
Agent System for Managing Distributed Mobile

Interactive Documents in Knowledge-Based

Organizations

Magdalena Godlewska

Gdańsk University of Technology
Faculty of Electronics, Telecommunications and Informatics

ul. Narutowicza 11/12, 80-233 Gdańsk
magdal@eti.pg.gda.pl

Abstract. The MIND architecture of distributed mobile interactive doc-
ument is a new processing model defined to facilitate obtaining a proper
solution in knowledge processes carried out by knowledge-based orga-
nizations. Such organizations have an established structure that defines
document templates and knowledge process. The aim of the MIND ar-
chitecture is to change the static document to mobile agents, which are
designed to implement the structure of the organization through au-
tonomous migration between knowledge workers in accordance with the
built-in policy. An extensible functionality of the agents also extends the
static document to interface unit. The prototype of the agent system,
based on the MIND architecture, shows the possibility of its implemen-
tation using available technology. The case studies provide the possibil-
ity of using architecture to solve specific decision problems with external
knowledge of organization’s workers.

Key words: Agent system, collaborative computing, knowledge-based
organizations, policy-driven management, interactive documents, work-
flow patterns

1 Introduction

MIND architecture of distributed Mobile INteractive Document is a new pro-
cessing model proposed by the author. Traditionally electronic documents have
been treated as static objects downloaded from a server or sent by an e-mail.
The MIND provides for exchange of static documents into a set of mobile agents,
that can migrate between authors according to a fixed migration policy.

The MIND architecture makes possible a radical shift from data-centric dis-
tributed systems, with hard-coded functionality, to flexible document-centric

ones, where only generic services are provided by local environments, while spe-
cialized functionality is embedded in migrating document components.

In order to verify the assumptions of the MIND architecture and its possible
implementation with the use of available technology, a set of prototype tools was
implemented. This set of tools can be defined as an environment for designing

Postprint of: Godlewska M. (2012), Agent System for Managing Distributed Mobile Interactive Documents in Knowledge-Based 
Organizations. In: Nguyen, N.T. (eds) Transactions on Computational Collective Intelligence VI. Lecture Notes in Computer Science, 
vol 7190. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-29356-6_6

https://doi.org/10.1007/978-3-642-29356-6_6


2 Magdalena Godlewska

and managing document migration. Among these tools is a document editor
that supports the design of documents in accordance with the assumptions of
the MIND architecture and agent system that allows management components
of documents.

The aim of research on this architecture is to develop a new model of object
processing based on a system consisting of migrant components. Each document
component is intelligent because of built-in functionality and mobile because of
capabilities of migration in the system according to the inscribed policy. Work-
flow description language supported by the agent system will perform the work-
flow control-flow patterns, which are used in decision-making processes involving
documents. Intelligent and mobile components form the MIND architecture that
supports obtaining a proper solution by participants in collaborative comput-
ing of knowledge-based organizations. The main goal of the knowledge-based
organizations is knowledge management and generation of new knowledge by
knowledge workers through the documents. The documents are transferred be-
tween workers in accordance with the policy of migration.

In this paper, the author presents the model of a knowledge-based organiza-
tion and general assumptions of the MIND architecture, presents also selected
workflow patterns applicable to knowledge-based organizations, describes the
elements of the agent system for managing distributed mobile documents and
shows case studies that use the MIND architecture.

2 Related Work

The presented proposal combines existing technologies and new idea to extract
some new functionality in the topics of distributed electronic document and
collaborative environments. Unmarshalling and marshalling [1] allow XML doc-
uments [2] to be switched from static to dynamic form. Full distribution guar-
antees convenience of working in group and minimizes needs to connect with
central server. Proposed solution differs from collaborative editing problem (al-
gorithms solving that problem are introduced e.g. in [3–5]). Collaborative editing
is the situation when users edit together the same part of document. This paper
introduces problem when users work on different parts of one document, called
constituent documents.

It is worth mentioning that the proposal is something different than shared
workspace (e.g. BSCW - Basic Support for Cooperative Work [6]) or repository
(e.g. CVS - Concurrent Versions System [7]). Those concepts are based on server.
Users are able to upload and download some objects (documents, sources etc.),
to communicate with other users, to be informed about some restrictions like
deadlines. But most operations take place on the server. In the proposed con-
cept, agent-objects have build-in functionality that has effect of shifting some
services from server location to user location. That solution limits client-server
communication. That feature distinguishes the proposal from client-server based
applications like Collaboratus [8].D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


Agent System for Managing Distributed Mobile Interactive Documents 3

Full distribution and minimizing client-server communication are needed in
workflow. Components of document do not have common location. They are able
to migrate between users according to some policy. When there are many users in
collaborative group (e.g. in court trials), the problem of too many client-server
communicates appears. More independence form server allows also for imple-
menting assumption that system managing documents should be as transparent
to user as it is possible.

Workflow, based on the agent platform, is also implemented by WADE -
Workflow and Agents Development Environment [9] software platform. The pro-
posed concept differs from that implemented in WADE, because WADE is a
data-centric approach and MIND is a document-centric one. In the MIND ar-
chitecture, workflow (as a XPDL [10] file) is a part of the whole document.
Workflow in the form of a document may be modified during the process execu-
tion. This allows the implementation of complex workflow patterns, i.e. Multiple
Instances with a Priori Run-Time Knowledge or Multiple Instances without a
Priori Run-time Knowledge presented in [11–13].

The MIND architecture proposed by the author is a completely different con-
cept than the MIND architecture for heterogeneous multimedia federated digital
libraries presented in [14–16]. The aim of the second architecture is integration of
heterogeneous, multimedia non-co-operating digital libraries. This architecture
consists of a single mediator and one proxy (composed of several proxy compo-
nents) for every connected library and gives the user the impression of a single
coherent system. The MIND architecture described in this paper is an abbrevi-
ation of Mobile INteractive Document. The aim of this MIND architecture is
to change the static document to mobile agents, which are designed to imple-
ment the structure of the organization through autonomous migration between
knowledge workers in accordance with the built-in policy. The similarity of the
architecture names is coincidental.

3 Knowledge-Based Organization

Information can be defined as ordering and interpretation of data based on
some patterns. The set of patterns in a certain context creates knowledge. New
knowledge is built through the creation of new patterns. Knowledge-based orga-
nizations focus on processes based on collection, transfer and use of knowledge.
Such processes are called knowledge processes.

Knowledge workers play an important role in the knowledge process. They
generate new knowledge based on current information, their own knowledge and
knowledge transfered by other workers. The purpose of the knowledge-based
organization is to implement the knowledge process, in which the human mind
is an important element. Knowledge is usually transferred between knowledge
workers through the documents.

Tree resources of knowledge are used in the knowledge process: codified
knowledge, established knowledge and personalized knowledge [17] (cf. Fig.1):D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


4 Magdalena Godlewska

CODIFIED

KNOWLEDGE

- data and information
- dokuments

PERSONALIZED

KNOWLEDGE

- knowledge of
knowledge-workers

ESTABLISHED

KNOWLEDGE

- structure of knowledge processes
- document templates

KNOWLEDGE OF ORGANIZATION

Fig. 1. Resources of knowledge in knowledge-based organizations

– Established knowledge includes the structure of knowledge processes. Pro-
cesses are defined based on years of experience. Their aim is to ensure the
execution of all necessary and sufficient activities to obtain the proper so-
lution. The structure of the processes change rather slowly (dashed line in
Fig.1) and is often conditioned by the law. Established knowledge includes
also precisely defined document templates that can be used during the knowl-
edge process.

– Codified knowledge includes a documentation of the process, ie information
and knowledge transferred through the documents. That resource is dynami-
cally changed during the process (double line in Fig.1).Codified knowledge is
generated during the process by knowledge workers, who create new knowl-
edge based on the data, information and knowledge contained in available
documents. New knowledge is transferred to the next workers through the
documents.

– Personalized knowledge is a knowledge of organization workers. The role of
workers is creating new knowledge according to the rules of the process and
based on codified knowledge. Workers collectively contribute to the proper
solution of the process. Participation in the process also affects the develop-
ment of knowledge workers (single line in Fig.1).

In the knowledge-based organizations, knowledge workers fill in relevant doc-
uments and transfer them to the next workers in accordance with a migration
policy. In the process, the document is generally a static object, which means
that: it is filled, it is sent, it is viewed, etc. In this paper the author presents a pro-
posal to apply a distributed document, that consists of dynamic and intelligentD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


Agent System for Managing Distributed Mobile Interactive Documents 5

constituent documents. The constituent documents are knowledge storages and
also interface units, that facilitate the extraction of knowledge and implement
the migration policy defined in the knowledge process.

Distributed document - D - is created on the basis of a template S. The
template S = {s1, s2, ..., sn} is a set of templates of constituent documents that
may arise during the knowledge process. The templates stem from established
knowledge of organization. Document D can be composed of multiple instances
of some templates si.

The process is defined as a set of places P and a set of transitions T . The
process also stems from established knowledge of organization. This definition
is based on the model of Petri nets [18, 19]. Operations on documents are per-
formed by knowledge-workers in places. Place is marked, when at least one con-
stituent document is in this place. The constituent documents migrate between
places in accordance with conditions defined in transition nodes. The process is
graphically presented as a directed bigraph. The place nodes are separated by
transition nodes in such a way that neither of the two places and neither of the
two transitions are directly connected with each other. The transition nodes de-
fine the directed arcs between places. For example, a transition t1 defines an arc
”‘form p1 to p2”’. It means, that there are two pairs: (p1, t1), (t1, p2) in a graph
structure. The arcs in the graph form a set A ⊆ P × T ∪ T × P . The conditions
for transitions between places are also defined in the transition nodes.

The model of knowledge-based organization contains the sets of places and
transitions that allow for defining the process and the set of constituent docu-
ment templates that allows for the construction of the document D. The defini-
tion below summarizes the definition of the knowledge-based organization.

Definition 1. Knowledge-BasedOrganization is a three-tuple KBO = (P, T, S),
where:

1. P is a set of places.
2. T is a set of transitions, such that P ∩ T = ∅.
3. S is a set of constituent document templates.

Information about the process (P, T ) and the document template (S) allow
for the construction of the proper document D, which task is the realization
of the knowledge process. The definitions of sets and functions presented below
show how to construct the document D.

Let E = {e1, e2, ..., en} be a family of set of instances of all constituent
document templates. ei = {e1i , e

2

i , ..., e
k
i } is set of instances of one constituent

document template si. e
j
i is a constituent document, ie. specific instance of one

constituent document template si. The constituent document is distinguished
from others by the unique identifier. Let f : S → E be a function that assigns
set of constituent documents to their template. Document D is a set consisting
of the constituent documents, eg. D = {e42, e

6
1, e

1
3, ..., e

2
3}. Functions: pred : D →

D ∪ {nil} and succ : D → D ∪ {nil} define the order of the elements in D.
The set D is modified during the process, because the constituent documents

can be deleted, copied, merged or created. The state of the document SD canD
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


6 Magdalena Godlewska

be defined as a set D in a specific point in the process. The document D is
distributed and mobile thus it is necessary to define the function g : ei → P that
assigns the current place to the constituent document.

4 MIND Architecture

The main goal of the MIND architecture is to implement the model of knowledge-
based organization by changing the static document to mobile components, that
meet their mission in the distributed agent system. After the mission, compo-
nents are merged into a static final document. The concept of document life
cycle is illustrated in Fig. 2.

document templates
repository

final documents
repository

services

migration
policy

constituent
document
templates

hub
document

final
document

mobile component

(built-in migration policy)

mobile component

(built-in migration policy)

mobile component

(built-in migration policy)

mobile component

(built-in migration policy)

...

Fig. 2. The concept of MIND document life cycle

The MIND architecture has been proposed with a view of facilitating the
collaboration of knowledge workers in knowledge-based organizations. In such
organizations, a set of particular knowledge contributes to the final proper solu-
tion. There are some important elements in knowledge process: the structure of
organization and knowledge of workers passed through the documents. In such a
process the external data sources (knowledge of workers) appear. The examples
of such processes are court trials, integrative bargaining, medical consultations,
or crash investigations.

The MIND architecture involves the creation of a document D that contains
structure of the process (sets P and T ) and templates of constituent documents
(set S). The constituent documents follow a defined process (migration policy)
to move between their authors in the form of mobile agents and then, as the
interface unit, assist in extracting knowledge from authors.

In the architecture some additional services can be defined. The purpose
of these services is adaptation of the architecture to the needs of a particularD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


Agent System for Managing Distributed Mobile Interactive Documents 7

organization. From the user’s perspective, these services can be local (installed
on local computer), external (accessible from the outside) and embedded (build-
in in agent).

The main components of the architecture are: HDDL (Hub Document De-
scription Language) [20] document template, that is defined in XML Schema [2]
and the agent system for document managing. The document template contains
the following components:

– document.xml - basic information about the document D in the form of a
header and a specification of services.

– authors.xml - data about the authors (knowledge workers).

– templates.xml - a set S of constituent document templates.

– parts.xml - a definition of the document parts. Each part contains a con-
stituent document that is an instance of one template defined in the compo-
nent templates.xml. This component defines the structure of vector D.

– path.xml - a definition of the process graph. This component connects the
authors with the document parts and defines workflow of constituent docu-
ments.

Main component (document.xml)
Elements and attributes of the main component are presented on Fig. 3. At-
tributes describe identity and the basic properties of each MIND document:

– the unique identifier (ID) and the title – distinguish a specific template in
the document templates repository;

– the security level and the ability to add new dynamic objects (components)
in the document life cycle – determine the behavior of constituent documents
in the form of mobile objects during interaction with knowledge workers.

The<head> element specifies metadata of document that is useful for search-
ing the repositories that store documents in the static form. The following infor-
mation may be contained in the <meta> collection: information about the tool
by which the document was prepared (name="Generator"), basic information
about the document like version, keywords, author and description, and
other information defined by the user using their own names.

The <services> element specifies services of MIND document, that are
available for each dynamic object created as a result of its conversion from a
static to an object form. The services can be implemented as:

– <embedded service> - services implemented with MIND application, ex-
panding dynamically document functionality

– <local service> - services acquired by document components from target
hosts upon arrival

– <external service> - services triggered by a document components on
remote hostsD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


8 Magdalena Godlewska

8

Fig. 3. Logical structure of main component

Authors component (authors.xml)

Each MIND document has at least one author, who is a document originator.
The document originator creates a hub document at the beginning of the life
cycle (cf. Fig. 2). Constituent documents which migrate as mobile components
can be assigned to other authors. This assignment is defined in the built-in mi-
gration policy of the component. During component migration, also new authors
can be added to the policy path.

Elements and attributes of the <author> element are presented on Fig.
4. Each author is assigned a unique identifier (ID). The originator attribute
pointed the document originator and the active attribute specifies whether the
author has the right to change the constituent document.

The <name> element contains the first and the last name of author or the
name of company, the <position> element specifies the author’s position in
the organization. The <description> is some additional information about
the author, for example, role in the document creating. The <contact> ele-
ment contains the contact data of the author. IP-address is especially important
information for the mobile component. It specifies the host on which the con-
stituent document should be delivered. IP address can be defined in indirect
way as a persistent number that distinguishes the author. Then the appropriate
service assigns the current IP address of the author to the persistent address.
This solution enables work on multiple computers or on mobile devices. The
<communication> element specifies other information necessary for communi-
cation with the author.D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


Agent System for Managing Distributed Mobile Interactive Documents 9

8

Fig. 4. Logical structure of authors component

Templates component (templates.xml)

The document D consists of any number of constituent documents which
are documents of a certain type. The document types are defined by a set of
templates (S = {s1, s2, ..., sn}). Fig. 5 shows the specification of the constituent
document templates.

Each template has its own unique identifier (ID) and title. The<mime-type>

element contains the name of a template type compatible with the standard
Multipurpose Internet Mail Extensions (MIME) [21]. The <content> element
represents the content of the template encoded in a format base64 [22].

Parts component (parts.xml)

The MIND document consists of constituent documents, which are converted
into mobile objects. The constituent documents meet their mission of the trans-
fer and collection of knowledge in the knowledge-based organizations. The con-
stituent document is defined as a part in parts component. Its structure and
format are defined by an appropriate template that is stored in the templates
component (described earlier).D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


10 Magdalena Godlewska

Fig. 5. Logical structure of templates component

With reference to the model of knowledge-based organization, the parts com-
ponent defines a vector D. The constituent documents are placed in the specific
order and distinguished from others by the unique identifier (attribute ID). Each
constituent document is a document of a certain type and this type is specified by
element <template> which contains the ID of the document template defined
in the template component.

Fig. 6 shows the logical structure of document’s part. Attributes specify a
unique identifier (ID) and a state of part. The state attribute defines the
state of part in the life cycle of document and can take values: new, modified,
verified-positive, verified-negative and done.

8
8

8

Fig. 6. Logical structure of parts componentD
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Agent System for Managing Distributed Mobile Interactive Documents 11

The <title> element contains a title of part, the <modified> element
contains date of last modification and the <content> element represents the
actual content of part encoded in a format base64. The <description> element
provides a full text description of the constituent document and <template>

specifies the ID of document template.
The <access> element has child elements: none, toc, read, write and print

and they specify access right of authors to the document. The access rights are:
none - no right of access, toc - access to table of content, read - right to read the
document, write - access to write and print - rigth to print. The child elements
allow to assign the value of the author’s ID attribute. All value of each element
allows all the authors for the specified operation.

Each constituent document can have the <annotations> mapped dynam-
ically at any time of the document life cycle. The <reference> child element
of <annotations> allows also for putting new annotations to existing anno-
tations. It is also possible to link some other document to MIND constituent
document as an attachment.

Path component (path.xml)

The migration policy is defined also as a component of the document. The
path.xml component is a XPDL [10] file. XPDL (XML Process Definition Lan-
guage) is a dialect of XML (Extensible Markup Language). It is a language for
workflow process design.

The main element of XPDL - <WorkflowProcesses> - may contain any
number of <WorkflowProcess>. The logical structure of <WorkflowProcess>

is shown in Fig.7. Each element <WorkflowProcess> represents a process con-
sisting of <Activities> and <Transitions> between them.

<Activity> - element of the workflow process - combines the author with
the part of document that is assigned to this author. In the workflow def-
inition, places P in a process are called activities [23]. <Transition> ele-
ment has attributes From and To that define directed paths between activities.
<Transition> element may also specify the conditions for transitions between
activities. Construction of dynamic objects representing the components of the
document is presented in Fig. 8.

5 Workflow Patterns Applicable to Knowledge-Based

Organizations

In knowledge-based organizations, the process is constructed from elementary
operations. These operation are called workflow patterns. This section presents
sample workflow patterns that are applicable to knowledge-based organizations.
These patterns are selected from the complete list (more than 40) of workflow
patterns presented in [11–13]. Some of these are supported directly by XPDL
and others may be implemented by agent systems. These workflow patternsD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


12 Magdalena Godlewska

8

Fig. 7. Logical structure of XPDL workflow process

are modules of the path component. The complete list of modules allows for
construction of any process of constituent document migration.

5.1 Basic control-flow patterns

To the basic control-flow patterns include: Sequence, Parallel Split, Synchro-
nization, Exclusive Choice and Simple Merge. All these patterns are directly
supported by XPDL.

Sequence is when an activity in a workflow process is enabled after the com-
pletion of another activity in the same process. This is the basic form of transfer-
ring constituent documents in the knowledge-based organizations. When one ofD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


Agent System for Managing Distributed Mobile Interactive Documents 13

Document

• id

• security
• meta

Services

• embedded

• local
• external

Author

• id

• active

Part

• id

• state

Activity

• Id

• TransitionRestictions

WorkflowProcess

• Id

1

1..n

1..n 1..n

1..n

1 1

1

1

1

Fig. 8. MIND dynamic object

knowledge workers completes work on the document, this document goes to the
next author, in accordance with the migration path. In MIND, agent reads, di-
rectly from the XPDL policy file, a target activity (designated by the transition)
to which it has to move. Sequence is the simplest but also the most frequent
form of the flow of constituent documents.

Parallel Split is a point in the process where a single thread of control splits
into multiple threads of control that can be executed in parallel, thus allowing
activities to be executed simultaneously or in any order. In the knowledge-based
organizations, this is a case where one constituent document is copied and the
copies are moved to the various knowledge workers. This places the new con-
stituent documents in the vector D. For example, a few experts have to make
independent decisions on the basis of the same research results. It is important
in the parallel split, that the whole constituent document is duplicated and each
of the knowledge workers get exactly the same copy.

After the Parallel Split, usually the Synchronization occurs in the process.
This is a point in the process where multiple parallel branches converge into one
single thread of control, thus synchronizing multiple threads. The merger activity
is waiting for all branches to be completed. In the knowledge-based organizations,
this is a case where all copies of one constituent document, that was edited by
various knowledge workers are collected. A set of documents that differ from
each other and containing different knowledge is appeared. The synchronization
requires to wait for all copies of the document. Then the copies have to be
integrated into one new constituent document. It also changes the dimension of
the vector D. In the case of documents, integration does not always mean the
same operation. It could be:

– integrating into a single file: this integration is basically gathering all copies
in one document without interfering with its contents. Such situation can
occur when the copy must remain unchanged. For example, in a court trial,D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


14 Magdalena Godlewska

each expert gives an independent opinion on certain evidence. These expert
reports are collected and presented in unchanged form during the trial. The
particular opinion is essential.

– integrating the document by the knowledge worker : this is integrating the
content of documents into one output document. The aggregate knowledge
of one worker on the basis of expert reports from other workers is important.
For instance, a doctor diagnoses a patient. He carries out a series of tests
and sends the results to several specialists for consultation. After receiving
all the opinions, the doctor integrates them and generates a new document
containing a decision: diagnosis, referral for next tests or next consultations.

– integrating the document based on the authors’ agreement : this is integrat-
ing the contents of the document on the basis of communication between the
authors. For example, several authors writing a paper. First, everyone writes
a part of the document and next, the authors integrate the whole paper to-
gether: they write an introduction and a conclusion, accept some consistent
grammatical forms. In example, this is situation if few authors write one pa-
per. First, each of them writes some section and then they establish together
a common whole.

– automatic integration: content of the documents is automatically integrated
this solution works only for simple documents with precisely specify struc-
ture, such as questionnaires.

In MIND, the merging point is defined in the policy file. This is the point
where agents converge with the copies of document inside. The agents save the
copies of document locally, then the copies are integrated into a single document
without interfering with its contents or by the knowledge worker. Integrating the
document based on the authors’ agreement is more complicated. MIND archi-
tecture enables to define new applications (e.g. in services form), that facilitate
and streamline the process of extracting information. In order to integrate the
document, based on the authors’ agreement, an application like communicator
and/or an application, that allows for sharing the view and editing the document
by many authors, could be used. The current version of the MIND architecture
does not support directly the concept of integrating the document based on the
authors’ agreement. The automatic integration may also be performed by dedi-
cated services for reading and integrating specific documents, i.e. questionnaires
or tests. The aim of the MIND architecture is the support of the knowledge
worker’s interaction with the system, hence there is no direct support for au-
tomatic integration of documents. Regardless of the synchronization type, only
one agent remains on the merging activity. This agent will continue its mission
with a newly created document inside.

Exclusive Choice is a point in the process where, based on a decision or
workflow control data, one of several branches is chosen. The choice is defined as
a condition of the transition node. The corollary of Exclusive Choice is often a
Simple Merge pattern. This is a point in the workflow process where two or more
alternative branches come together without synchronization. It is an assumption
of this pattern that none of the alternative branches is ever executed in parallelD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


Agent System for Managing Distributed Mobile Interactive Documents 15

with another one. In these cases, the problem boils down to interpretation of
the earlier conditions that selecting one of the options of flow. After the correct
interpretation of the conditions, the flow of the agent does not differ from the
normal Sequence.

5.2 Advanced branching and synchronization patterns

To this group of patterns include: Multi-Choice, Synchronizing Merge, Multi-
Merge and Discriminator.

Multi-Choice is a pattern similar to the Parallel Split, with the difference that
there is selected a subset of threads to be executed in parallel. The corollary of the
Multi-Choice is a Synchronizing Megre pattern, that merge the active threads.
These patterns are directly supported by XPDL and in the MIND, they are
connected with problems of synchronization and condition interpretation.

Multi-Merge is point in a process where two or more branches converge with-
out synchronization, i.e. each incoming thread requires the same reaction in the
activity. For example, after expert reports are received to the court, the feed-
back is sent. There is some workaround for this problem: the activity may be
duplicated to each branch. In Together Workflow Editor (TWE) [9], there is a
WorkflowPatterns directory, where the examples of patterns implementation
can be found. There is some other solution for the Multi-Merge pattern with the
use of subprocess executed asynchronously. In MIND, every agent has a built-
in policy file, hence duplicating the activity is more obvious solution to this
problem.

Discriminator is a point in the workflow process that waits for one (the
few) of the incoming branches to complete before activating the subsequent
activity. From that moment on it waits for all remaining branches to complete
and ignores them. For instance, the recruitment committee is waiting for receipt
of applications; when the first 20 applications arrive, the recruitment process
moves to the next stage, and the rest applications are ignored. The support of
this pattern in XPDL is unclear. There is some workaround solution presented in
TWE. In MIND, all agents have built-in policy, so method, that counts instances
of documents, is shifted from the agent to the container object, where the agents
arrive with documents. So, discriminator will be implemented in the application
rather than in XPDL.

5.3 Multiple instance patterns

This group of patterns include: Multiple Instances without Synchronization,
Multiple Instances with a Priori Design-Time Knowledge, Multiple Instances
with a Priori Run-Time Knowledge and Multiple Instances without a Priori
Run-Time Knowledge.

Within a one process, multiple instances of an activity can be created. These
instances are independent of each other and run concurrently. In the first pattern,
there is no requirement synchronization upon completion and in other patternD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


16 Magdalena Godlewska

the synchronization is required. For documents, the synchronization involves the
integration of documents as in the case of Synchronization pattern.

The first three patterns can be implemented in XPDL by the LoopMultiIn-
stance element but Multiple Instances without a Priori Run-Time Knowledge
pattern can not be implemented in XPDL. In Multiple Instances without a Pri-
ori Run-Time Knowledge pattern, the number of instances to be created is not
known in advance: new instances are created on demand, until no more instances
are required. In the knowledge-based organizations, this is a case, when testi-
mony of witnesses in a court trial are being collected. It is not known how many
witnesses will testify and when they decide to testify. MIND allows for editing
the policy file during a run time of the process. The policy file may be edited
many time at each point in the process.

5.4 State-based patterns

This group of patterns include: Deferred Choice, Interleaved Parallel Routing
and Milestone. Deferred Choice is a point in a process where one among several
alternative branches is chosen based on information which is not necessarily
available when this point is reached. The choice is not made immediately when
the point is reached, but instead several alternatives are offered, and the choice
between them is delayed until the occurrence of some event. Interleaved Parallel

Routing is a pattern, when a set of activities is executed in an arbitrary order.
Each activity in the set is executed exactly once. In any case, no two activities
in the set can be active at the same time. Milestone is defined as a point in the
process where a given activity has finished and another activity following it has
not yet started.

These patterns use a different states of the process points. XPDL does not al-
low for the definition of states. Deferred Choice may fulfilled. The other patterns
can be implemented by agent application. In the agent platform (e.g. JADE),
agents can communicate with each other through the implemented communica-
tion protocols. They can also change some data locally and remotely. One agent
,who is in active state, may change state of other agents to inactive. So, XPDL
can be extended on states by agent system.

6 Prototype System for Managing Distributed

Documents

The static MIND document is designed in such way that it can be transformed
into the object form, and then into a set of mobile agents. The mobile agents
migrate between user’s local workstations in accordance with a defined migra-
tion path. Based on the MIND architecture the prototype system for remote
management of distributed components of the document has been implemented.

In the prototype system for managing distributed documents the following
technologies are used. Static documents are implemented in XML language in
accordance with the HDDL format designed for the MIND architecture. HDDLD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


Agent System for Managing Distributed Mobile Interactive Documents 17

format has been specified in XML Schema[2]. To design workflow process XPDL

format [10] is used. Server application [24] has been written in Java and JADE

platform [25] is used for the creation, migration and tracking of agents. XML-

Beans [1] is a technology used for accessing XML by binding it to Java types,
Java Mail platform [26] is used for transferring agents via e-mail and Log4j [27]
tool is used for creation of event logs.

The MIND architecture is not dependent on the chosen technologies and
for its implementation different ones may be chosen. To describe the structure
of documents and workflow XML language was selected. The possibility of its
transformation and processing with programming languages allows to use its also
in the future. The advantage of easy archiving of XML documents is particularly
important in the documents, which will remain valid for many years, such as e.g.
property rights.

In order to facilitate the preparation of the documents in HDDL format the
following tools have been implemented: HDDLEdit [20] for creating and editing
patterns of document and STMPEdit [20] for creating and editing of constituent
document templates.

6.1 The Life Cycle of a Distributed Document in the Agent System

The system for managing components of the document is designed to implement
the concept of converting a static form of the document to the autonomous agents
that will meet their mission in the system, and then create a final document (cf.
Fig.9.).

Agents have built-in migration functionality defined in the MIND policy file.
According to the next stage of the document’s life cycle, the agents migrate
between the authors computers with a constituent document. The constituent
document’s content is processed by the respective authors. Organization of the
agents population is involved in the agent system. The components of the sys-
tem are run on the users computers. They create a platform that enables the
functioning of the agents on each workstation, provides access to memory and
enables the use of communication protocols. These protocols allow agents to
exchange messages, and migrate independently on the network. If the author’s
computer is offline in terms of the agent platform, the system sends the agent
by e-mail (cf. Fig. 10).

During the completion of the life cycle of the document, the agents reach
different states, which, in the form of a diagram, is shown in Fig. 11.

An active state is a state when the agent is run on the agent platform.
The agent is in a hibernate state in a situation when the user of the current
agent’s container chooses to stop work and turn off the application. The agent
in this state is saved as a file on user’s local computer – this operation called
serialization. When the system is restarted, the agent can be rerun (transition
from hibernate to active state). When the next agent’s author is offline in the
agent platform, the agent is sent to him by e-mail. This additional functionality
moves the agent to a sent state. Agent is in this state, as long as the agent
is stored on the mail server. The agent is received from the e-mail server andD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


18 Magdalena Godlewska

Hub

document

Final

document

Container A

(Start activity):
generate a set

of agents
Container Z

(Finish activity):
converting agents

into document

Container B

Container M

Container P

<migrations

in the system>

<migrations

in the system>

o
n

lin
e

o
n

lin
e

Fig. 9. The life cycle of MIND document in the implemented system

j

Container A

Container Z
Container B

mail server

offline

online

online
online

JADE PLATFORM

communication mechanisms

built into theJADE

communication

via the external mail servers

Fig. 10. The life cycle of MIND document in the implemented system

brought back to the active state after restarting the application. When the agent
arrives to final activity in the process, it moves to the final state. The agent in
the final state may be deleted or archived (saved to a file).D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


Agent System for Managing Distributed Mobile Interactive Documents 19

Active

Final

Archived

SentHibernate

Deleted

Fig. 11. Agent’s states diagram

6.2 The Main Modules of the System

The application server for remote management of distributed document com-
ponents consists of the following modules: agent server module, e-mail module,
policy module, document module, mediator module and initial module.

Agent Server Module The basic element in the agent server module is a
JADEServer class. The object of this class starts JADE platform. JADE plat-
form provides a set of containers. One of them is called a main container. The
container is JADE object that allows to run the agents. In the main container,
three functional agents (AMS, DF, RMA) are run. They control the JADE plat-
form and move the agents. Any other containers must liaise with the main con-
tainer in order to join the JADE platform.

The cooperation of the various computers in one agent system is possible
when all containers are connected to the main container. Users of containers
must enter IP address of main container to connect to the platform. A success-
ful connection to the main container determines that the local system will work
online. If connection to the main container is not possible, the user must work of-
fline. When the JADE platform is started, the agent server module is responsible
for managing agents, i.e. for creating, awakening and deleting agents.

The agent is built on the basis of the XML document conforming to the MIND
architecture. The agent gets as input arguments the following information: a
unique name, policy file and constituent document ID. Awakening of the agent
means running it from a file and changing it state from hibernate to active or
from sent to active (cf. Fig. 11).

Functionality of migration enables the agent to transfer in the JADE system.
For this purpose, some parameters are determined: the name of the agent to be
sent, the place of its destination after a jump and the constituent document to
be forwarded.

E-mail Module E-mails are not saved directly in a recipient’s computer, but
are stored on mail servers. Implementation of the e-mail module allows to transfer
the serialized agent by e-mail when sending it to the JADE server is not possible.
This allows the agent to reach to assigned recipient even if at the time of dispatchD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


20 Magdalena Godlewska

his container is not registered in the system (i.e. from the viewpoint of the system
the recipient is offline).

The e-mail module uses the Java Mail platform and it is equipped with a set
of classes responsible for handling e-mail servers, sending and receiving e-mails
with a specific name. This name allow to distinguish messages with agents from
others. A main class of module (MailServer class) implements the operations of
sending and receiving the agents. Before sending, the agent is serialized to a file.
To take advantage of this mechanism, the authors specified on the migration
path must have e-mail addresses.

Policy Module and Document Module The policy module is separated
from the module that manages the other parts of the document, because of the
very important role in the agents migration. The XPDL file defines the process of
moving the agents in the system. The policy module provides a binding XPDL
file to Java objects. For this purpose, XML Beans tool was used to generate
xpdl.jar file based on XML Schema template for XPDL language. The xpdl.jar

library allows for creation of the object representation of XPDL files within the
system.

The task of the policy module is mapping a static representation of the policy
file (path.xml) to the Java reference mechanism. The module opens the policy
file (or files), interprets its structure and then creates Java objects.

Completion of work on a constituent document in current node triggers the
movement of this document to another node. In this case, the policy server
searches possible transitions. The module creates a collection of locations, which
the agent must visit in the next step. In this case, the location means a container
in the JADE system or e-mail address of the next user of the system.

The document module allows to load and manage other components of the
MIND document. In particular, its task is to choose the appropriate constituent
document in accordance with an activity element from the policy file.

This module also maps the static XML document to Java objects. XML
Beans tool was used to generate XMLHubDoc.jar library based on XML Schema
template defined for the MIND architecture.

The document module is responsible for extracting the constituent document
from the agent and saving it on the local computer of the author assigned to
the activity. Then the author can perform on that document some actions. After
that, the document’s current version is re-loaded by the agent and moved to
another location. When the agent reaches the final location, the constituent
documents are integrated into a final document.

Mediator Module and Initial Module Unlike other modules, the mediator
does not provide any operation. This service is implemented only to provide the
communication between other modules and mediate in the running of methods.
It also allows for easy implementation of subsequent modules in the evolution of
the system.D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


Agent System for Managing Distributed Mobile Interactive Documents 21

The initial module runs all subsystems (modules). The task of the module
is to take data from the user during the login to the system and booting the
system.

6.3 Prototype Application’s Performance

The system for managing of components is used to implement the life cycle of the
MIND documents. The authors defined in the document should be the holders
of the application, that creates the containers that forming a part of the JADE
platform. After running the application, dialog box for authors authorization ap-
pears. During the login operation, the author gives the IP of the main container
(unless the main container is created) and the name of the local container. The
author may choose to work offline, i.e. a work without connection to the main
container (cf. Fig. 12(a)).

(a) Login window (b) JADE window - RMA agent

Fig. 12. Dialog box for authors authorization (a) JADE mechanism for monitoring the
agents and containers (b)

After the successful authentication, the particular modules are run. That
leads to join the container to the JADE platform and runs the possibility of
receiving, status changing and sending agents. Launching an application as a
main container causes running an additional mechanism to monitor the agents
and containers on the JADE platform. For this purpose, JADE provides a tool
RMA (Remote Agent Management) in the form of a dialog box (cf. Fig. 12(b)).
This tool allows for monitoring the global state of the agent system.

In the next step after running, the application converts the MIND document
to objects (this operation is called unmarshalling). The policy and document
modules are responsible for that. A set of agents is created on the basis of startD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


22 Magdalena Godlewska

activities. A unique number (consistent with the activity ID) and ID number of
the constituent document are assigned to each agent.

An agent interface is a simple dialog box with two possible actions: Done

and Exit. The agent’s GUI may be expanded depending on the system use cases.
When the author finishes work on a constituent document, selects the Done

action. The agent then reads from the policy file its next activities and moves to
new locations. If the container of the target activity is present on the platform,
the agent is sent by the JADE , otherwise the agent is sent by e-mail. In this way,
the agent transfers the constituent document according to the defined workflow.
Once the agent reaches a final location, Done action deletes the agent or transfers
it to the archiving location. In both cases, the constituent document is saved as
a file on the local computer.

If the author chooses the Exit action, it means that he has not finished to work
on the constituent document yet. Then the agent is saved on his local computer
as a file and the constituent document is also saved as a static XML document.
When the system is rerun, the agent is awaken and the constituent document is
upgraded in accordance with the new version from the local computer.

7 Case Studies of the MIND Architecture

The MIND architecture was created for facilitate obtaining a proper solution in
complex knowledge processes, in which the electronic circulation of documents
and extracting knowledge from them is crucial. In order to demonstrate this
possibility of the MIND architecture, two case studies have been implemented.
The first of these concerns the large-scale problem of judicial proceedings. Doc-
ument in the form of complete files can reach an enormous size. The prototype
system is not yet ready to carry out experiments in this target environment. The
experiment took place to verify the adequacy of the used notation and the scope
of the required functionality.

In a court trial, there are many documents that are often small and have
specified structure. The workflow of the files is defined by organizational struc-
ture of the courts. In this case, there is a possibility to use the agent system for
managing the electronic files.

The second case study involved the issue of evaluation of students in a typ-
ical university environment. This problem allows to test the mechanisms of the
MIND architecture. In a teaching management system, a person, who receives
a document template, is a student, and an evaluation card of one subject is a
single MIND document. In the authors file, there are teachers that leads one
subject for a group of students. The constituent document is transmitted from
one teacher to another, according to the policy file. The teacher is responsible
for the subject and the student receive the final version of the evaluation card.
In the first case the agent is archived, and in the second, the agent is removed.

Fig. 13 shows the graph of one migration path of the constituent document
in the agent system. AUT000 is the student’s ID. The student is the author
placed in the start activity (A119921 00 is a start activity ID). The constituentD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


Agent System for Managing Distributed Mobile Interactive Documents 23

A119921_04

AUT001

A119921_01

AUT001

A119921_02

AUT002

SPLIT (AND)

A119921_03

AUT000

A119921_05

AUT001

A119921_00

AUT000

TRS0001 TRS0002

TRS0005

(start activity)

(final activity)

(final activity)(archive activity)

Fig. 13. Graphical representation of the policy file for one student and for one subject
(constituent document ID: PAR0001)

document is copied in the activity A119921 02 and the copies migrate to authors:
AUT000 and AUT001. There are two final activities. The student is the author
of final activity no A119921 03. When the agent reaches this activity, the copy
of constituent document is saved on the student’s computer. Then the agent is
deleted from the computer . The person responsible for the part of subject is the
author of the final activity no A119921 04. Both the document and the agent
are archived on his computer. This allows to trace the migration path of the
document by the responsible author.

Teaching management system has been tested on four containers (the con-
tainers have been assigned to the authors: AUT000, AUT001, AUT002 and
AUT003). The containers have been run on different computers on the same local
network. Three constituent documents (PAR00001, PAR00002 and PAR00003)
have migrated between the containers. The start activities have been: 119921 00,
119921 01 and 119921 02.

After the transition from the start activities to the next activities, the agent
Exit action has been performed. Consequently, two files have been saved on the
local computer: the serialized agent file and the XML constituent document file.
After editing the document and running the container, the agent has brought
back to the active state with modified document inside. If the author has been
off-line, the agent with the document has been sent by mail. Sending agent on
the mail server has proceeded quickly and without any problem. Receiving the
agent from the e-mail server has proceeded successfully, but has taken a time
period of few seconds. The whole process, the following the migration path and
transferring the constituent documents have proceeded successfully.

The teaching management system in its current form is meeting its objectives,
but it is not completely user-friendly. To edit the constituent documents on the
system nodes the STMPEdit editor may be used as a local service. However, it
is rather cumbersome solution. Hence, there are plans to implement tools that
make the system more user-friendly. There are possibilities to implement new
functionalities in the MIND architecture through a mechanism of embedded,
local and remote services. Adjusting the system for this use case allows for theD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


24 Magdalena Godlewska

execution of larger scale tests. This is the nearest plan for developing the agent
system.

8 Conclusions

The prototype server for managing components in the current stage does not
implement all the principles of the MIND architecture. In the next version of
the prototype new functionality will be added, such as: adding new components,
granting of various rights of access and views of the constituent documents,
adding new authors and modifying the policy files. A persistent addressing will
be implemented to identify author’s localization by name instead of computer’s
IP. This functionality allows the author to work on different computers. A con-
trol of the agent migration and edition of the document will be extended by
adding conditions of transitions and checking the time of execution of the var-
ious tasks. Workflow patterns applicable to knowledge-based organizations will
be implemented in order to facilitate the construction of knowledge processes.

The next stage of development of the MIND architecture is to ensure the re-
liability of processing and security of document. Reliability of the process refers
to the possibility of self-diagnosis of distributed document in a situation where
some of its component are lost or where some components are changed by unau-
thorized persons. Security of document concerns encryption of its the content
and digital signatures.

Acknowledgments. This research work was supported by the system project
Innodoktorant Scholarships for PhD students, III edition. Project is co-financed
by the European Union in the frame of the European Social Fund.

References

1. The Apache XML Project. http://xmlbeans.apache.org/sourceAndBinaries/.
2. W3C Recommendation. http://www.w3.org/XML/Schema.
3. Mella G., Ferrari E., Bertino E., and Koglin Y. Controlled and cooperative up-

dates of xml documents in byzantine and failure-prone distributed systems. In
ACM Transactions on Information and System Security, volume 9, pages 421–460,
November 2006.

4. Oster G., Urso P., Molli P., Molli H., and Imine A. Optimistic replication for
massive collaborative editing. Technical Report 5719, October 2005.D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


Agent System for Managing Distributed Mobile Interactive Documents 25

5. Oster G., Urso P., Molli P., Molli H., and Imine A. Proving correctness of transfor-
mation functions incollaborative editing systems. Technical Report 5795, December
2005.

6. OrbiTeam Software GmbH & Co. KG, Fraunhofer FIT. Bscw -basic support for
cooperative work, version 4.4, October.

7. Price D.R. Cvs - concurrent versions system. http://cvs.nongnu.org/, December
2006.

8. Lowry P.B., Albrecht C.C., Lee J.D., and Nunamaker J.F. Users experiences in
collaborative writing using collaboratus, an internetbased collaborative work. In
35th Hawaii International Conference on System Sciences, 2002.

9. Workflows and Agents Development Environment. http://jade.tilab.com/
wade/index.html.

10. WfMC. Workflow Management Coalition Workflow Standard: . Process definition
interface - xml process definition language. Technical Report WFMC-TC-1025,
Workflow Management Coalition, Padziernik 2008.

11. Russell N., ter Hofstede A.H.M., van der Aalst W.M.P., and Mulyar N. Workflow

Control-Flow Patterns: A Revised View. BPM Center Report BPM-06-22, 2006.
12. van der Aalst W.M.P. Patterns and xpdl: A critical evaluation of the xml process

definition language. Technical Report FIT-TR-2003-06, Queensland University of
Technology, Brisbane, 2003.

13. Workflow Patterns Home Page. http://www.workflowpatterns.com/ patterns/.
14. Nottelmann H. and Fuhr N. MIND: an architecture for multimedia information

retrieval in federated digital libraries, 2001.
15. Nottelmann H. and Fuhr N. The MIND architecture for heterogeneous multimedia

federated digital libraries. In Distributed Multimedia Information Retrieval’03,
pages 112–125, 2003.

16. Berretti S., James P. Callan J.P., Nottelmann H., Xiao Mang Shou, and Shengli
Wu. MIND: resource selection and data fusion in multimedia distributed digital
libraries. In SIGIR’03, page 1, 2003.

17. Miku la B. Organizacje Oparte na Wiedzy. WAEK, Kraków, 2006.
18. Starke P.H. Sieci Petri - podstawy, zastosowania, teoria. PWN, Warszawa, 1987.
19. Jensen K. and Kristensen L.M. Coloured Petri Nets: Modelling and Validation of

Concurrent Systems. Springer-Verlag, Berlin, 2009.
20. Siciarek J. Środowisko narzedziowe do wytwarzania inteligentnych dokumentów

elektronicznych. Master’s thesis, Faculty of Electronics, Telecommunications and
Informatics, Gdańsk University of Technology, 2008.

21. Internet Assigned Numbers Authority (IANA): MIME Media Types.
http://www.iana.org/assignments/media-types/.

22. S. Josefsson. Base-N Encodings, RFC 4648, Network Working Group.
http://tools.ietf.org/html/rfc4648.

23. WfMC. Workflow Management Coalition. . Terminology and glossary. Technical
Report WFMC-TC-1011, Issue 3.0, Workflow Management Coalition, Winchester,
United Kingdom, Luty 1999.

24. Szczepański J. Serwer us lug bazowych do zarzdzania konfiguracj inteligentnego
dokumentu elektronicznego. Master’s thesis, Faculty of Electronics, Telecommuni-
cations and Informatics, Gdańsk University of Technology, 2008.

25. Java Agent Development Framework. http://jade.tilab.com/.
26. Java Mail: Sun Developer Network. http://java.sun.com/products/javamail/

downloads.
27. Apache Log4j: Logging Services. http://logging.apache.org/log4j.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

