forms the balance of linear and angular momenta may be viewed as additional error 

estimation of the time integration scheme. Moreover, in the error context, the energy of the non-

dissipative structure may be also used, writing the energy equation in the form analogical to (4) or (5) 

 ( ) ( ) ( ) 0extU t K t G t+ − =  (6) 

Here U  denotes potential energy, K  stands for kinetic energy and extG  denotes work done by external 

loads. Note that in case of dead loads ( )( ) ( ),τ τ τ≠F F x  the second component of equation (4) and right 

hand side of (2) are independent of deformation and hence independent of mesh discretization and may be 

integrated exactly immediately. Then equation (4) may be treated as one of criteria of verification of the 

theory and volume (mass) integration scheme. We employ this fact in our study.  

In the present study two families of shell finite elements have been used: the 4–, 9– and 16–node, 

displacement/rotation based CAM (Computer and Analytical Modeling) elements [9], [10], [11] with full 

integration (FI) and 4– and 9–node semi-mixed elements (SEM) (FI) [9], [11]. While the CAM elements 
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are used with energy conserving algorithm (ECA, [15], [16]) the SEM elements are used with Newmark 

type scheme described in [9] and [14]. Appendix B contains the example presenting the essential 

verification of the ECA scheme. 

The parameters of the example used in the present study follow from [6]. For completeness they are 

set in Table 1 together with original values reported by other researchers. It is stressed that we are only 

sure about our parameters used in this communication. In particular we use the following  

 
3 3

50
0

0.02 3.333 10
12 12

50I
h

I ρ −= = = × , 0 0 1.0 0.02 0.02mm ρ h= = ⋅ =   (7) 

In equations (7) following [6], we have introduced different mass densities Iρ  and mρ  for rotational 

component 0I  and translational component 0m  respectively. Such case may exists for composite shells.  

Time history of load is prescribed by function (cf. Fig.1) 

 

1 1
2 2
1 1
2 2

0
( ) (1 ) 1

0 1

t for t s
p t t for t s

for t s

≤ ≤
= − ≤ ≤
 ≥

 (8) 

The spatial distribution of the reference load along structure edges reported in the literature is 

problematic. The question arises whether the load should be applied as the uniformly distributed or in the 

form of point forces. In [6] the load acting on structure has been described as „…nodal loading at…” (cf. 

Fig. 6 of [6]). References [7] and [8] do not throw additional light on this matter. Analysis of FEM mesh 

used in [6] and [7] reveals that along edges C and D (cf. Fig. 6 of [6] and Fig. 9 of [7]) three 4-node 

elements have been used. This suggests that load can not be unambiguously applied as the point force 

situated in the half-length of respective edge ( )is . It suggests therefore, that the load is treated as the 

piecewise uniformly distributed ( ) ( )( )ref i isq  along directions of global axes along appropriate edges ( )is  of 

ith plate. Such approach has been used here – cf. Fig. 1. For completeness we report the values of load 

resultants from each edge with the coordinates 

 ( ; ; ) (8;0; 8)ABR x y z = − ,     0 0 0( ; ; ) ( 5; 3;0)AB AB ABx y z = − −  (9) 

 ( ; ; ) ( 8; 16;8)CDR x y z = − − ,     0 0 0( ; ; ) ( 5;6;0)CD CD CDx y z = −  (10) 

 ( ; ; ) (30;18; 3)EFR x y z = − ,     0 0 0( ; ; ) (5;1.5;7)EF EF EFx y z =  (11) 

 ( ; ; ) (3; 3; 3)GHR x y z = − − ,     0 0 0( ; ; ) (5;1.5; 7)GH GH GHx y z = −  (12) 

The components of resultant force vector F  and resultant moment vector M  (computed about the 

origin of the assumed coordinate system, cf. Fig. 1) and their Euclidean norms are therefore 

 33xF = ,     1yF = − ,     6zF = − ,     33.556F =  (13) 

 84xM = − ,     219yM = ,     177.5zM = ,     294.15M =  (14) 

In the light of the addressed discrepancies between known reference solutions we have carried out h–

type and p–type convergence analysis of total energy of the structure in free motion. In the analysis the 

following rules have been applied:  

(1) every plate is divided into the same number of finite elements,  
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(2) within a plate the same regular division 3N N×  with respect to the shorter edge N  is used,  

(3) N  takes on even values 2, 4,6,...N =  

The justification of using the energy as the measure of the solution correctness follows from the 

following facts. The total energy of the system is well defined scalar value. Moreover, with 

unambiguously defined parameters of: material, geometric and load when the latter die out the energy is 

constant during the free motion. As such it may be regarded as physical property of the system, 

understood as the structure and loads. Therefore, it is independent of time step, used temporal 

approximation scheme and spatial approximation (finite elements used, mesh density).  

In [15] and [16] the time histories of energy have been presented, computed using meshes 

8 24×  CAMe16 (FI) and 4 12×  CAMe9(FI) elements (for each plate). The values from [15] and [16] for 

0.002Δt s=  computed with the former mesh are repeated here in Fig. 2 with results known from 

literature. The figure shows also the result corresponding to (almost) rigid body solution obtained with 

Young’s modulus ( 610E E→ × ) in coarse mesh 4 12×  CAMe4(FI). This discretization strongly “locks” 

the results as a consequence of locking effect associated with classical displacement formulation of 4–

node element of Lagrange type with full integration. This (almost) rigid body results has been confirmed 

by the solution of the structure treated analytically by assumption as the rigid body [13], obtained using 

algorithms independent of those discussed here.  

Fig. 2 shows that in our solutions the energy is bounded between approximately 60 and 

approximately 19 (19.6069). The lower bound is computed as the (almost) rigid body solution The figure 

clearly indicates different energy from [6] and [7]. What is interesting, the solution obtained in the present 

(almost) rigid body solution is very close to value from [7]. 

In the subsequent analysis, apart from CAM elements [9], [10], the semi-mixed SEM elements [9], 

[11] resulting from displacement/stress formulation have been used. The use of two types of elements 

stemming from different and independent variational formulations, and partially different concept of 

interpolation, has enabled us to detect possible error contributed by the element itself. The computed 

values of total energy U K+  of the system at 1t s=  i.e. the at the transition to free motion as the 

function of number of nodes on the shorter edge of the plate are depicted in Fig. 3 and Fig. 4. In the 

figures 3n =  nodes corresponds to 342 degrees of freedom of the whole structure while 25n =  nodes 

corresponds to 32550 degrees of freedom of the whole structure. 

From Fig. 3, depicting p–type convergence analysis, it may be inferred that the curves are bounded 

by value around. 60. The curves monotonically converge to the least upper bound with the increase of 

number of degrees of freedom. Such convergence is typical for compatible elements, for instance CAM. 

Fig. 4 shows somewhat different exposition of convergence analysis carried out using 4–, 9– and 16–node 

CAM elements employing bilinear, biquadratic and bicubic shape functions with full integration. The 

values computed using 4–node elements CAMe4(FI) are evidently polluted by locking effect. All the 

computed energy values, for the sake of clarity, are set in Table 2. The values have been found using full 

Gaussian quadrature rule i.e.: 2×2 for 4–node elements, 3×3 for 9– node elements and 4×4 for 16– node 

elements. 

Analyzing the error of preservation of linear and angular momenta i.e. equations (4) and (5), we have 

verified that the equation (4) is recovered exactly by the numerical integration scheme, yielding the 
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analytical values from Table 3. For angular momentum components we have performed the p–type and 

h–type convergence analysis. The results are depicted in Fig. 5, Fig. 6 and Fig. 7 and set in Table 4. It is 

seen that the convergence is achieved better than in case of energy. 

In addition, Fig. 8. depicts some representative configurations at selected time instances. Since 

originally the configurations would overlap, they have been moved away from each other. 

 

3. CONCLUSIONS 
 

All own results have been obtained on the grounds of 6–parameter geometrically and statically exact 

nonlinear shell theory. The spatial discretization has been carried out with the help of finite elements 

based on two different independent variational principles. Furthermore, different interpolation schemes 

have been used in the elements. On the basis of the presented own energy convergence analysis, the 

authors venture to say that the total energy of the analyzed structure is bounded between 19 and 60. The 

obtained convergence curves exhibit typical for compatible elements monotonical characteristic.  

Unfortunately, the computed values are different than those known from the literature. It is worth 

mentioning that the discussed example, due to reasons given in Section 1 (three orthogonally intersecting 

plates, finite rotations and translations in free motion) is relatively seldom undertaken by other 

researchers. Another possible explanation is an imprecise definition of load in the source paper [6] and 

vague definition of material properties.  

Based on own study it has been also found that the use in computations of lumped mass matrix 

instead of consistent mass formulation is of negligible influence on the obtained results. In addition, 

assuming 0
IρI =  ( 0Iρ = ) instead of 53.333 10

IρI −= ×  ( 50Iρ = ) yields also negligible effect.  

In the conclusion therefore a question should be asked about the properties of this interesting 

example. In this connection another question arises what is the total energy of the structure. If these issues 

are not answered the analyzed problem in the present form can not be regarded as the repeatable example. 

The authors will be grateful for further discussion, remarks and suggestions that help to remove the 

presented controversies. 
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[24] Appendix A. Outline of the shell theory 
 

The shell theory employed here and associated various FEM formulations have been discussed in 

depth in [9][10][11][12][13][14][15][16]. For sake of completeness, we recapitulate some important facts 

about the formulation, cf. also [18].  

The motion of the shell structure, understood here as a 2D Cosserat continuum M  having a boundary 

M∂  with an attached structure tensor 0 ( )T x , can be described by the translation vector field  

 ( , ) ( , )t t= −u x y x x   (A.1) 

and the rotation tensor field  

 0( , ) ( , ) ( )t t=Τ x Q x T x ,    ( , ) (3)t SO∈Q x  (A.2) 

Here M∈x  and ( , )ty x  are position vectors of the undeformed and the current base surface of the shell, 

respectively, and ( , )tQ x  is an independent proper orthogonal tensor field representing the mean rotary 

deformations of the shell attached structure tensor 0 ( )T x . The fields ( , )ty x  and ( , )tQ x  are assumed to 

be continuous during the motion. The linear velocity vector is defined as 

 ( , ) ( , ) ( , )t t t= = υ x y x u x  (A.3) 

whereas the angular velocity vector ( , )tω x  in the spatial representation is  

 ad T= ω QQ ,     3ad : (3)E so→  (A.4) 

The strain measures are defined as follows: stretching vector 

 , ,β β β= −ε y Qx ,     1, 2β =  (A.5) 

and bending vector 

 1 Tad ( , )β β
−=κ Q Q  (A.6) 

The kinetic constitutive relations for the linear ( , )tp x  and angular ( , )tm x  momentum surface 

vectors may be taken respectively as (cf. [19])  

 0 0( , ) mt m hρ= =p x υ υ ,     3
0 0( , ) ( /12)It I hρ= =m x ω ω  (A.7) 

where ( )mρ x  is the initial shell mass density of translational motion, ( )Iρ x  is the initial shell mass 

density of rotary motion and 0 ( )h x  is the initial shell thickness. Hence  

 ( ) ( , )
M

t t da= ∫∫L p x ,     ( ) ( , )
M

t t da= ∫∫J m x  (A.8) 

Assuming that there exists a two dimensional strain energy ( , ; )W β βε κ x  of the shell strain measures 

(A.5) and (A.6) the constitutive relations of the shell material are given by 

 /Wβ
β=∂ ∂n ε ,     /Wβ

β=∂ ∂m κ  (A.9) 

Here ( , )tβn x  and ( , )tβm x  are the internal stress and couple resultant vectors, respectively. Therefore 

the internal energy and kinetic energy are defined as respectively 
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M

U Wda= ∫∫ ,     0 0
1 ( )
2 M

K m I da= +∫∫  υ υ ω ω  (A.10) 

When expressed in the weak form, the initial-boundary value problem for the structural shell can is 

stated as follows.  

Given: 

• the external resultant force and couple vector fields ( , )tf x  and ( , )tc x  on M∈x , *( , )tn x  and 

*( , )tm x  along fM∂ ,  

• the kinematic boundary conditions ( , ) *( , )t t=u x u x  and ( , ) *( , )t t=Q x Q x  along 

\d fM M M∂ =∂ ∂  

• and the initial values 0 ( )u x , 0 ( )Q x , 0 ( )u x , 0 ( )Q x  at 0t = ,  

find a curve ( , ) ( ( , ), ( , ))t t t=u x u x Q x  on the configuration space 3( , (3) )C M E SO×  such that for any 

continuous kinematically admissible virtual vector field ( ) ( ( ), ( ) )≡w x v x w x  the following principle of 

virtual work is satisfied  

 
0 0[ ; ] [ ] [ ( , , ) , ]

( ) ( * * ) 0 .
f

M M

M M

G m I da da

da ds

β β
β β β

∂

= + + + × +

− + − + =

∫∫ ∫∫

∫∫ ∫

u w     

   

υ v ω w n v y w m w

f v c w n v m w
 (A.11) 

In equation (A.11) it is implicitly assumed that virtual vector fields are kinematically admissible if 

( ) = 0v x  and ( ) = 0w x  along dM∂ . The solution of (A.11) is obtained in the course of iterative 

procedure reducing the problem to a sequence of solutions of linearized problems. Each linearized 

problem is formulated at discrete values of both temporal (ECA) and spatial variables (FEM). The main 

difficulty of such solution procedure is associated with the structure of the configuration space 
3( , (3) )C M E SO×  which does not possess the structure of linear space since it contains (3)SO . 

In connection with equation (6) the external work is 

 
0

( ) ( ) ( * * )
f

t

ext M M
G t da ds dτ

∂

 = + + +  ∫ ∫∫ ∫   f υ c ω n υ m ω  (A.12) 

 
 
Appendix B. Validation of the algorithm – free flying plate 
 

To validate our formulation we have run well-known example of the free flying plate, cf. [20] for 

shell formulation or [21] for in-depth analysis using solid-shell elements (see also [22] for statics and 

important results about satisfaction about patch-test). These solid-shell elements provide good alternative 

for modeling shell junctions, see for instance [23]. 

The geometry and loads are presented in Fig. 9. The material properties are 

 206E GPa= ,     0ν = ,    37800m Iρ ρ ρ kg/m= ≡ =  (B.1) 

To discretize the shell we use two meshes: 2 15×  and 4 30×  CAMe16 (FI) elements. The time step 

was 55 10Δt s−= ⋅ . Some deformed configurations are presented in Fig. 10. The conservation of energy is 

depicted in Fig. 11. We have noticed that there is no significant difference between the results obtained 
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from 2 15×  and 4 30×  mesh and in both cases our results are consistent with reference solutions [20], 

[21]. The conservation of momenta is portrayed in Fig. 12. As in the case of energy, the obtained results 

are also in agreement with reference solutions. Our computed values of energy, linear and angular 

momenta at time 0.004t s=  are set in Table 5, Table 6 and Table 7 respectively. We note, however, that 

there may be differences inf sign of linear momentum components (Table 6) and also differences of 

values of angular momentum components (Table 7) depending on orientation and origins of assumed 

coordinate systems. 

In passing we would like to point out that although we have not observed the differences between 

solutions obtained with 2 15×  and 4 30×  CAMe16 (FI) meshes, we have noticed that these solutions are 

obtained with different number (decreasing with mesh refinement) of iterations – see Fig. 13. Similar 

effect has been discussed in reference papers [20], [21].  
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Table 1. Three intersecting plates, properties of example reported in literature 
 

 Simo and Tarnow [1994] Zhong and Crisfield [1998] Miehe and Shroeder [2001] Present study 
Material 
properties 

68 10λ = × , 68 10μ = ×  72 10E = × , 0.25ν =  ? 72 10E = × , 0.25ν =  

Mass 
density 

1mρ =  53.333 10−×   ? 1mρ =  

Nominal 
rotational 
inertia 

5
0 3.333 10I −= ×  ? ? 5

0 3.333 10I −= ×   ( 50Iρ = ) 

Thickness 0 0.02h =  ? ? 0 0.02h =  
Nominal 
translation
al mass 

? ? ? 0 0.02m =      ( 1mρ = ) 

Time 
variation 

0.5 0 0.5
( ) 0.25 0.5 0.5 1

0 1

t for t s
p t t for t s

for t s

≤ ≤
= − ≤ ≤
 ≥

* (original function is provided) 

0.5 0 0.02
( ) 0.02 0.5 0.02 0.04

0 0.04

t for t s
p t t for t s

for t s

≤ ≤
= − ≤ ≤
 ≥

 

1 1
2 2
1 1
2 2

0
( ) (1 ) 1

0 1

t for t s
p t t for t s

for t s

≤ ≤
= − ≤ ≤
 ≥

 

1 1
2 2
1 1
2 2

0
( ) (1 ) 1

0 1

t for t s
p t t for t s

for t s

≤ ≤
= − ≤ ≤
 ≥
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Table 2. Three intersecting plates, energies of the structure at 1.0t s=  
 

Element (plate discretization) U K U + K 
    
CAMe4 (  2×  6) FI,  610E E→ ×  (rigid body) 0.0002 19.65 19.65 
    
CAMe4 (  2×  6) FI 0.057 21.93 22.99 
CAMe4 (  4×12) FI 0.148 24.04 24.18 
CAMe4 (  6×18) FI 0.714 24.57 25.28 
CAMe4 (  8×24) FI 1.264 24.66 25.92 
CAMe4 (10×30) FI 1.714 24.81 26.52 
CAMe4 (12×36) FI 2.166 25.21 27.38 
CAMe4 (14×42) FI 2.263 26.45 28.71 
CAMe4 (16×48) FI 2.751 27.62 30.37 
CAMe4 (18×54) FI 4.543 27.50 32.04 
CAMe4 (20×60) FI 7.255 26.29 33.55 
CAMe4 (22×66) FI 10.24 24.66 34.90 
CAMe4 (24×72) FI 13.08 23.04 36.12 
    
CAMe9 (  2×  6) FI 17.62 26.06 43.68 
CAMe9 (  4×12) FI 13.45 43.14 56.59 
CAMe9 (  6×18) FI 25.01 33.65 58.66 
CAMe9 (  8×24) FI 27.68 31.31 58.99 
CAMe9 (10×30) FI 28.04 31.11 59.15 
CAMe9 (12×36) FI 28.03 31.23 59.26 
    
CAMe16 (2×  6) FI 27.75 30.76 58.51 
CAMe16 (4×12) FI 27.73 31.51 59.24 
CAMe16 (6×18) FI 27.89 31.51 59.40 
CAMe16 (8×24) FI 27.98 31.48 59.46 
    
SEMe4 (  4×12) 28.25 31.32 59.57 
SEMe4 (  6×18) 28.06 31.32 59.38 
SEMe4 (  8×24) 28.04 31.37 59.41 
SEMe4 (10×30) 28.01 31.42 59.43 
SEMe4 (12×36) 28.00 31.45 59.45 
SEMe4 (14×42) 28.01 31.45 59.46 
SEMe4 (16×48) 28.02 31.45 59.47 
SEMe4 (18×54) 28.03 31.45 59.48 
SEMe4 (20×60) 28.04 31.45 59.49 
SEMe4 (22×66) 28.05 31.44 59.49 
SEMe4 (24×72) 28.06 31.44 59.50 
    
SEMe9 (  2×  6) 28.17 31.19 59.36 
SEMe9 (  4×12) 27.97 31.45 59.42 
SEMe9 (  6×18) 28.01 31.46 59.47 
SEMe9 (  8×24) 28.04 31.45 59.49 
SEMe9 (10×30) 28.06 31.44 59.50 
SEMe9 (12×36) 28.08 31.43 59.51 
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Table 3. Three intersecting plates, linear momentum values at 1.0t s=  
 

Element (plate discretization) Lx –Ly –Lz 
    
All meshes 4.125 0.125 0.75 

 
 
Table 4. Three intersecting plates, angular momentum of the structure at 1.0t s=  

Element (plate discretization) –Jx Jy Jz 
    
CAMe4 (  2×  6) FI,  610E E→ ×  (rigid body) 10.04 27.20 20.99 
    
CAMe4 (  2×  6) FI 8.940 25.99 19.83 
CAMe4 (  4×12) FI 8.663 25.64 19.50 
CAMe4 (  6×18) FI 8.563 25.51 19.43 
CAMe4 (  8×24) FI 8.525 25.44 19.48 
CAMe4 (10×30) FI 8.519 25.42 19.62 
CAMe4 (12×36) FI 8.530 25.42 19.84 
CAMe4 (14×42) FI 8.546 25.42 20.10 
CAMe4 (16×48) FI 8.556 25.42 20.35 
CAMe4 (18×54) FI 8.559 25.41 20.59 
CAMe4 (20×60) FI 8.554 25.39 20.80 
CAMe4 (22×66) FI 8.542 25.37 20.99 
CAMe4 (24×72) FI 8.526 25.35 21.17 
    
CAMe9 (  2×  6) FI 8.025 25.03 23.27 
CAMe9 (  4×12) FI 6.736 23.51 24.94 
CAMe9 (  6×18) FI 6.183 22.80 25.43 
CAMe9 (  8×24) FI 6.004 22.55 25.57 
CAMe9 (10×30) FI 5.933 22.46 25.62 
CAMe9 (12×36) FI 5.904 22.41 25.64 
    
CAMe16 (2×  6) FI 5.889 22.36 25.64 
CAMe16 (4×12) FI 5.868 22.35 25.65 
CAMe16 (6×18) FI 5.873 22.37 25.66 
CAMe16 (8×24) FI 5.876 22.38 25.67 
    
SEMe4 (  4×12) 5.934 22.47 25.68 
SEMe4 (  6×18) 5.899 22.41 25.66 
SEMe4 (  8×24) 5.889 22.40 25.66 
SEMe4 (10×30) 5.885 22.40 25.66 
SEMe4 (12×36) 5.883 22.39 25.66 
SEMe4 (14×42) 5.882 22.39 25.67 
SEMe4 (16×48) 5.882 22.39 25.67 
SEMe4 (18×54) 5.881 22.39 25.67 
SEMe4 (20×60) 5.881 22.39 25.67 
SEMe4 (22×66) 5.881 22.39 25.67 
SEMe4 (24×72) 5.881 22.39 25.67 
    
SEMe9 (  2×  6) 5.899 22.43 25.70 
SEMe9 (  4×12) 5.880 22.39 25.67 
SEMe9 (  6×18) 5.879 22.39 25.67 
SEMe9 (  8×24) 5.879 22.39 25.67 
SEMe9 (10×30) 5.880 22.39 25.67 
SEMe9 (12×36) 5.880 22.39 25.68 
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Table 5. Free flying plate, energies of the structure at 0.004t s=  
 

Element (plate discretization) U K U + K 
    
CAMe16 (  2×  15) FI 105.785 141.057 246.842 
CAMe16 (  4×  30) FI 105.825 141.038 246.863 

 
Table 6. Free flying plate, linear momentum values at 0.004t s=  
 

Element (plate discretization) Lx Ly Lz 
    
All meshes 4.8015 3.201 3.201 

 
Table 7. Free flying plate, angular momentum values at 0.004t s=  
 

Element (plate discretization) Jx Jy Jz 
    
CAMe16 (  2×  15) FI –0.0673232    –0.0387033 0.108168 
CAMe16 (  4×  30) FI –0.0673351 –0.0387041 0.108223 
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Figure captions 
Fig. 1. Geometry of the structure and loads 
 
Fig. 2. Energy history, reference and own solutions 
 
Fig. 3. h–type convergence analysis of total energy of the structure, ∆t = 0.002s CAM (ECA), 
SEM (Newmark) 
 
Fig. 4. p–type and h–type convergence analysis of total energy of the structure, ∆t = 0.002s  
 
Fig. 5.  p–type and h–type convergence analysis of  x component of angular momentum vector 
 
Fig. 6.  p–type and h–type convergence analysis of y component of angular momentum vector 
 
Fig. 7.  p–type and h–type convergence analysis of z component of angular momentum vector 
 
Fig. 8. Some representative configurations, mesh 3×(8×24) CAM 16(FI), 32550 DOFs 
 
Fig. 9. Free–flying plate, geometry, loads and material data 
 
Fig. 10. Free–flying plate, motion trajectories of points (a) and (b) and some configurations plotted every 
4 ms 
 
Fig. 11. Free–flying plate, energy versus time 
 
Fig. 12. Free–flying plate, conservation of linear and angular momenta 
 
Fig. 13. Free–flying plate, number of iterations for different mesh density per time step 
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