
Distributed MIND - a new processing model

based on mobile interactive documents

Magdalena Godlewska and Bogdan Wiszniewski

Gdańsk University of Technology
Faculty of Electronics, Telecommunications and Informatics

ul. Narutowicza 11/12, 80-952 Gdańsk
{magdal,bowisz}@eti.pg.gda.pl

Abstract. Collaborative computing involves human actors and artificial
agents interacting in a distributed system to resolve a global problem,
often formed dynamically during the computation process. Owing to the
open nature of the system and non-cooperative settings, its computations
are in general non-algorithmic, i.e. their outcome cannot be calculated in
advance by any closed distributed system. Authors advocate for a new
processing model, based on exchange of documents implemented as au-
tonomous and mobile agents, providing adaptive and self-aware content
as interface units.
Keywords: collaborative computing, intelligent agents, policy-driven
management

1 Introduction

Traditionally documents are passive objects, being sent over to their responsible
authors, or downloaded from servers by interested users for further processing.
MIND assumes them to be active objects, which are able to migrate from an
originating server to continue work at remote computers by interacting with lo-
cal users and services, who can view, edit and expand arriving documents using
their private, locally available resources. Upon completing their mission and re-
turn to their originating server, document components are integrated, serialized
(marshalled) and filed in a repository. Novelty of the MIND concept comes from
the fact that document components are implemented as autonomous agents. Ow-
ing to that a new distributed processing paradigm can be introduced, making
possible a radical shift from data-centric distributed systems, with hard-coded
functionality, to flexible document-centric ones, where only generic services are
provided by local environments, while specialized functionality is embedded in
migrating document components. Moreover, that functionality may be dynami-
cally expanded by incorporating the notion of plug-ins, available to the migrating
components from their originating servers.

2 Document-centric distributed processing

Collaborative computing processes are often based on knowledge that shall
be created and acquired dynamically. It involves human actors who cooperate

Postprint of: Godlewska M., Wiszniewski B. (2010), Distributed MIND – A New Processing Model Based on Mobile Interactive 
Documents. In: Wyrzykowski R., Dongarra J., Karczewski K., Wasniewski J. (eds) Parallel Processing and Applied Mathematics. PPAM 
2009. Lecture Notes in Computer Science, vol 6068. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-14403-5_26

https://doi.org/10.1007/978-3-642-14403-5_26


2 Magdalena Godlewska and Bogdan Wiszniewski

within a certain organizational structure – mostly by creating and exchanging
documents. Their cooperation is not algorithmic, as it relies on dynamic in-
teraction in a distributed setting [14]. Consequently, process outcome cannot
be calculated in advance by a computer system. Moreover, documents being ex-
changed are the only visible interfaces to the respective processes, and constitute
independent units of information necessary to elaborate a final result upon which
all related documents have to be archived in a form enabling their future reuse.

A key feature of this scheme is an exchange of information objects, which are
created dynamically at any time and in any place in the system. Collaborative
computing systems of today are typically based on a pool of servers dealing with
these objects as static and passive information units being served in a closed
distributed processing system (DSP), rather then interactive and active objects
migrating in an open multiagent system (MAS). Making electronic documents
functional (interactive) and readable simultaneously to human users and com-
puters, paves the way for direct incorporation of human intelligence into MAS
computations. Putting the concept of distributed mobile interactive documents
(MIND) to work requires, however, solving the three problems:

1. Modeling a document architecture as a system of distributed component
objects, with embedded functionality for interaction and migration, to make
them capable of implementing arbitrary complex behaviors.

2. Introducing security mechanisms to enable access management to document
components, encryption of their content, digital signatures and preservation
of integrity.

3. Resolving reliability issues, such as global state monitoring, state recovery,
global object naming and automatic adaptation of migrating objects to local
contexts.

A conceptual view of MIND architecture is shown schematically in Figure 1a.

a) b)

document schema

migration policy

security policy

reliability policy

other policies

embedded behaviours

hub document component 2

component 1

component N

...

final document

document originator collaborators archivist

templates templates
Editing activity

Component

Migraton path

Services

+embedded
+local
+external

1..n 1..n

Hub document

1 1
1..n

1

+keywords
+description

Author

1

Fig. 1. Architecture of MIND: general view (a), hub document class diagram (b)

MIND builds upon two concepts: an automatic XML data binding, which
allows for representing the information in an XML document as a set of objects

P
o

b
ra

no
 z

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Title Suppressed Due to Excessive Length 3

in computer memory, and mobile agents augmenting these objects to make them
capable of migrating from one computer to another to continue execution. Owing
to that, a static document template represented by a schema can be converted to
component objects, which as agents can next implement their individual actions
at designated destinations. This process is initiated by a document originator,
who designs a hub document based on a schema defining a logical structure
and functionality of a document template of interest. An UML class diagram
representation of the logical structure of the hub document is shown in Figure 1b
(its equivalent XML Schema representation has been omitted for brevity).

Key parts of the hub document are: one or more components with informa-
tion (data) content, which upon unmarshalling become mobile objects, document
migration path (specified in a form of a document workflow) and specification
of one or more embedded, local and external services. Embedded services are
implemented with plugins, expanding dynamically document functionality, local
services are those that may be acquired by document components from target
hosts upon arrival, while external services are provided by the originating server,
in a fashion of a “ground control” facility. Users accessing component incoming
locally act as knowledge workers, by interactively contributing to a component
content, by making decisions based on the content of other components they
have access to, and if necessary by creating new components in the form of
dynamically added annotations, linked to various components of interest. In-
teraction of knowledge workers with components (agents) may be individual –
when a document component has only one user, and collective – when a group
of users has to share it and cooperate. In particular, the latter will take place
when a set of dynamically created annotations will have to be integrated to form
one coherent component content. Individual and collaborative editing will use
locally available services to provide knowledge workers with a comfort of using
their private tools, like editors or personal communicators. As mentioned be-
fore, document components migrate as agents across the Web according to their
migration paths until they reach their individual goals. Upon reaching its goal,
an object returns to its document originator, where it is marshalled with other
objects back to an XML document. Files with XML documents are archived by
an archivist on a server for reuse by other applications, especially for extracting
accumulated knowledge.

3 Open document architecture

Adoption of agents enables documents to exhibit adaptive behaviors and facil-
itates their content to meet dynamically changing environmental requirements,
such as in ad-hoc military networks [5]. The key concept is to provide for pol-
icy driven management of agents, and the architecture outlined schematically in
Figure 2.

A policy, represented as a quadruple < event, condition, action, scope > can
be regarded as a goal that is to be observed by the entity to which the policy is
applied. An agent whose behavior is to be controlled by applying a policy nor-

P
o

b
ra

no
 z

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


4 Magdalena Godlewska and Bogdan Wiszniewski

event distributor

policy enforcer

service handler

plug−in
actions

event bus

external services local services

Fig. 2. Component MIND object architecture

mally consists of plug-in actions, which are individual software components that
constitute augmented agent functionality, a local service handler, capable of de-
tecting the current local context of an agent and determining its current role, a
policy enforcer component monitoring events that could trigger the enforcement
of relevant policies, and an event distributor component notifying all parties that
registered their interest in particular events when they occur. Events published
by the service handler and plug-in actions are passed by the event distributor to
the policy enforcer. The latter evaluates the condition of each available policy
and loads a plug-in action of the policy for which condition evaluates to true
and scope includes the role determined by its service handler component. Ow-
ing to the flexibility of plug-in actions combined with the policy control, agents
can select any specified objectives in a dynamically configurable and distributed
fashion, and autonomously adapt their functionality to a wide range of environ-
mental condition changes. MIND exploits this mechanism to make all document
components adaptable to the locally available tools. This provides knowledge
workers with their customary interaction and editing tools in a form of plug-
gable actions that could be performed from inside any popular Web browser.

4 Core technologies of MIND

As indicated before, implementation of the MIND concept involves specific com-
bination of just a few basic Web technologies and no dramatic breakthrough in
their development would be required. However, their survavibility as standards
is important, to consider the MIND architecture as a reasonable alternative to
data-centric computation models.

Below a quick review of the MIND core technologies and their state-of-the-
art has been given to assess prospects of a new distributed processing model
advocated in the paper.

4.1 Augmentation of document components

With the advent of XML, a uniform mark-up notation for describing logical
structure of data has been established as a global standard. Representing the
logical structure of documents and their components is important for MIND,

P
o

b
ra

no
 z

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Title Suppressed Due to Excessive Length 5

since according to the concept illustrated in Figure 1a documents will be con-
verted to interactive components, enabling knowledge workers to manipulate
their content. Several languages have been proposed to model a schema, to which
a structure of a particular XML document should conform in a checking pro-
cess called validation. Any schema language is a certain compromise between its
power of expression, simplicity, and features, being more or less suitable for par-
ticular types of applications. The problem is to choose a schema language best
fitted for the class of documents supporting collaborative computing processes
today and in the future. Equally important is the support by organizations and
vendors providing standards and tools to promise survival of the chosen lan-
guage and guarantee forward compatibility of archived documents. For example,
Document Type Definition (DTD), historically rooted in the SGML mark-up
language, provides a very simple grammar mechanism and allows for structure
rules to be parameterized and customized. It has also an excellent vendor sup-
port and prospects for survival as a default schema language. Unfortunately, its
expressiveness is low, as DTD has been shown to be in the most restrictive sub-
class of regular tree grammar (RTD) languages, known as local tree grammar
(LTG) languages. Formally, LTG is RTG without competing non-terminals, i.e.
such that any two production rules do not share the same terminal symbol in
their right-hand sides. Competition of non-terminals is important and makes
document validation difficult, since more than one interpretation of a document
may exist. The intent of XML Schema language [12] is to reconstruct the facilities
provided by DTDs parameter entities and marked sections into a full type-lattice
system with type inheritance, type extensions and type restriction. Although rel-
atively more complex to use than DTD, XML Schema language has been shown
to be less restrictive than DTD, by belonging to the subclass of single-type tree
grammar (STG) languages. The class of STGs properly contains LTGs, as it
does not allow competing non-terminals within a single content model, i.e., in
the right-hand side of some production rule. Algorithms for constructing a unique
interpretation of a document when validating it against a schema written in any
STG language have been proposed. Finally, RELAX NG [3], has been so far the
least restrictive schema language, as it belongs to the class of RTG languages;
formally, RTG allows the right-hand side of a production rule to have just a reg-
ular expression over non-terminals. This freedom, however, implies difficulties
in checking for ambiguity in matching regular expression patterns. Attempts to
extend validation algorithms for LTG and STG classes of schema languages to
the broader RTG class yielded non-deterministic algorithms that were not able
to provide a unique interpretation of the document [7]. Later on, linear-time
matching algorithms have been proposed based on the adoption of greedy reg-
ular expression matching [1]. This speeded up development of tools, increased
interest in RELAX NG and improved its chances for survival.

Exploiting expressive power and ease of use of schema languages is just one
aspect of the challenge. Another one is practical assessment and validation of
the existing tools supporting the selected schema language. From this point of
view XML Schema is best suited for MIND. An interesting alternative is the

P
o

b
ra

no
 z

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


6 Magdalena Godlewska and Bogdan Wiszniewski

newest technique of Java-XML data binding based on VTD-XML and XPath,
which does not mandate schemas [4]. In order to convert an XML document into
a set of objects enabling manipulation of data in that document one needs a tool
for XML data binding to these objects. Existing tools for that have, however,
a number of limitations, most of which are not serious in practice. They may
be classified as round-tripping limitations and feature limitations. Round trip-
ping of an XML document occurs each time it is unmarshalled and marshalled
again. While all XML data binding tools can round-trip elements, attributes,
text, and the hierarchical relationships among them, most of them cannot pre-
serve comments and processing instructions, physical constructs such as entity
references, and the order in which sibling elements and text occur. Feature limi-
tations are caused by the fact that most XML data binding tools do not support
XML Schema with regard to mixed content, wild cards, substitution groups,
key/keyref and complex type restrictions. A more serious challenge is that XML
data binding tool cannot operate on document fragments, i.e., cannot extract
data from one or more fragments of an XML document, expose that data using
schema-specific objects, and re-write those fragments to the document, leaving
the rest of the document unchanged. This is a real problem in workflow sce-
narios, where many applications work on one document, each modifying and
passing part of it to the next application. Architecture of MIND outlined in
Figure 1a can cope with that challenge, since document fragments extracted
once from the global hub document are bound with the application run by a
document originator to objects with embedded functionality driven by exter-
nally defined policies and making these objects active “applications”, capable of
operating on their related document fragments. List of XML data binding tools
includes products of both kinds: commercial, such as XML Schema Definition
Tool in .NET Framework (Microsoft), XML Spy (Altova) or WebSphere Studio
Application Developer (IBM), and open source, such as JAXB (GlassFish com-
munity project) or XMLBeans (Apache XML project). Experiments performed
by authors with the prototype implementation of the MIND architecture have
indicated that XML Beans performs very well in regard to the above.

4.2 Document component mobility

In order to enable migration of document components to remote sites for process-
ing, they have to be converted to mobile objects (agents). Since their invention
over a decade ago and dozens of different platforms developed, agents have been
claimed to become a breakthrough in distributed computing with such obvious
benefits as loose coupling, adaptability and support of heterogeneous systems.
Surprisingly, it is relatively difficult to point to successful large-scale implemen-
tations of agent systems. Probably the reason is that the basic paradigm of agent
technology involves functional specialization and autonomous interaction with
the local environment, narrowing the class of realistic applications to just a few,
such as resource management and maintenance of complex systems, or delivery
of personalized content and e-commerce, for each of which a volume of agents
should rather not be excessive. MIND concept of representing documents as

P
o

b
ra

no
 z

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Title Suppressed Due to Excessive Length 7

functionally autonomous and mobile objects requires, however, taking a closer
look at scalability of the most popular agent programming platforms in terms of
excessive message sending and agent migration actions, since the volume of com-
ponent objects might be sometimes as large as few thousands for particularly
complex collaborative computing processes (eg. court trials). A recent survey
of a variety of agent platforms representing the current state in the field [10]
including Aglets, Voyager, Grasshopper, Tryllian, JADE, Tracy, and SPRINGS
indicates that for agent applications of a moderate size (up to 100 agents, each
one performing few hundred movements and communications) the differences in
reliability and performance are nor significant, and only some platforms have
problems with reliable execution when agents move and communicate; agents
that only move usually have less problems. Another experiment [6] aimed at
flooding of a single node with incoming agents indicates that a JADE based
application could reliably perform with up to 800-1000 incoming agents. These
results are promising for MIND applications. Another issue is stability of the
selected platform to guarantee survivability of MIND technology. An important
point of reference here are the abstract platform and agent management specifi-
cations provided by the FIPA; so far JADE, offers a platform with the strongest
resemblance to this specification. Experimental version of MIND based on JADE,
implemented by authors is promising in that regard. Any MIND architecture im-
plementation will have to build on top of FIPA to enable forward compatibility
with agent platforms that will be developed in the future. Defining migration
policies of MIND objects with standard mobile agent design patterns will further
ensure this, as their implementability with JADE has been already proved [16].

4.3 Actionable meaning of document content

Knowledge workers collaborate in a virtual space by interacting with document
components and to some extent by co-editing their content. Inspiration for that
form of cooperation between users has been development of open source software
by large groups of programmers. A key feature of that is a global scope of work,
hard to achieve with paper-based documents. Each co-worker (co-author, co-
editor, co-programmer) processes the assigned piece of content, by executing
elementary operations like insert, cut and replace, while a system supporting the
society of workers has to assure consistency and completeness of all so produced
components. There are three possible approaches for such a collaboration:

1. Pessimistic, where a unique copy of the edited document is a shared at a
central server. By using the mechanism of shared locks only one co-editor
at a time can modify a document content, while other co-editors can only
read it [11]. The main disadvantages are the requirement to stay on-line by
all interested contributors, no provision for concurrency, and the overhead
imposed by the management of locks with the increasing number of co-
editors.

2. Optimistic, where before edition, a document is replicated and copies are sent
over a network to each respective co-worker, who edits locally the received

P
o

b
ra

no
 z

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


8 Magdalena Godlewska and Bogdan Wiszniewski

copy. Messages on changes are broadcasted over the network to all inter-
ested co-editors. Editing operations performed individually by each author
on his/her local document copy are rectified with messages received from
remote authors doing their modifications in parallel [8]. One disadvantage
of this model is a need to implement a complex mechanism for transforming
editing actions performed locally with messages received from remote sites.
Unfortunately, many algorithms already published in the literature have been
found flawed and do not guarantee consistency of document copies edited in
parallel [2].

3. Realistic, where a document is transformed into a set of objects forming
a certain hierarchy implied by its logical structure, and having their own
local memory and methods. An advantage is the potential of using well-
defined object-oriented mechanisms for document processing, in particular
open MAS, allowing for dynamic expansion and migration of document com-
ponents – the key concept of MIND.

Implementation of interactive electronic documents as a single shared object is
not an effective solution when the number of contributors is high, however has
advantages when considering protection of a document content. On the other
hand, the model based on replication allows for parallel actions of co-authors,
but when the document volume is high (for particularly complex collaboration
such as in court trials) would be impractical. Moreover, document replication
precludes expansion of a document with new components, since adding a com-
ponent would require its instant replication and redistribution over the network
to maintain architectural consistency. Contrary to that, realistic document dis-
tribution appears to be the most efficient one of the three scenarios considered
above. The content of distributed document components, augmented with mobil-
ity, enables information flows that can be organized into work processes involv-
ing intellectual resources of knowledge workers. These processes can be formally
described with a workflow definition language as patterns of activities, which
together with embedded behaviors of document components, implemented with
plug-in actions, and predefined migration policies, implicitly related to the doc-
ument component type and semantics, will constitute the actionable meaning
of a document content. This meaning combines activities constituting the work
process, partners (agents and users) involved in the process, messages exchanged
between them, and exceptions raised in cases of errors.

The list of workflow definition languages and workflow management systems
that have been developed so far is quite long, but any one of them may be
criticized for being unsuitable to implement this or that particular pattern. A
canonical set of patterns, independent of any particular implementation technol-
ogy and application area, has been defined as a point of reference to evaluate any
language already defined, or yet to be defined [15]. The set of interest considered
by the authors included: XML Process Definition Language XPDL (Workflow
Managament Coalition WfMC), Business Process Execution Language for Web
Services BPEL (IBM and Microsoft), and Business Process Modeling Language
BPML (Sun Microsystems). Prototype implementation of MIND used finally

P
o

b
ra

no
 z

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Title Suppressed Due to Excessive Length 9

XPDL, which proved to be sufficient to perform any realistic workflow. To in-
crease prospects for forward compatibility of MIND, any workflow definition
language based on XML should be allowed, what can be realistically provided
owing to XSL transformations.

During processing along their respective workflows, components of a dis-
tributed document may need to refer to one another in the form of links, cita-
tions or bookmarks. The common addressing structure for the Web, based on
the URLs, combining logical names with physical IP addresses to identify and
locate digital objects, fails whenever the resources are moved between locations –
is the case of mobile MIND objects. Moreover, some of these mobile objects may
be dynamic in the sense that they are created after originating the workflows
of document components defined by a schema of the document template. One
example are dynamic annotations that may be created and linked by knowl-
edge workers to other components at any time during the document lifecycle
(see Figure 1a). The notion of a persistent identifier is needed, i.e. the one that
tracks specific objects it refers to regardless of their physical location. Two pri-
mary persistent identifier applications have emerged and are strongly supported:
the Persistent URL (PURL) [9], and the Handle System [13]. Both approaches
provide registration and resolution services to map the persistent identifier to
the current physical location of the digital object of interest and implement a
sort of a redirection mechanism. PURL assigned to a mobile document points to
the special resolver record in a resolver table maintained by a dedicated PURL
server; the resolver record contains information to redirect the PURL to the
current URL of the object, while the resolver table is updated each time any
actual URL stored in it changes. Owing to this, the referred objects PURL does
not change when the object migrates. The Handle System is an interoperable
network of distributed resolver servers, linked through a Global Handle Server;
a local Handle Server can resolve any handle through the global server to the
current URL of the migrating object. Besides that the resolution of one handle to
multiple objects, to other handles or even email accounts is possible. Persistent
identification of MIND objects can adopt any of these mechanisms for dynamic
annotations management. Note that objects that may be annotated will have
to exhibit dual behaviors: one with regard to the user editing it – when the
document component behaves as an interactive object exercising its embedded
(plugged) functionality, and another with regard to the reader annotating it –
when it is perceived as just a static content with resources to be indicated with
specific XPointer and XLink expressions.

5 Conclusions

The proposed distributed MIND concept has a potential to provide a break-
through in resolving non-algorithmic problems, to which collaborative compu-
tation paradigm seems to have no alternative. This is because document-centric
processing model provides a natural mechanism for incorporating intelligence
of human actors in computations of an open MAS. In particular, intelligent,

P
o

b
ra

no
 z

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


10 Magdalena Godlewska and Bogdan Wiszniewski

autonomous and adaptive document content advocated by MIND should sig-
nificantly speed up and ease complex interaction and leverage knowledge bound
organizations with virtual collaboration to enable resolving non-algorithmic deci-
sion problems, such as court trials, integrative bargaining, medical consultations,
or crash investigations.

References

1. Frisch A. and Cardelli L. Greedy regular expression matching. In Proc. ICALP’04,
2004.

2. Oster G., Molli P., Urso P., and Imine A. Tombstone transformation functions
for ensuring consistency in collaborative editing systems. In Proc. Collaborative

Computing: Networking, Applications and Worksharing, 2006.
3. Clark J. and Murata M. RELAX NG specification. OASIS TC Specification 3

December 2001, www.oasis-open.org/committees/relax-ng.
4. Zhand J. Schemaless Java-XML data binding with VTD-XML. O’Reilly ON-

Java.com, 2007.
5. Cho-Yu J.Ch., Ritu Ch., Yuu-Heng Ch., Levi G., Shihwei L., and Poylisher A. A

novel software agent framework with embedded policy control. In Proc. MILCOM

2005, 2005.
6. Chmiel K., Gawinecki M., Kaczmarek P., Szymczak M., and Paprzycki M. Effi-

ciency of (JADE) agent platform. Scientific Programming, 13, 2005.
7. Murata M., Lee D., and Mani M. Taxonomy of XML schema languages using

formal language theory. In Proc. Extreme Markup Languages, 2000.
8. Ressel M., Nitsche-Ruhland D., and Gunzenhuser R. An integrating,

transformation-oriented approach to concurrency control and undo in group ed-
itors. In Proc. Computer Supported Cooperative Work, CSCW’96, November 1996.

9. PURLS. A project of OCLC research. OCLC Online Computer Library Center,
www.purl.org.

10. Trillo R., Ilarri S., and Mena E. Comparison and performance evaluation of mobile
agent platforms. In Proc. 3rd Int. Conf. on Autonomic and Autonomous Systems,

ICAS 2007, 2007.
11. Greenberg S. Personalizable groupware: accommodating individual roles and group

differences. In Proc. Computer Supported Cooperative Work CSCW’91, Amster-
dam, 1991.

12. Gao Sh., Sperberg-McQueen C.M., and Thompson H.S. (eds). W3CXML Schema
Definition Language (XSD) 1.1 Part 1: Structures, Part 2: Datatypes. W3C Work-
ing Draft 30 January 2009, www.w3.org/TR/xmlschema11-1/.

13. Handle System. Unique persistent identifiers for internet resources.
www.handle.net.

14. P. Wegner. Why interaction is more powerful than algorithms. Comm. ACM,
40(5), May 1997.

15. Aalst W.M.P. and Hofstede A.H.M. YAWL: Yet Another Workflow Language.
Technical Report QUT Tech. Rep., FIT-TR-2002-06, Queensland Univ. of Tech-
nology, , 2002, Brisbane, 2002.

16. Tahara Y., Toshiba N., Ohsuga A., and Honiden S. Secure and efficient mobile
agent application reuse using patterns. SIGSOFT Software Engineering Notes,
6(3), May 2001.

P
o

b
ra

no
 z

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

