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Abstract—The problem of identification of quasi-periodically In the special case where = 1 and p(t) = 1, equations

varying dynamic systems is considered. This problem can be (1)—(2) describe a mixture of complex-valued sinusoidal sig-

solved using generalized adaptive notch filtering (GANF) algo- nals (Ca”ed CiSOidS) buried in noise (S(t) &ét))
rithms. It is shown that the accuracy of parameter estimates can

be significantly increased if the results obtained from GANF are y(t) = s(t) + v(t)

further processed using a cascade of appropriately designed fil-

ters. The resulting generalized adaptive notch smoothing (GANS) k S

algorithm can be employed in many off-line or nearly real-time s(t) = Z a;(t)e’ Lz will) (3)
on-line applications, such as elimination of sinusoidal interference i=1

from a prerecorded signal or identification of a rapidly varying

telecommunication channel. and GANF filters become “ordinary” adaptive notch filters

(ANFs) — devices used for a variety of purposes, such as
line enhancement [5], mitigation of narrowband interferences
in communication channels [6], active noise and vibration
control [7], [8], biomedical signal processing [9], [10], [11],
|. INTRODUCTION or elimination of of narrowband disturbances (generated by
, , power lines and/or electronic circuitry) from audio signals
ENERALIZED adaptive notch filters (GANFs) [1] were[12] For an overview of different ANF algorithms see e.g.
'deS|'gn¢d for the. purpose of |dent|f|cat|on/tragk|ng 13], [14] and references therein.
quasi-periodically varying complex-valued systens, i.e., SyS-GaNFs/ANFs are causal estimation algorithms, which
tems governed by means that at any instart they yield estimates(¢) and

Index Terms—Adaptive signal processing, noncausal estima-
tion.

_ T s(t) that are functions of current and past measurements
y(t) = 7 (1)8() + o) @ Y_(t) = {y(1),...,y(t)}. While causality is an obvious
wheret = 1,2,... denotes the normalized discrete timefequirement in real-time applications, such as active noise or
y(t) denotes the system outpup(t) = [p1(t),...,¢.(t)]T Vibration control, many other applications exist that allow one
denotes regression vectar(t) denotes measurement noiseto either partially or entirely remove this constraint. Generally
and0(t) = [0,(t),...,0,(t)]" is the vector of time-varying speaking, such applications fall into two categories:
system cpefficients, modeled as weighted sums of complexl) Near Real-Time Application€onsider the problem of
exponentials on-line elimination of a narrowband interference from a speech
k signal transmitted over a telecommunication channel. Since the
0(t) = Z a;(t)ed Dz @il (2) received signal is already a delayed version of the transmitted
i=1 one (due to channel and processing delays), one can usually

glfford an additional decision delay of sampling intervals

All quantities in (1)-(2), except angular frequencie§S o
wi(t),. .., w(t), are complex-valued. Since the complex sgmi0 improve estlmatlon accuracy, namely to evaluate smoothed
plitudes” a;(t) = [ai1, . . .,a:m|T incorporate both magnitude (nophcaussl) estltmateﬁtt— 7) :ts[y - ()] th?tb?re TUC“;’”S;
and phase information, there is no explicit phase compon@ﬁt € observa |(3n |s"orw,( — 7) available at instan
in (2). t — 7, and of r “future” samples:y(t — 7 + 1),...,y(t).

In a statistical literature such solution is known as fixed-lag

An interesting application, which under certain conditions thing. When ropriately desianed. smoothed estimator
admits the formulation presented above, is adaptive equali?‘g100 9. Yhen appropriately designed, smoothed estimators

tion of rapidly fading multipath telecommunication channels Y/€ld smaller estimation errors than their causal counterparts.

see e.g. [2], [3], [4]. In this particular casg() is the sampled Another group of on-line applications, allowing one to break

baseband signal, received by the mobile radio system, the ?3956‘““/ limitations, are those exploiting the fact that in

gression vector is made up of past input (transmitted) symborlg?dem telecommunication systems, signals are transmitted in

: : o - block-by-block, rather than sample-by-sample, fashion. Once
6(t) is the vector of time-varying impulse response coefficien " N o
of the channel, and the angular frequencigs. . ., w; corre- such a block (or *frame”) of datd’ = {y(1),...,5(N)}, of

spond to Doppler shifts along different paths of signal arriv?ngth N, _is received, local parameter and signal estimates
0

(when the speed of the vehicle changes over time, Dopp ) = 68V, s(t) = 5], t = 1,...N, required e.g.

. . . r channel lization or interferen mitigation n
shifts are also time-varying). channel equalization or interference mitigation, can be

obtained using procedures known as fixed-interval smoothing.
The author is with the Faculty of Electronics, Telecommunications and 2) Off-line ApplicationsEIimination of narrowband distur-
Computer Science, Department of Automatic Control, f@&#a Univer- b f hived si | dio. bi dical
sity of Technology, ul. Narutowicza 11/12, Guk, Poland (e-mail: ma- Q@NCES Irom archived signais (au io, biome ical), or recon-
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based on prerecorded input/output sequences (e.g. for simutarsion of the GANF algorithm proposed and analyzed in [15]
tion purposes), are examples of tasks that can be performed

off-line, using the entire data record. Again, this can be done ft) =e*Of(t - 1)
by employing fixed-interval smoothing. e(t) =y(t) — goT(t)f(t)a(t -1
In spite of clear advantages of smoothing, noncausal estima- ~ ~ Z1 s/ P
b J J a(t) = &(t— 1) + u® " (1) F*(1)e(t)

tion techniques are surprisingly absent from the literature on

adaptive notch filtering, except for a handful papers devoted B(t+1) = 5(t) — 4 Im ()" () ft)a(t — 1)

to frequency smoothing [16], [17]. The concept of adaptive afl(t—1)®alt—1)

notch smoothing (ANS) and its system identification extension ~ NS

(GANS) was originally developed in our earlier work [18], 0(t) = a()f(t) ®)

and later refined in [19]. The fixed-lag smoothers proposggherex denotes complex conjugation aHddenotes conjugate

there were based on compensation of estimation delays thahspose. Tracking properties of this algorithm are determined
arise in the frequency tracking and amplitude tracking l00Bg; two user-dependent tuning coefficients: the adaptation gain
of GANF/ANF algorithms. 0 < u < 1, which determines the rate of amplitude adaptation,

The contribution of the current paper is twofold. Firstgnq another adaptation gain< v < 1, which determines the
using the postfiltering technique (backward-time filtering ofte of frequency adaptation.

frequency and amplitude estimates), we derive fixed-intervalpjjot GANF is a causal estimation algorithm, i.e., it yields
GANS/ANS algorithms and study their estimation properti€gsiimates(t) that are functions of current and past measure-

Second, we propose new versions of fixed-lag GANS/ANGentsy_(+). Based on analysis of tracking properties of the
algorithms, W|th_ mcreased_ es_t|mat|on capabllme_s. _MOV'nEilot algorithm, we will design a cascade of post-processing
from compensation of estimation delay to postfiltering hagers increasing accuracy of amplitude and frequency esti-
important implications. Since compensation techniques redyggiion. We will show that, using such multistage estimation

only the bias component of the mean-squared estimatigfheme, one can significantly improve identification results.
error (MSE), without changing its variance component, the

GANS/ANS algorithms derived in [18], [19] show adavantage
over their GANF/ANF counterparts mainly in the range of lll. FREQUENCY SMOOTHING

small values of adaptation gains (because for small gainsyye will show that, similar to the signal case tackled in [19],

MSE is dominated by bias errors). In contrast with thisstagistically efficient smoothing can be achieved by means of

postfiltering allows one to reduce both biamd variance packward-time filtering of frequency estimates yielded by the
error components and hence — to improve results yielded giyot GANF algorithm.

GANF/ANF algorithms for all values of adaptation gains. We wil start from considering a general postfiltering
scheme, incorporating any linear noncausal filter. Then we will
Il. PROBLEM STATEMENT show that the best results can be obtained when the smoothing

To simplify further considerations, we will assume that thflter is annf:ausal apd ‘matched” 1o the freqqency tracking
analyzed system has a single frequency mdde=(1), i.e characteristic of optimally tuned GANF. We will prove, and
that it is governed by " 77 confirm this using simulation results, that under Gaussian

assumptions and for random-walk (RW) frequency variations,
y(t) = @ (1)O(t) + v(t) the resulting estimation scheme is statistically efficient, i.e., the
o(t) = a<t)ejz;:1 w(l). 4) mean-squared frequency estimation error achieves the&ram
Rao-type lower smoothing bound. Finally, we will explain why
Later on we will comment on the possibility of extending théhe proposed scheme should work satisfactorily (although not
obtained results to the multiple frequencies case. optimally) for any slow frequency variations, not necessarily
We will assume that the complex-valued vector of “amef the RW type, and foany adaptation gains, not necessarily
plitudes” a(t) = [ai(t),...,a,(t)]T and the real-valued optimally tuned.
instantaneous frequeney(t) € (—m,w| are slowly varying
quantities (this statement will be made more precise later 02?,
but we will not request that(¢) should be small, which means™ ™
that system parametefi$t) may arbitrarily fast vary with time. ~ To analyze frequency tracking properties of the pilot al-

Frequency Tracking Properties of Pilot GANF

Additionally, we will assume that gorithm (5), we will assume that the signal amplitude is
(A1) The measurement nois(t)} is a zero-mean circular unknown but constant(t) = a, vi, and that the instantaneous
white sequence with varianee?. frequencyw(t) changes according to the RW model
(A2) The sequence of regression vectdrg(t)}, indepen- w(t) = w(t — 1) + w(t) (6)
dent of {v(¢)}, is zero-mean, wide-sense stationary
and ergodic with known covariance matri® = where
Ele*(t)e™ (1)]. (A3) The sequence of one-step frequency changes, independent

The algorithm that will serve as a basis for our further of {((¢)} and{v(¢)}, is a zero-mean white sequence of
considerations, referred to as a pilot GANF, is a normalized real-valued random variables with varianeg.

-
n
o)
>3
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The RW model of frequency variation is often used in trackingf ¢ € [—m, n]. Requiring thatoh/0X*|x-=x, = 0, where

studies as it leads to analytical results. It will allow us to revedl((¢— ') is the optimal transfer function and

important features of the frequency tracking loop. o 1 P P
Denote byA®(t) = &(t) — w(t) the frequency estimation — == [ —J }

error. Using the approximating linear filter (ALF) technidue 0z 2 8R§[Z] 811;1[2]

one can show that [15] ai _ % [aR - Vi [ J
z* ez m|z

- FgYH-1 - L . .
AD(t) = 5(1_7)_1 w(t)+ (1 —q )F(g Ye(t) (7) denote the so-called Wirtinger derivatives — symbolic deriva-
q tives with respect to a complex variable applicable to
wheree(t) = Im[ap*(t) f*(t)v(t)/a?], a® = aP®a, ¢~' NoOnanalytic functions, such dg-). Using Wirtinger calculus
denotes the backward shift operator, [21], one obtains
2K
- Xolg ™) = - (13)
F —1 — V4 olq — _1)2 IR 2
o where

andé = 1 — v, A = 1 — u. Note that, similarly to{v(¢)}, _ a’o, 14

{e(t)} is a zero-mean circular white sequence with variance Fo = "0 (14)

02 = o?/(2a2).

Due to mutual orthogonality ofw(¢)} and {e(t)}, the
mean-squared frequency estimation error can be expressea

is a scalar coefficient that can be regarded as a measure of
ylstem nonstationarity [15].
Bne can check that

the form
IO e Xo(q™") = Folg™ ") Fo(a) (15)
B(as®P) = o [ n[FEe ® o
21 ) whereFy(¢~1) = F(¢ |1 = pw, ¥ = Yw), andu,, 7., denote
where¢ denotes standard Fourier-domain normalized angu%‘?t'm"’lI values of,  that can be obtained by solving
f i 2 2
requency variable, Yo _ o, . Mo . (16)
* * 2 FF* 2 1= Heo 2= He
h[F] = (F = (F" = 1)AA" oy, + AN+ e After combining both conditions in (16), one obtains
andA(g~") =1/(1—¢7"). Ni 72(17%0)(2*:“4‘))2”:0 =0. (17)
Note that the substitution
B. Postfiltering 12
. : U= (18)
To obtain a smoothed estimate ©ft), further denoted by L= po
?u(t),\l/ve will pass the tlestimateis(t)lthroughanoncausal filter turns the fourth-order equation (17) into the second-order
Glg)=... 491" +g90+qq +... equationu® — 2k, u — 8k,, = 0 which, foru > 0, leads to
(t) = Glg~hHa(t) . 9) U= Ky + VK2 + 4Ky - (29)
The filter G(¢~!) will be designed so as to minimize theSolving (18) forp,,, one obtains
mean-squared frequency estimation effdfAo(¢)]?} where B T T A 2
AG(t) = &(t) — w(t). Combining (7) with (9), one arrives at [y = W L Y = 2liwu .
- X(g -1 B B 5 i .
AG(t) = (¢ )71 wt) + (1 — ¢ )X (g He(t) (10) To evaluate the steady-state mean-squared frequency estima
1—g¢q tion error (11), one can use the method of residue calculus
- [22]. Let
EA&tQ%—/hXe_jgd 11 1 /" . ‘
as@P = oo [ nlxE e @ = L [ weswie
where 1 - dz
_ _ _ =— o W(EHW(z)—
X(q™") = Flg™)G(™). (12) omy P VEOWET

Minimization of (11) is pretty straightforward — the problemvhere W(z~') denotes any stable proper rational transfer
can be solved by minimizing:[X (e=7¢)] for every value function and the second integral is evaluated along the unit

circle in thez-plane.

IThe ALF technique is a linearization approach introduced by Tichavsk FOI i = p, and~y = v, (11) can be rewritten in the form
and Handel [20] for the purpose of analysis of classical adaptive notch filters. _ 9
When carrying out the ALF analysis one examines dependence of estimation E{[A&()]"|pt = tw, ¥ = Y }
errors Aw(t) on v(t) and w(t), neglecting higher than first-order terms of ~ =112 41N\ .2
all quantities listed above, including all cross-terms. = I[A™ (27 )|oy, + I[BT(27)]og (20)
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whereA+ and B+ denote stable factors of = (Xo—1)(X(— €l

1)AA* and B = XX /AA*, respectively: 10
1 *
4o —1y _ —1\3 2/, —1 ) XN X
A" (q )—m(l—q )7 E5(a) e
BYf (Y)Y =0-q¢ Y HE2(¢ Y. (21) x
Based on (21), the mean-squared estimation error can be g kX
evaluated numerically using formulas given in [22]. 1071 T
C. Comparison with the Lower Smoothing Bound T X »
Suppose that, in addition to (A1)—(A3), the identified sig- x
nal/system obeys the following condition
(A4) The processe$v(t)} and {w(t)} are Gaussian. s
1) Signal Case:The signal casen(= 1, p(t) = 1) was 10 - -
studied in [17] and [23]. The analytical expression for the 10 10 10
Craner-Rao-type lower smoothing bound (LSB), derived by Kuw

Tichavsk and Handel [17], has the form
44-92-9) ,

Fig. 1. Dependence of the relative approximation errorgn

E{[AT()]?*} > = LSB, 22 -
(A} = 9(32 — 169 + 192)% 5 (22) " E{[0(t) — w(t)]?}
where 10 ‘
¥ =—u+VuZ+4u
anduw is given by (19). Note that for sufficiently small values *

* %
of x, it holds thatu = /8k,, ¥ = 2y/u = 2+/8k, and 107 M * % % % %
LSB,, = o2 /9. I
Fig. 1 shows the plot of the relative difference between

the mean-squared frequency estimation eBOIAG (1)]?|u = W
e,y = 7w}, evaluated according to (20), and the lower 6 XX x

smoothing bound obtained from (22) 10
t + 4+ 4
E{[AG()]?|p = wy Y = Yw — LSB,, &%

() = EUACOF|K LMSB } | .,
Although it s difficult to prove this analytically, very smallrel- 1578, ‘ ‘ ‘
ative differences (smaller than 10~¢ for x,, € [107¢,1072]) 0 10 20 30
suggest that the expressions (20) and (22) may well be SNR [dB]

mathematically equivalent. . , . .
. . . Fig. 2. Comparison of the theoretical values of the lower smoothing bound

It is clear from the analysis carried up above that fqgolid lines) with experimental results obtained for the signal with randomly
random-walk frequency variations, and under Gaussian asfing frequency for three different speeds of frequency variation: =
sumptions, the optimally tuned two-stage frequency smoothifig! (*). ow = 0.001 (x), oo = 0.0001 (+), and 16 different SNR values.
algorithm described above is — in spite of its simplicity — a sta-
tistically efficient noncausal frequency estimation procedure.

2) System CaseFor quasi-periodically varying systemsfi(t) = a;el Z7=1<(7) j = 1,2, with time-invariant complex
obeying (A1)—(A4), the lower smoothing bound is identicalamplitudes”a = [a1, a2]" = [2—j, 1+ 25 |T. Note that in
with (22), and can be obtained by combining results presentiés casep(t) = [u(t),u(t — 1) and® = I o2
in [15] (derivation of the posterior information matrix), [23] Figure 2 shows a comparison of the theoretical values of the
(derivation of the implicit LSB formula), and [17] (derivationlower smoothing bound with experimental results obtained for
of the explicit LSB formula). Hence, the final conclusion ishe analyzed system, for three different speeds of frequency
identical with that reached in the signal case. variation o, (0.01, 0.001 and 0.0001) and 16 different SNR

To check validity of theoretical results, the following two-alues, ranging from 0 dB to 30 dB. The mean-squared
tap FIR system (inspired by channel equalization applicatiorfs¢quency estimation errors were evaluated (for the optimally
was simulated tuned GANS algorithm) by means of joint time and ensemble
averaging. First, for each realization of the measurement noise

y(t) = 1 (Bult) + O2(t)u(t — 1) + v(?) (23) sequence and each realization of the frequency trajectory, the
whereu(t) denotes a white 4-QAM input sequencag#) = mean-squared errors were computed from 200 iterations of the
+1 + 4, 02 = 2) and v(t) denotes a complex-valuedGANS filter (after the algorithm has reached its steady state).

Gaussian measurement noise. The impulse response coégffie obtained results were next averaged over 50 realizations
cients of this system were modeled as nonstationary cisomfs{w(¢)}, 50 realizations of{u(¢t)} and 50 realizations of
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{v(t)} (50 x 50 x 50). may severely degrade cancellation/extraction efficiency of the
Note the good agreement between the theoretical curyakot algorithm.

and the results of computer simulations. The worst fit can beThe situation is different when smoothing is applied. Since

observed for the fastest frequency changes+ 0.01), which  the nominal delay of the filteF'(¢=1)F(q) is equal to zero,

is understandable since in this case the associated degreesnefarrives at the following approximate relationship

signal nonstationarity:,, range from10=* (for SNR=0dB)

to 10~1 (for SNR=30dB), i.e., they violate the “satisfactory E[@(t)|w(s), —00 < s < 00] = F(q¢~ ") F(q)w(t) = w(t)

tracking” conditionx,, < 1075 [15].

which shows that smoothing, in the proposed form, reduces

estimation biasrrespectiveof the shape of the estimated fre-

guency trajectory. Additionally, by the very nature of smooth-
Transfer function of the optimal smoothing filter is givering, the variance component of the mean-squared estimation

by Go(q™1) = Xo(qg™1)/Fo(q~1) = Fy(q). This suggests the error is also reduced.

following form of frequency smoothing

D. Frequency Smoothing Procedure

Remark: The idea of two-directional processing, which is

w(t) = F(q)@(t) . (24) a cornerstone of fixed-interval Kalman smoothing, inspired
_ _ ) ) o the authors of [16] to design a simpkd hoc frequency

Since the filterf'(¢) is anticausal, the smoothed estimai®) smoothing algorithm: it was proposed to process the data

can be obtained by means of bacll<war.d-t|me filtering of thjependently forward and backward using a tracking (ANF)
estimates yielded by the pilot algorithm: algorithm and combine both estimates — for example, estimate
Gt) = A+ 0Dt +1) — At +2) the instantanepus frequer_lcy as an arithmetic average of the
frequency estimates obtained in the forward and backward

HEt+1), t=N-1,.1 (25) runs, respectively. We note that this simple scheme, which
with initial conditions set tow(N +1) = G(N +1), ©(N) = can be easily extended to the system identification case, has
O(N). two obvious drawbacks compared to the solution based on

The proposed Smoothing formula was derived under id@ostfiltering. First, as later remarked by the same authors [17],
alized agsumptions_ Therefore some robustness ana|ysi§.t @OGS not utilize all available information efficiently — for
needed to confirm its usefulness under more realistic congxample, under RW frequency variation, averaging the forward
tions, e.g. for frequency changes that are not governed by g backward frequency estimates reduces the variance of the
RW model and/or in the presence of amplitude variations. frequency smoothing error, compared to the variance of the

First, it should be noticed that the relationship (7), whichequency tracking error, by the factor of two, whereas in
is the cornerstone of the smoothing procedure, remains vl statistically efficient scheme, such as the one based on
even if the sequence of one-step frequency changes— posfiltering, the variance is reduced by the factor of (approxi-
w(t —1) = w(t) is not a white noise process, i.e. it holds foMately) four. Second, due to a very low computational cost of
arbitrary slow frequency variations. postfiltering (equal to 3 real multiplications per time update)

Second, and equally importantly, careful examination of tHBe postfiltering scheme is computationally about two times
derivation presented in [15] shows that the relationship ({9ss demanding than the forward-backward filtering scheme.
remains approximately valid even if the vector of amplitudes
a(t) is not constant, but slowly varies with time — the only
thing that should be changed in this more general case is
the definition ofe(t): e(t) = Im[a™ (t)* () f*(t)v(t)/a*(t)],  Smoothed frequency estimates can be used for the pur-
a®(t) = a"(t)®a(t). This observation is consistent with thepose of re-estimation of amplitude coefficients. The resulting
known fact that the results of frequency estimation of narrotequency-guided GANF algorithm will serve as a basis for
band signals are usually pretty insensitive to the results of thgifplitude smoothing. We will show that, similar to frequency

IV. AMPLITUDE SMOOTHING

amplitude estimation (but natice ve.rsa). [24]. smoothing, the best results can be achieved when the am-
For zero-mean measurement noise it holds Bjatt)] = 0, plitude estimates, yielded by frequency-guided GANF, are
hence the relationship (7) entails processed by a “matched” filter operating backward in time.

Finally, we will point to certain robustness features of the
proposed amplitude smoothing scheme, which make it work
SinceF (¢ 1) is a lowpass filter with unity static gaif(1) = satisfactorily under much more realistic conditions than those
1, when the instantaneous frequency varies slowly with timiitially assumed.

the mean path of frequency estimates is roughly the time-

delayed version of the true tragjectory

EG(t)|w(s),s <t] = Flg~w(t) .

A. Frequency-Guided GANF and its Amplitude Tracking
E[G(t)|w(s),s < t] = w(t —t,) Properties

wheret,, = int[u/+] denotes nominal (low-frequency) delay The smoothed frequency estimate$t) can be used to
introduced by the filte"(¢~*) [18]. The lag error results in obtain more accurate amplitude estimates. A simple way of
estimation bias which, especially for small adaptation gaindoing this, suggested in [18], is run — in addition to (5) — the
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following frequency-guided GANF where
f6) = Ot —1) glH] = (H — 1)(H" — 1)AA" 2[S,] + HH* 0[S . (32)
&) =y(t) — T (O f(Hat - 1)

a(t) = a(t — 1) + p@ " () f* (t)a(t) B. Postfiltering

0(t) = a(t) /(1) . (26) _ _
. _ _ _ ) Consider the smoothed estimateft)
We will analyze amplitude tracking properties of this algo-
rithm under the assumption that the time-varying instantaneous alt) = B(g Ha(t) (33)

frequencies are known exactly, i.€j(t) = w(t),Vt. Even

though obviously violated for the pilot algorithm (5), thiswhereF(¢—') is a transfer function of a linear noncausal filter.
assumption is approximately fulfilled [for small values @f The filter £(¢~) will be designed so as to minimize the mean-
and~ in (5), and for sufficiently slow frequency variations]squared estimation erroE{||A0( 2 = E{||Aa(t)])?},

by the frequency-guided algorithm (26). Additionally, we WI||WhereA9( t) = 9( ) —0(t), 8(t) = a(t)f(t), and Aa(t) =
assume that the vector of “amplitudes{t) evolves according & (t) — a(t). Combining (30) with (33), one obtains

to the random-walk model

. V(g ') -1 -1
a(t) = a(t —1) +n(1) (27) Aa(t) = P n(t)+Y(g ) ¢t) (34
where
(A5) The sequence of one-step amplitude changeé)}, ~ 1 (7 .
independent of p(¢)} and {v(t)}, is zero-mean circular E{|Aa(t)]]*} = %[ g [Y(e7)] dg (35)
white, and has covariance mat®,, = o21. "
After settingw(t) = w(t) in (26), one arrives at where
F(t) = 7O £t — 1) V(g ) =H(gE@G ). (36)
E(t) = y(t) — T (Ha(t 1) Minimization of (35) can be carried out in an analogous way
at) =a(t —1) + p®@ " (1)a(t) as minimization of (11). Requiring thalg/dY*|y_y, = 0,
0(t) = a(t)f(t) (28) whereYy(¢~!) is the optimal transfer function, one obtains
Ka
where(t) = f(t)p(t). ~ ~ Yo(g~h) = (37)

Denote byAa(t) = a(t) — a(t) and AB(t) = 0(t) — 6(t)
the amplitude tracking and parameter tracking errors, respec-
tively. Observe that|A8(t)|| = ||Aa(t)||. Using where
tr[3,,] no?

y(t) = $T (Dalt) + v(t) Ro = s oTu@ 1] (39)

Ko+ (1—q¢71)(1—q)

one arrives at
Aa(t) = [I—p@ 'y ()T ()] Aa(t — 1)
— [T — p@ " ()T (1)] n(t) + p® 1" (Hu(t) . (29) Yo(q~') = Ho(q™ ") Ho(q) (39)

Since, for small values of. and for slow amplitude changes,whereHO(qfl) = H(q'|p = po) andp, —the optimal value

the estimation erroAa(t) varies slowly compared to the mod-of 1 — can be obtained by solving the following equation
ified regression vectot)(t), recursion (29) can be analyzed

It can be checked that

using the stochastic averaging technique. This results in the H2 _
following approximation L—pe
Aa(t) = AAa(t — 1) — An(t) + p@~ " (H)o(t) This leads to

or equivalently — kg + /K2 + dka

— o= - (40)
Hl(q_1q)—11 n(t) + H(g H)¢() (30) K 2

where¢(t) = @ 1y*(t)v(t), ¢ = cov[((t)] = @102 and
H(g™") = /(1= A7), BUIAGD) Pl = o} = 32— o2 @] (@)

[e3%

Aa(t) =
After elementary but tedious calculations, one can show that

Due to mutual orthogonality ofn(¢)} and {¢(t)}, the

mean-squared parameter estimation error can be expressed in
the form C. Comparison with the Lower Smoothing Bound

_ oy L [T —je Suppose that the identified signal/system obeys assumptions
BURGOIR) = 5 [ alHE9]d @D 3 (a8
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1) Signal Case:Under Gaussian assumptions the efficient 2) System CaseAccording to [26], when the rate of system
noncausal estimate of signal amplitude (given that its instanteenstationarityx,, is sufficiently small, the lower smoothing
neous frequency is known exactly) is provided by the Kalmabound for the system governed by (27) can be expressed in
type Rauch-Tung-Streibel smoothing algorithm [25], whicthe form

can be expressed in the form: _ 1
E{||Aa(t)|?} > = ono.tr[®@ /2] = LSB, . (46)
forward pass: 2

Note that for smallk,, it holds thatu, = \/kq, 2 — pa = 2,

a(tlt—1)=a(t—1Jt - 1) leading to [cf. (40)]
ptlt—1) =p(t — 1|t —1) + 02 o2
k(o) = 2= DI E{IAG0)I 1= po} = 5 Vi = onouy/ntx[@71]
of +p(tlt —1) = LSB, .
Ag(t) B 3(” altle = 1)/ ®) Using the Cauchy-Shwartz inequality, one obtains
a(tlt) =a(t — 1|t — 1) + k(t)e(t)
244 — tr[@ /2] < /ntr[@-1
pitit) = pltlt = 1) — 2D ) @ s v
op +p(tft —1) where equality holds iff® is similar to the identity matrix:
t=1,...,N P = afol. Hence, apart from the special case mentioned above,
the two-step amplitude smoothing algorithm is not statistically
backward pass: efficient. To guarantee efficiency one would have to run a much
R R p(tt) - R more complicated Kalman smoothing algorithm — a system
a(t|N) =a(t|t) + ———~[a(t + 1IN) —a(t + 1[¢)] counterpart of (42)—(43).
p(t+ 1t)
p(tV) = p(t10) + 2yt 4 11) — p(e + 110 - -
P2(t+ 1]t) D. Amplitude Smoothing Procedure
(43)  According to (39), when the tracking algorithm (28) is
t=N-1,...,1 optimally tuned, i.e.H(q~*) = Ho(q~ '), transfer function of

the optimized smoothing filter is given by (¢~') = Hy(q).

wherea(t|t —1) = Bla(t)| Y- (t — 1), a(t|t) = Ela(t)| Y- (1)), This suggests the following form of amplitude smoothing

and a(t|N) = El[a(t)|Y] denote predictive, filtered and

smoothed amplitude estimates, respectively, atdt — 1), a(t) = H(q)a(t) . 47

p(t|t), p(t|N) denote the corresponding estimation error vari-_ . o . .

ances. Since the filter H(q), similarly as F'(q), is anticausal,
Denote the steady-state variances by the smoothed estimatex(t) can be obtained by means

~ ) ) _ ) of backward-time filtering of the estimates yielded by the
Po = tlgglop(ﬂt —1), po = tliglop(t‘t)’ Po = tlgglop(ﬂ%) frequency-guided algorithm

Then, according to (42) and (43), it holds that G(t) = \&(t+1) + pal(t), t=N-1,...,1 (48)

= 2
Poo = Poo ¥ 0 72 with a(N) set equal tax(N).
Poo = Poo — 279%“1 The results of robustness analysis of the amplitude smooth-
0y F Poo ing procedure resemble those obtained for frequency smooth-
P = Poo + &@v Pl (44) ing. Since the relationship (30) remains valid for arbitrary am-
e plitude changes (the sequence of one-step amplitude changes

Solving equations (44) fop.., one finally arrives at the fol- @(t)—c(t—1) = n(#) must not be white for (30) to hold), for
lowing expression for the lower smoothing (posterior Ceam Z€ro-mean measurement noise and slow amplitude variations
Rao) bound one arrives at

LSB, = poc = \/ﬁ ot (45) Ela(t)|e(s),s < t] = H(qHeu(t) = a(t —ta)

wheret,, = int[A/y] is the nominal delay introduced by the

where _
o2 lowpass filterH (¢—1).
Fa = 073 : When smoothing is applied one obtains
Since it can be easily checked that,/(2 — u.) = Ela(t)|a(s), —0o < s < oo] = H(q¢ ") H(q)ex(t) = ax(t)

Ka/+/K2 + 4K,, One obtains
N2 which stems from the fact that the nominal delay of the filter
E{|Aa(t)|ln = pa} = LSBa H(q ')H(q) is zero andH (1) = 1. Therefore, whether opti-
i.e., for random-walk amplitude variations, and under Gaussiaral or not, for small adaptation gains the proposed smoothing
assumptions, the optimally tuned two-step amplitude smootbrocedure can significantly improve accuracy of amplitude
ing procedure described above is statistically efficient. estimation.
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TABLE | TABLE I

FIXED-INTERVAL GENERALIZED ADAPTIVE NOTCH SMOOTHER FIXED-INTERVAL ADAPTIVE NOTCH SMOOTHER
pilot filter : pilot filter :
flty = e@Oft—1) e(t) = yt)—e*W5(-1)
et) = yt)— T F(B)at—1) 3(t) = W3t —1) + pe(t)
&) = &(t—1)+p@ le (1) (1)) St+1) = B(t)—~Im [%}
* T 7 =
wit+1) = @{t)—vIm % t = 1,...,N
t = 1,...,N frequency smoother :
frequency smoother : O(IN+1) = BN+1)
W(N+1) = BIN+1) O(N) = ©(N)
G(N) = B(N) Gt) = A+0)@(t+1)— At +2) +y@(t+1)
St) = A+8o(t+1)— Aot +2) +y8(t+1) t = N—-1,...,1
t = N-—1,...,1 frequency—guided filter :
frequency— guided filter : b)) = y(t) - Gjl:(t)g(t —1)
ft) = eBOFE—1) 5(t) = Wt —1) + pat)
gt) = yt)—TOfMalt—1) t = 1,...,N
alt) = at—1)+pd Lo () f*(t)a(t) output filter :
t = 1,...,N 3(N) = E(N)wm)
S _ et~ _
amplitude smoother : s(®) Ae st+1) +us(t)
t = N-1,...,1
&a(N) = &(N)
a(t) = Aa(t+1)+ palt)
t = N-1,...,1
output filter : time-varying, one can replace it with the following exponen-
N N tially weighted estimate
0(t) = a)f(t) ~ ~ . T
t = 1,...,N D(t) = A®@(t = 1) + (1= Ao)™ () (1)
where( < )\, < 1 denotes the forgetting constant. We note
that the inverse ofb(¢) can also be evaluated recursively by
exploiting the well-known matrix inversion lemma [21].
V. FIXED-INTERVAL GENERALIZED ADAPTIVE NOTCH In the signal case, the algorithm listed above can be rewrit-

SMOOTHER ten in an equivalent form that alleviates the need to compute
. i the quantitiesf(¢), a(t), f(¢t), a(t) anda(t). This reduces
After combining the results of frequency smoothing anghe computational burden by approximately/4@om 44 real

amplitude smoothing, the smoothed estimate of the parame{gfitiplications and 1 real division, to 28 real multiplications

vector§(¢) can be obtained in the form and 1 real division, per time update. The resulting cost-
F(t) = O ft — 1) optimized ANS algorithm is summarized in Table II.
. - Based on the results presented in [18], the proposed
0(t) = a(t) f(t) . (49) GANS/ANS algorithms can be easily extended to real-valued

stems/signals, and to the multiple frequencies system and

The proposed adaptive smoothing algorithm is a five-st& nal cases, governed by (1)—(2) and (3), respectively.

procedure, combining results yielded by the: pilot GANF algos-g

rithm (5), frequency smoother (25), frequency-guided GANF

algorithm (26), amplitude smoother (48) and output filter (49). VI. FIXED-LAG GENERALIZED ADAPTIVE NOTCH

For the reader’s convenience, all steps are summarized in Table SMOOTHER

l. The fixed-interval GANS/ANS algorithms are suitable for
Computational complexity of this algorithm is equal twff-line or block-oriented on-line applications. When the

12n% + 28n + 29 real multiplications and 1 real division smoothed estimates must be continuously updated to maintain

per time update (1 complex multiplication is counted as amfixed decision delay of sampling intervals, one needs a

equivalent of 4 real ones). fixed-lag smoother. The fixed-lag GANS/ANS can be obtained
When the covariance matri$e is not known and/or it is by restricting postprocessing of GANF/ANF estimates to the
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TABLE IlI

FIXED-LAG GENERALIZED ADAPTIVE NOTCH SMOOTHER

F@)
e(t)

a(t)

Ot +1)

pilot filter :
= IPWFEt—1)
=y - T OF )&t - 1)

= &(t—1) +p@ et () (De(t)

* T F( & (t—
= 00— Im [ SRR

frequency smoother :
= o{t+1)
= ()

—1,...,t—71
frequency— guided filter :
= fiit—T-1)
= ou—1(t—7-1)
= B (i —1)
= y(i) — @T () feli)au(i — 1)
= (i — 1)+ p® ) (D) ff (D) ()
= t—7,...,t
amplitude smoother :
= ()
= Aou(i+1) + pau(i)
= t—1,...,t—71

output filter :

= at—7)fit—7)

= O+ 0@ +1) = Ae(i +2) + @i + 1)
t

TABLE IV
FIXED-LAG ADAPTIVE NOTCH SMOOTHER

pilot filter :
€)= y(t) - SO 1)
351t = eI*MF(t —1) + pe(t)

. . e* (t)ed @ (t)
Se+1) = () -y In [ SGET]

frequency smoother :
w(t+1) = @(t+1)
wi(t) = @)
(1) = A+ +1) = Aoe(i+2) +yw(i+ 1)
T = t—1,...,t—7
frequency—guided filter :
Sit—7—-1) = SG_1(t—7-1)
g(i) = yli)— g (i—1)
5:(1) = eI®tDz(i — 1) + pée (i)
i = t—7,...,1
output filter :

5e(t)
Ae i@t (i3, (14 1) + p5:e(3)

t—1,...,t—7

»
&
=
. S
G
[l

.
I

VIl. COMPUTER SIMULATIONS

Our optimization study, presented in Sections Il and IV, is
of more theoretical than practical importance. From a practical
viewpoint the most important question is whether the derived
algorithms can cope favorably with “arbitrary” frequency and
amplitude variations, including deterministic changes. The
simulation study presented below aims to show that, even
though our analysis was carried out under assumption that

recentr time-steps only. The resulting “sawtooth” smoothaither the instantaneous frequency or complex amplitudes drift
ing algorithms (inspired, to some extent, by the work Ofccording to random-walk model, the proposed GANS/ANS
Johnston and Krishnamurthy on sawtooth extended Kalmgporithms are robust to frequency/amplitude model misspeci-
filters/smoothers [27]), are summarized in Tables Il and I\cation, and that they yield better estimation results, compared
The smoothed estimates 6ft —7) ands(t — ), evaluated at 15 GANF/ANF, irrespectively of the choice of adaptation

instantt, are denoted bg,

(t—7) ands,(t—7), respectively. To gains. Even though it is difficult to prove this theoretically,

avoid confusion, all other quantities updated during the posie have rich simulation evidence suggesting that, no matter
filtering steps (frequency smoothing, amplitude re-estimatioRey system/signal parameters vary with time, and no matter
and amplitude smoothing) were also indexedtby
Additional computational cost of carrying out postprocesserms of estimation accuracy, by switching from GANF/ANF
ing steps, i.e., the computational overhead of smoothing, grows GANS/ANS. Additionally, and rather paradoxically, the
linearly with the lagr, and is equal td4n® 4+ 16n +9)7 +4  attainable rates of improvement are usually much higher for

how the coefficintg, and~ are chosen, one always gains, in

A\ MOST

real multiplications per time update for the GANS algorithmsystems/signals subject to smooth deterministic changes than
and 177 real multiplications per time update for the ANSfor systems/signals with stochastic changes — even though the
algorithm. latter better fit the assumed model of time-variation.

Remark: The estimation accuracy improvements, offered bX .

smoothing, gradually saturate with growingln the case con- A- ANS Algorithms

sidered, only marginal improvements can be expected when To check performance of the fixed-interval ANS algorithm,
is increased beyond the “principal” delay = max{r,,7,}. a noisy quas-iperiodically varying signal (3) was generated
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MSE MSE

0 0.2 0.4 06 0.8 0 0.2 0.4 06 0.8

I I

Fig. 3. Dependence of the mean-squared cancellation error on adaptafitsh 4. Dependence of the mean-squared cancellation error on adaptation gain
gainp (v = p2,/2) for the pilot estimaté(t) (+) and smoothed estimaiét) ~ # (v = p?/2) for the pilot estimate(t) (+) and smoothed estimatét) (x),

(x), for two signal-to-noise ratios: 5 dB (two upper plots) and 20 dB (twdr two signal-to-noise ratios: 5 dB (two upper plots) and 20 dB (two lower
lower plots). All plots (solid lines) were evaluated on a grid of 100 equidistaRiots)- All plots (solid lines) were evaluated on a grid of 100 equidistant values
values ofu. The analyzed signal was subject to fast amplitude and frequerfy#- The analyzed signal was subject to very fast amplitude and frequency
changes. changes.

with fast sinusoidal amplitude and frequency changes
a(t) = cos(27t/2000) , w(t) = sin(27t/2000) . (50) 1

Fig. 3 shows comparison of the steady-state mean-squar€d
signal estimation errors, yielded by the pilot ANF algorithm 0
and by the proposed ANS algorithm, for different values of0.5
the adaptation gaip and for two noise intensities:, = 0.56 -1
(SNR=5 dB) ando, = 0.01 (SNR=20 dB). To reduce the )
number of design degrees of freedom the adaptation gain
v was set tou?/2 — see [15] for further explanations. All
MSE values were obtained by means of joint time averaging 1
(the evaluation interval [2001,4000] was placed inside a wider
analysis interval [1,6000]) and ensemble averaging (100 reaf->
izations of measurement noise were used). As expected, thd
ANS algorithm yielded uniformly better results than the ANF0-

000 3000 4000 2000 3000 4000

1
0.5
0
-0.5

algorithm. The peak-to-peak (or, more adequately, bottom-to-1 -1

bottom) variance reduction is approximately equal to 10 dB. 5,5 3000 2000 2000 3000 2000
Fig. 4 shows MSE plots, analogous to those presented in

Fig. 3, obtained for a signal with very fast amplitude and t t

frequency variations, govemed by Fig. 5. Real parts of the noisy signa(t) (top left figure), noiseless signal

a(t) — cos(27rt/200) , w(t) _ Sin(27rt/200) ) (51) Zgi?nggggzghégggg%rﬁ),riglrI](;tﬁZit:ge.ite(t) (bottom left figure) and smoothed

Even though the corresponding changes — ten times faster

than those considered in in the previous example — can be

hardly regarded as “slow”, qualitative comparison of ANS

versus ANF leads to identical conclusions: smoothing can

considerably improve estimation results in the entire range of

adaptation gains. results were obtained by combined time and ensemble aver-
Fig. 5 shows true signal and its estimates obtained foraging (in the same way as described above), for the signal

typical realization of measurement noise (SNR=10 dB) in tigoverned by (50), SNR=10 dB, and = 0.08. Reduction

case where, = 0.08. Close-up views of these plots are showwof MSE attained forr = 5,10, 20,40, and 100, is equal to

in Fig. 6. 2.8, 6.7, 12.7, 18.7 and 25, respectively. Note that whes
Finally, Fig. 7 shows how efficacy of a fixed-delay ANSjncreased beyond, = 40, only a small further reduction of

compared to ANF, depends on decision detaifrhe presented MSE can be achieved.
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Fig. 6. Real parts of a selected fragment of the noisy sig(@l (top figure),
noiseless signad(t) (bottom figure - solid line), pilot estimat&(¢) (bottom
figure - dotted line) and smoothed estimate) (bottom figure - broken line).
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40
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B. GANS Algorithm

The simulated plant was governed by (23). The instanta-
neous frequency evolved according to the random-walk model
(cw = 0.001), and complex amplitudes were subject to
sinusoidal changes

a1 (t) = (2 — j) sin(27¢/2000)
as(t) = (1 4 2j) cos(27t,/2000) .
White 4-QAM sequence was used as an input signél)(=

+1 + j). Finally, the measurement noise variangewas set
equal0.4.

Denote by
4000
1 ~
Si=o— > [160t) - 0(t)|?

the time-averaged parameter estimation error computed for the
pilot estimatord(t) = a(t) f(t), and denote by; andX; the
analogous errors evaluated for the frequency-guided estimator
6(t) = a(t)f(t) and fixed-interval GANS estimatd(t) =

a(t) f(t), respectively. Similarly to the signal case, to arrive
at steady-state results the evaluation interval [2001,4000] was
placed inside a wider analysis interval [1, 6000].

Fig. 8 shows dependence gnof the average values of
35, ¥ and X5, All ensemble averages were computed for
50 realizations of{u(t)}, 50 realizations of{w(t)} and 50
realizations of{v(¢t)} (50x50x50). Similarly as before;
was set tqu?/2. Note that while the frequency-guided GANF
algorithm is capable of improving estimation results in the
range of small values qf only, the proposed GANS algorithm
yields uniformly better results for all values pf

Fig. 9 shows the analogous results obtained for the system
with linear frequency changes

w(t) = 0.2 + 0.008¢

(all other details, including the model of amplitude variations,
remained unchanged). Note that although there are no qualita-
tive differences compared to the previous case, the attainable
margin of improvement is, under such a fully deterministic
scenario, considerably larger.

VIII. CONCLUSION

Identification of quasi-periodically varying dynamic systems
can be carried out using generalized adaptive notch filters
(GANFs). Based on analysis of parameter tracking properties
of GANF algorithms, we have designed a cascade of post-
processing filters increasing accuracy of frequency and ampli-
tude estimation. We have shown that the resulting noncausal
generalized adaptive notch smoothing (GANS) algorithms
yield significantly improved estimation results compared to
their causal (GANF) counterparts.
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