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1. Introduction

Nielsen type numbers, introduced in the 1980s by B. Jiang in [15], are topological invariants which estimate the minimal
number of periodic points in the homotopy class of a given map. The invariant NFr( f ) provides a lower bound for the
number of r-periodic points (r is fixed) in the homotopy class of f , a self-map of a compact manifold M . Later, in [12], it
was proved that if m = dim M � 3 then NFr( f ) is the best such lower bound, i.e.

NFr( f ) = min
{

# Fix
(

gr): g ∼ f
}
. (1.1)

In the recent paper [5] the authors defined the counterpart of such invariant in the smooth category. The new invariant,
denoted as NJDr[ f ], gives the minimum in the formula (1.1) for smooth f , and for g in its smooth homotopy class. (We may
also consider continuous f and search for the minimum over smooth g in the continuous homotopy class. Both approaches
are equivalent in the common domain, because every smooth homotopy may be approximated by a continuous one.)

For r = 1, the continuous and smooth category coincide, as was demonstrated by B. Jiang in [16], namely: NF1( f ) =
NJD1[ f ] = N( f ), where N( f ) denotes the Nielsen number of a smooth f . However, if r > 1 then the invariants are quite
different. Obviously NJDr[ f ] � NFr( f ) and the inequality is usually sharp, which follows from the fact that in the smooth
case there is an additional obstacle to minimizing the number of periodic points, in addition to the Reidemeister relations.
This obstacle may be expressed in terms of local fixed point indices of iterates {ind( f n, x0)}∞n=1, where x0 is a periodic
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point. As a result, to calculate NJDr[ f ] one must know also all forms of local indices of iterates of a smooth map in the
given dimension m.

It is remarkable that the invariants differ in the simply-connected case. If M is simply-connected then the Nielsen relation
is trivial, and so NFr( f ) is less or equal than 1. On the other hand, NJDr[ f ] (which is then denoted as Dr[ f ]) is usually
greater than 1 [3].

Making use of the complete list of indices of a smooth map, provided in dimension 3 in [6], we were able to determine
Dr[ f ] for some simply-connected manifolds: S2 × I [3], S3 [4], and the two-holed 3-dimensional closed ball [2].

While finding the invariant NFr( f ) is in general a difficult task (but in the last thirty years it was computed in many
special cases, see for example [7–11,13,17–19]), computing NJDr[ f ] seems to be even more complicated. However, it is
possible if the self-maps of the manifold have simple Reidemeister relations.

In this paper we determine NJD3
r [ f ] for all self-maps of 3-dimensional real projective space RP 3. The case of even

degree β with arbitrary r and odd β with odd r reduce to the simply-connected case, see Remark 2.1 and Theorem 4.9,
respectively. The results for odd β and even r are gathered in the main Theorem 10.10.

2. Orbits of Reidemeister classes and degree of self-maps of RRRP 3

Let f be a self-map of 3-dimensional real projective space RP 3, and let n be a natural number. In this section we give
some basic information about the degree and its relation to the Reidemeister classes of f n , denoted by R( f n), and the
orbits of the Reidemeister classes of f n , denoted by O R( f n) (see [14] for the definition).

Interpreting RP 3 as the quotient space of S3 with identifying relation given by the antipodal action of Z2, we get the
universal covering p : S3 → RP 3, and thus the fundamental group π1RP 3 = Z2.

The space RP 3 is oriented, thus for its self-map f we may define the degree β = deg( f ). Then the Lefschetz number
L( f ) is related with β by the formula L( f ) = 1 − β . There is the following characterization of the Reidemeister classes with
regard to the parity of β [11].

• If β is even then the homotopy group homomorphism f# : π1RP 3 → π1RP 3 is the zero map and R( f n) =
O R( f n) = {∗}, a singleton set.

• If β is odd then f# is the isomorphism, hence R( f n) = O R( f n) = Z2 for all n ∈ N.

Remark 2.1. If β is even then O R( f n) = {∗} for all n, which reduces the problem of finding NJDr[ f ] to the simply-connected
case [5]. That is, NJDr[ f ] = Dr[g], where g is any self-map of S3 of degree β . As a consequence, in this case we may apply
the explicit formulae for NJDr[ f ] for even β found in [4, Proposition 4.1, Theorems 4.2 and 4.7]. Therefore, in the rest of this
paper we will consider the case of odd β .

3. Indices of iterates and Reidemeister graph

In this section we introduce the notion of the Reidemeister graph and describe it for self-maps of RP 3 of odd degree.
Also, we give a description of local indices of iterates in dimension 3. In Section 4 we will define the invariant NJDr[ f ] in
terms of the Reidemeister graph and indices of iterates.

3.1. Reidemeister graph for RP 3

In the set of orbits of the Reidemeister classes we define the natural map induced by inclusion of respective
Nielsen classes. If Nl ⊂ Fix( f l), Nk ⊂ Fix( f k) are Nielsen classes representing the Reidemeister classes Al ∈ O R( f l) and
Ak ∈ O R( f k) respectively, then Nl ⊂ Nk implies ik,l(Al) = Ak (cf. [14]).

In the case of odd β we know that O R( f l) = Z2. Let us denote O R( f l) = {l′, l′′}, O R( f k) = {k′,k′′}, where l′ and k′
correspond to the identity element in Z2.

The map ik,l : O R( f l) → O R( f k) takes the following form (cf. [5])

ik,l
(
l′
) = k′, (3.1)

ik,l
(
l′′

) =
{

k′′ if k
l is odd,

k′ if k
l is even.

(3.2)

Definition 3.1. Let us consider the natural number r and the set O Rr( f ) = ⋃
k|r O R( f k) = ⋃

k|r{k′,k′′}. In this set we
introduce the partial order “�” in the following way: l∗ � k∗ , where l∗ ∈ {l′, l′′}, k∗ ∈ {k′,k′′} if and only if

• l|k;
• ik,l : {l′, l′′} → {k′,k′′} maps l∗ on k∗ .
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If l∗ � k∗ then we say that l∗ is preceding k∗ . We use the notation l∗ ≺ k∗ if l∗ � k∗ but l∗ 
= k∗ .

Definition 3.2. We will interpret the partially ordered set of Reidemeister orbits as a directed graph (Hasse diagram). There
is an edge from vertex l∗ to k∗ if and only if l∗ � k∗ , with the convention that if l∗ ≺ k∗ ≺ s∗ then we omit the edge from l∗
to s∗ , understanding that there is the connection between these two vertices through k∗ .

We call this graph the graph of Reidemeister orbits for f and denote it by G O R( f ; r).

Example 3.3.

Fig. 1. Reidemeister graph for odd β , r = 24.

We will represent r in the form r = 2R · P , where R � 0 and P is odd.

Remark 3.4. The Reidemeister graph treated as an undirected graph has, for odd β , two separate connected components
denoted as V s (small component) and Vb (big component).

More precisely, if by V we denote the set of all vertices in the graph, then we define two subsets of V as below:

V s = {
l′′ ∈ V : 2R |l},

Vb = V \ V s.

We see that they are the components of V : for both sets V s and Vb there is a representative vertex which is connected to
all other vertices in the set. In the first case it is (2R · P )′′ and in the second (2R · P )′ . Moreover, according to (3.1) and (3.2)
there is no connection between any pair of vertices in which one belongs to V s and the other to Vb .

3.2. Indices of iterates in dimension 3

We give below (Theorem 3.6) the complete list of possible sequences of local indices of iterates of a smooth map
in R3 [6].

Definition 3.5. For a given d we define the basic sequence:

regd(n) =
{

d if d|n,

0 if d�n.

Theorem 3.6. There are seven kinds of local fixed point indices of iterates for smooth maps in dimension 3:

(A) c A(n) = a1 reg1(n) + a2 reg2(n),
(B) cB(n) = reg1(n) + ad regd(n),
(C) cC (n) = − reg1(n) + ad regd(n),
(D) cD(n) = ad regd(n),
(E) cE(n) = reg1(n) − reg2(n) + ad regd(n),
(F) cF (n) = reg1(n) + ad regd(n) + a2d reg2d(n), where d is odd,
(G) cG(n) = reg1(n) − reg2(n) + ad regd(n) + a2d reg2d(n), where d is odd.

In all cases d � 3 and ai ∈ Z.

Remark 3.7. Theorem 3.6 provides also all forms of {ind( f n, P )}∞n=1, where P denotes an orbit with points of minimal
period p. Namely, there are also seven types of such sequences, to obtain them it is enough to replace all expressions regd
in the sequences (A)–(G) by regpd [3].
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4. Definition of NJDr[ f ]
4.1. Index function

We associate with each orbit of the Reidemeister classes n∗ (i.e. with each vertex) an integer I(n∗), namely the fixed
point index of this class, I(n∗) = ind( f n,n∗). In this way we obtain a function I defined on the graph G O R( f ; r).

RP 3 is a Jiang space, thus both Nielsen classes of the given self-map of RP 3 have equal indices (cf. [15]), so L( f n) =
I(n′) + I(n′′). As a result,

I
(
n′) = I

(
n′′) = 1 − βn

2
, (4.1)

where β denotes the degree of the map. This function we rewrite in the form of so-called generalized periodic expansion.

Definition 4.1. For each vertex l∗ , where l∗ ∈ {l′, l′′}, we define basic integer-valued function on the graph:

Regl∗
(
n∗) =

{
l if l∗ � n∗,
0 otherwise.

Example 4.2. Reg3′ (6′) = 3, Reg3′ (6′′) = 0.

Any integer-valued function, and in particular I , can be represented as a combination of basic functions Regl∗ :

I
(
n∗) =

∑
l∗�n∗

al∗Regl∗
(
n∗). (4.2)

Remark 4.3. This representation, called the general periodic expansion, is unique. Moreover, in the case discussed here,
when the values I(n∗) come from the fixed point index, the numbers al∗ turn out to be integers [5].

4.2. Attaching sequences at vertices

Now we consider Γ , one of the sequences (A)–(G) given in Theorem 3.6. This sequence is given as a combination of
reg’s, written Γ = ∑

d∈O ad regd . We will say that we attach Γ at the (fixed) vertex l∗ if we define the following function
Γl∗ on the Reidemeister graph:

Γl∗
(
n∗) =

∑
l∗�(dl)∗,d∈O

ad Reg(dl)∗
(
n∗). (4.3)

Remark 4.4. If we attach the sequence Γ = ∑
d∈O ad regd at the vertex l′ , we get

(∗) Γl′ =
∑
(dl)|r

ad Reg(dl)′ .

If we attach the same sequence Γ at l′′ of the big component, we obtain

(∗∗) Γl′′ =
∑

2|d,(dl)|r
adReg(dl)′ +

∑
2�d,(dl)|r

adReg(dl)′′ .

If we attach the same sequence Γ at l′′ = (2R · s)′′ of the small component, we obtain

(∗∗∗) Γl′′ =
∑
s|d|P

adReg(dl)′′ .

In each expression (∗)–(∗∗∗) the summation is taken only over d ∈ O .

Example 4.5. Let r = 24. If we attach the sequence Γ = reg1 − reg2 −2 reg3 +5 reg6 of the type (G) at 1′′ , we get

Γ1′′ = Reg1′′ − Reg2′ −2Reg3′′ + 5Reg6′ .

If we attach the same sequence at 2′′ we obtain

Γ2′′ = Reg2′′ − Reg4′ −2Reg6′′ + 5Reg12′ .

Definition 4.6. We will say that a sequence Γ of one of the types (A)–(F) attached at the vertex l∗ realizes ak∗ Regk∗ (or ak∗
for short) if this expression appears in the right-hand side of the formula (4.3).
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4.3. Definition of minimal decomposition

Now we represent the index function L as a sum of expressions (A)–(G) attached at some vertices:

I
(
n∗) =

∑
l∗�n∗

al∗Regl∗
(
n∗) = Γ 1

l∗1

(
n∗) + · · · + Γ s

l∗s
(
n∗). (4.4)

Each such decomposition determines the sum l1 + · · · + ls , which we call the decomposition number.

Definition 4.7. We define the number NJDr[ f ] as the minimal decomposition number which can be obtained over all possi-
ble decompositions.

In the further part of the paper we will use the following notation: by NJDr[ f , V s] and NJDr[ f , Vb] we will denote the
minimal decomposition number taken over vertices in (4.4) separately for each component V s or Vb , respectively.

We will also consider minimal numbers for some special subsets of G O R( f ; r).
The following theorem was proved in [5].

Theorem 4.8. The number NJDr[ f ] satisfies:

(1) NJDr[ f ] is a homotopy invariant,
(2) # Fix( f r) � NJDr[ f ],
(3) f is homotopic to a smooth map g realizing the number NJDr[ f ] i.e. # Fix(gr) = NJDr[ f ].

Let us notice that in the computation of NJDr[ f ] only the case of even r needs careful analysis. If r is odd then all
ik,l are isomorphisms and the Reidemeister graph splits into two connected components with the same number of ver-
tices.

Let ζ(r) be the number of all divisors of r (including 1). Applying simply-connected methods to each of them, we get
the following theorem proved in [5]:

Theorem 4.9. Let f : RP 3 → RP 3 be a smooth map of odd degree β , and let r be odd, then

for β = ±1,

NJDr[ f ] =
{

0 if β = 1,

2 if β = −1;
for |β| � 3,

NJDr[ f ] =
{

2ζ(r) − 2 if −2ζ(r) + 3 � β � 2ζ(r) − 1,

2ζ(r) otherwise.

4.4. Geometrical interpretation of NJDr[ f ]

In this subsection we will provide the geometrical background of the invariant NJDr[ f ] and compare the continuous and
smooth categories.

If f is a continuous map, then the minimization of the number of the points in Fix(gr) for all g homotopic to f is a
classical problem. In the continuous category this minimal number is given by NFr( f ) – the invariant introduced by Jiang
in [15]. Let us briefly sketch the definition of NFr( f ). A subset S ⊂ O Rr( f ) is called a Preceding System if each essential orbit
in O Rr( f ) is preceded by an orbit in S . S is called a Minimal Preceding System (MPS) if the sum of the depths of elements
in S ∑

H∈S

d(H)

is minimal. The invariant NFr( f ) is defined as the minimum of the above sum i.e. the sum of depth of orbits in an MPS
(see [14] for details).

In fact, NFr( f ) has a clear geometrical interpretation, namely in each H ∈ S we can create an orbit with d(H) elements
and remove other periodic points in the homotopy class of f [12], so that the number of elements in the created orbits
realizes NFr( f ).

We may think of O Rr( f ) as the Reidemeister graph. Then, in order to calculate NFr( f ) it is enough to sum up all
the contributions which come from the minimal elements S of the graph (i.e. vertices that has no other preceding ver-
tices).
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Notice that for calculating NFr( f ) we do not care about the values of indices at the created orbits. Indeed, the only
information we need is whether the indices are non-zero (the class is essential) or not.

Now, let us discuss the definition of NJDr[ f ].
First of all let us mention that in the smooth category, unlike the continuous one, a sequence of local fixed point indices

of iterates at an isolated periodic point x0 ∈ RN takes very special forms [1], let us call them special expressions. For
example any such sequence must be periodic. The list of all possible special expressions in dimension N = 3 was given in
Theorem 3.6.

Now, in order to calculate NJDr[ f ] we attach some sequences at the vertices of the graph. This is equivalent to creating
orbits with the special expressions as the indices of iterates. In the smooth case we have to realize, by the sum of these
special expressions, all the Lefschetz numbers of iterates (for RP 3 given by the coefficients al∗ of the formula (4.2)).

If, during the calculation of NJDr[ f ], we attach in each H of a given MPS some special expression, that may not be
enough, because some coefficients al∗ may not be realized. As a consequence, usually NJDr[ f ] > NFr( f ) and the equality
holds only in very special situations.

5. Coefficients of general periodic expansions

For even r we give explicit formulae for the coefficients of the expansion

I
(
n∗) =

∑
l∗�n∗

al∗Regl∗
(
n∗),

where I(n∗) = 1−βn

2 , for a map f : RP 3 → RP 3 of odd degree β .
Let μ denote the classical Möbius function, i.e. μ : N → Z is defined by the following three properties: μ(1) = 1, μ(k) =

(−1)r if k is a product of r different primes, μ(k) = 0 otherwise.
We will also consider a generalized version of the Möbius function on G O R( f ; r) which we denote by μ� . We recall

that for a set partially ordered by �, the interval [B, A] is the set of elements C satisfying B � C � A.

Definition 5.1. Let μ� be the Möbius function on the partially ordered set (G O R( f ; r),�), i.e. μ� : Int(G O R( f ; r)) → Z,
where Int(G O R( f ; r)) denotes the set of all intervals in G O R( f ; r), and μ� is defined by two properties:

• μ�[B, B] = 1,
• μ�[B, A] = −∑

{C : B�C≺A} μ�[B, C].

Lemma 5.2. ([5]) Let k∗ , n∗ be two vertices of G O R( f ; r). If k∗ � n∗ , then μ�[k∗,n∗] = μ(n
k ).

Theorem 5.3. Assume r = 2R · P , R � 1, where P is odd, then

ap′ = ap′′ = 1

2p

∑
l|p

μ

(
p

l

)(
1 − βl) (5.1)

for each p|P .

a(2s p)′′ = 1

2s+1 p

∑
l|p

μ

(
p

l

)(
1 − β2sl) (5.2)

for each p|P and 1 � s � R.

a(2s p)′ = −1

2s+1 p

∑
l|p

μ

(
p

l

)(
1 − β2s−1l)2

(5.3)

for each p|P and 1 � s � R.

Proof. By (4.2) and Remark 4.3 for every k∗ a unique integer number ak∗ is defined such that for any given n∗ the following
equality holds

I
(
n∗) =

∑
k∗�n∗

ak∗Regk∗
(
n∗). (5.4)

Then, by the Möbius inversion formula for partially ordered sets, we find that (5.4) is equivalent, for k∗ � n∗ , to

an∗n =
∑
∗ ∗

μ�[k∗,n∗]I
(
k∗), (5.5)
k �n
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or by Lemma 5.2, to

an∗ = 1

n

∑
k∗�n∗

μ

(
n

k

)
I
(
k∗). (5.6)

Now, the parts (1) and (2) of the theorem follow easily from the application of the formula (5.6) for appropriate n∗ .
Now we present the calculations for part (3) which are a bit more complicated. Applying the formula (5.6) for n∗ = (2s p)′

we get

a(2s p)′ = 1

2s p

∑
k∗�(2s p)′

μ

(
2s p

k

)
I
(
k∗).

By (3.1) and (3.2) we can establish the form of elements which precede (2s p)′ in the order �. These are k′ such that
k|2s p and k′′ such that 2s p

k is even. Taking into account that {k|2s p: 2s p
k is even} = {k: k|2s−1 p}, we get

a(2s p)′ = 1

2s p

[ ∑
k|2s p

μ

(
2s p

k

)
I
(
k′) +

∑
k|2s−1 p

μ

(
2s p

k

)
I
(
k′′)]. (5.7)

Using the formula (4.1) for I(k∗) and rearranging the above sum we get

a(2s p)′2
s p =

∑
k|2s p

μ

(
2s p

k

)
1 − βk

2
+

∑
k|2s p

μ

(
2s p

k

)
1 − βk

2
−

∑
2s|k|2s p

μ

(
2s p

k

)
1 − βk

2

=
∑
k|2s p

μ

(
2s p

k

)(
1 − βk) −

∑
l|p

μ

(
p

l

)
1 − β2sl

2
. (5.8)

As μ(
2s p

k ) = 0 for k|2s−2 we get

∑
k|2s p

μ

(
2s p

k

)(
1 − βk) =

∑
2s−1|k|2s p

μ

(
2s p

k

)(
1 − βk) =

∑
l|2p

μ

(
2p

l

)(
1 − β2s−1l)

=
∑
l|p

μ

(
2p

l

)(
1 − β2s−1l) +

∑
2|l|2p

μ

(
2p

l

)(
1 − β2s−1l)

= −
∑
l|p

μ

(
p

l

)(
1 − β2s−1l) +

∑
l|p

μ

(
p

l

)(
1 − β2sl), (5.9)

where in the last equality we use the fact that μ is a multiplicative function.
Finally, we obtain

a(2s p)′2
s p =

∑
l|p

μ

(
p

l

)[
1 − β2sl

2
− (

1 − β2s−1l)] = −
∑
l|p

μ

(
p

l

)
(1 − β2s−1l)2

2
, (5.10)

which gives the formula (3). �
Corollary 5.4. Applying Theorem 5.3, formula (5.2) for p = 1 we get

a(2s)′′ = 1 − β2s

2s+1
.

Lemma 5.5. If |β| � 3 then an∗ 
= 0.

Proof. Let n = 2s p, where p is odd, s � 0. We see from the formulas (5.2) and (5.3) that a(2R p)
∗ 
= 0, for p = 1. Assume that

p � 3.
We have the following estimate

|an∗ |α =
∣∣∣∣∑μ

(
p

l

)
Al

∣∣∣∣ � |Ap| − (2
√

p − 1)|Ap/q|, (5.11)

l|p
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where q is the smallest prime divisor of p, α 
= 0 and Al are the respective numbers taken from the formulas (5.1)–(5.3)
depending on the form of n∗ . To obtain the inequality in (5.11) we used the fact that the number of divisors of p is not
greater then 2

√
p.

We will show that |an∗ | > 0, which is equivalent to the following inequality:

|Ap| > (2
√

p − 1)|Ap/q|. (5.12)

In the case of n∗ = p′ , by (5.1) Al = 1 − βl , so the formula (5.12) takes the form:∣∣∣∣ β p − 1

β(p/q) − 1

∣∣∣∣ > 2
√

p − 1. (5.13)

As p � 3 and |β| � 3 we have∣∣∣∣ β p − 1

β(p/q) − 1

∣∣∣∣ � |β|p − 1

|β|(p/q) + 1
� |β|p − 1

|β|(p/3) + 1

�
26
27 |β|p

4
3 |β|(p/3)

= 13

18
|β|(2p/3). (5.14)

Thus, it is enough to check whether

13

18
|β|(2p/3) > 2

√
p, (5.15)

which implies |ap′ | > 0.
Denote β̃ = |β| and consider the map G(β̃, p) = 13

18 β̃(2p/3) − 2
√

p. We see that it is positive for (β̃, p) = (3,3) and that

its partial derivatives are positive for all β̃, p � 3, which gives the inequality (5.15). This ends the proof that ap′ 
= 0.
Now the proof for the rest n∗ is very similar and follows from the formula (5.13). Namely, in order to show that

a(2s p)′′ 
= 0 and a(2s p)′ 
= 0 (i.e. that the formula (5.12) holds for respective values of Al), we just use (5.13) but instead

of β we consider β2s
or β2s−1

, respectively. �
Corollary 5.6. Calculating NJDr[ f ] one must take into account that for |β| � 3 each coefficient al∗ in (4.4) is non-zero (by Lemma 5.5)
and should be realized by some sequence (A)–(G) attached at one of vertices.

6. Minimal decompositions

Now we prove that to calculate NJDr[ f ] it is enough to confine ourselves to some special decompositions.

Lemma 6.1. Let I(n∗) = Γ 1
l∗1

(n∗) + · · · + Γ s
l∗s (n

∗) be a decomposition of Lefschetz numbers. Then there always exists another decompo-

sition I(n∗) = Γ 1
k∗

1
(n∗) + · · · + Γ t

k∗
t
(n∗), where ki = 1′,2′, (2 j)′′ , j = 0,1, . . . , with a smaller or equal decomposition number.

Proof. Let li = 2 j ·k, where k � 3 is odd. If Γl′i is one of the sequences (A)–(G) attached at l′i , then we may (cf. Lemma 4.8 [3])

replace it by no more than 3 sequences attached at 1′ .
Now let us consider Γl′′i which is one of the following sequences attached at l′′i :

(1) (A)–(C),
(2) (D),
(3) (E)–(F),
(4) (G).

We will consider all the above cases in the reverse order.

Case (4). Let Γ be of the type (G) i.e. Γ = reg1 − reg2 +ad regd +a2d reg2d . Then, to obtain Γl′′i we will attach the following
three sequences:

(C) of the form − reg1 + regk at (2 j)′′ ,
(F) of the form reg1 +ad regdk +a2d reg2dk at (2 j)′′ ,
(D) of the form − reg2·2 j ·k at 1′ .
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We then get by Remark 4.4 (we recall that d is odd here):

Γl′′i = Regl′′i − Reg(2·li)′ + adReg(d·li)′′ + a2dReg(2d·li)′
= Reg(2 j ·k)′′ − Reg(2·2 j ·k)′ + adReg(d·2 j ·k)′′ + a2d Reg(2d·2 j ·k)′

= (−Reg(2 j)′′ + Reg(2 j ·k)′′) + (Reg(2 j)′′ + adReg(d·2 j ·k)′′ + a2d Reg(2d·2 j ·k)′) + (−Reg(2·2 j ·k)′). (6.1)

Case (3). In the case (F) in which Γ = reg1 +ad regd +a2d reg2d is attached at l′′i we will minimize the decomposition number
using two sequences: (C) − reg1 + regk and (F) reg1 +ad regdk +a2d reg2dk both attached at (2 j)′′ , then again by Remark 4.4
we obtain

Γl′′i = Regl′′i + ad Reg(d·li)′′ +a2dReg(2d·li)′
= Reg(2 j ·k)′′ + adReg(d·2 j ·k)′′ + a2dReg(2d·2 j ·k)′

= (−Reg(2 j)′′ + Reg(2 j ·k)′′) + (Reg(2 j)′′ + adReg(d·2 j ·k)′′ + a2dReg(2d·2 j ·k)′). (6.2)

In a similar way by attaching two sequences (C) and (F) at (2 j)′′ we replace the sequence of type (E) attached at l′′i .

Cases (1) and (2). Finally, in the first case we get a smaller decomposition by attaching the sequence (D) at (2 j)′′ two times.
A similar conclusion can be drawn for the second case where we use the sequence (D) only once at (2 j)′′ . �
Corollary 6.2. Note that according to Lemma 6.1 any minimal decomposition can be transformed to another, in which we attach
sequences only at vertices indexed by powers of 2. Therefore, in the rest of this paper we will assume that all minimal decompositions
have such a form.

Lemma 6.3.

NJDr[ f ] = NJDr[ f , V s] + NJDr[ f , Vb].

Proof. Let I(n∗) = ∑
l∗�n∗ al∗ Regl∗ (n

∗) = ∑
v∗∈V s

av∗ Regv∗ (n∗) + ∑
w∗∈Vb

aw∗ Regw∗ (n∗). We recall that r = 2R · P , where P is

odd. The vertices in V s have the form (2R · h)′′ , where h is odd.
Let us attach the sequence

Γ =
∑
d∈O

ad regd (6.3)

at the vertex v∗ ∈ V s . By the form of V s , v∗ = v ′′ and v = 2R · h, where h is odd. As a result, we get Γv∗ (n∗) =∑
d∈O ad Reg(v·d)∗ (n

∗) and

(i) either (v · d)�r, then Reg(v·d)∗ (n
∗) = 0,

(ii) or (v · d)|r and then d is odd, thus by Remark 4.4(∗∗) (v · d)∗ = (2R · h · d)′′ ∈ V s .

Similarly, let w∗ ∈ Vb , so either w∗ = w ′ , or w∗ = (2g · h)′′ , where g < R and h is odd. If we attach the sequence (6.3) at
the vertex w∗ we get Γw∗ (n∗) = ∑

d∈O adReg(w·d)∗ (n
∗) and

• if (w · d)�r then Reg(w·d)∗ (n
∗) = 0,

• if (w · d)|r and d is even then by Remark 4.4(∗) and (∗∗) we get that (w · d)∗ = (w · d)′ ∈ Vb ,
• (w · d)|r and d is odd then again by Remark 4.4 and the fact that g < R we obtain (w · d)∗ = (2g · h · d)∗ ∈ Vb .

In a conclusion we observe that the problem of finding NJDr[ f , V s] and NJDr[ f , Vb] are independent, because decomposi-
tions are taken over disjoint sets of vertices. �

In the next part of the paper we will determine the minimal decomposition number for even r and a map f of odd
degree β by finding the numbers NJDr[ f , Vb] and NJDr[ f , V s].

7. Special cases of β = ±1, r arbitrary and r = 2R , β odd

Let us consider the cases of β = ±1 with arbitrary r. In the case β = 1, by Theorem 5.3 all a∗
n = 0, thus NJDr[ f ] = 0.

In the case β = −1, we calculate the coefficients a∗
n by the formulas (5.1)–(5.3). Taking into account that

∑
l|p μ(

p
l ) = 0

for p > 1 we get that a1′ = a1′′ = 1 and a2′ = 1 and all other coefficients are equal to zero. As a consequence, using the
sequence (A) (attached at 1′ and 1′′) twice we find that NJDr[ f ] = 2.
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Now we assume that r = 2R and β is odd, |β| � 3. Let us attach at each vertex 1′′,2′′,4′′, . . . , (2R−1)′′ sequences of the
type (A). In this way we also realize aB RegB for B ∈ {2′,4′, . . . , (2R)′}. If we add two more sequences of the type (A): one
at 1′ and one at (2R)′′ we get the decomposition of whole index function on the graph.

As a result,

NJDr[ f ] � 1 +
R−1∑
s=0

2s + 2R = 2R+1. (7.1)

On the other hand, by [11] NF2R ( f ) = 2R+1. Now (7.1) and the inequality NFr( f ) � NJDr[ f ] imply

NJDr[ f ] = 2R+1 = 2r. (7.2)

Before we consider the general case r = 2R · P , R � 1, where P > 1 is odd, we will analyze a special example illustrating
the problem.

Example 7.1. Let r = 24 = 23 · 3 and β = 3 (see Fig. 1). We seek the minimal decomposition in this case. The example

corresponds to the case | 1−β
2 | < ζ(P ), | 1−β2R

2R+1 | � ζ(P ) of Theorem 10.10.
By the straightforward calculation we check that each coefficient al∗ is non-zero.
The procedure of finding NJDr[ f ] will be divided into two steps: first we cover the al′′ coefficients in the index func-

tion I(n∗), second we realize al′ . Let us start with realizing a8′′ and a24′′ . We see at once that both of them can be covered
attaching at 8′′ sequences (A) and (D) respectively. This gives us the partition 8 + 8 to NJDr[ f ]. We can now proceed with
a2′′ , a6′′ , a4′′ , a12′′ . The first two we can realize using sequences (A) and (B)–(G) attached at 2′′ , the last two using the same
sequences at 4′′ . It is easy to check that using sequence (A) at 2′′ and 4′′ we cover also a4′ and a8′ . However, for covering
a6′′ and a12′′ it is more convenient to use sequences (F)–(G), because then we get the extra realization of the a12′ and a24′ .
What is left is to realize a1′′ and a3′′ . In our example a1′′ = −1 thus we can use one sequence (C) attached at 1′′ to realize
a1′′ and a3′′ . Notice that the contribution to NJDr[ f ] so far is (8 + 8) + (2 + 2 + 4 + 4) + (1) = 29.

This shows that after the first step only a few coefficients of the form al′ are left: a1′ , a2′ , a3′ and a6′ . We can realize all
of them attaching at 1′ sequences (A) and (F)–(G) respectively for the first pair and for the second one.

The above decomposition is minimal in this case and NJDr[ f ] = 31. We will prove this in the following sections.

8. Determination of NJDr[ f , V s]

In the rest of the paper (till the final Theorem 10.10) we assume that |β| > 1.

Theorem 8.1.

NJDr[ f , V s] =
{

2R(ζ(P ) − 1) if | 1−β2R

2R+1 | < ζ(P ),

2Rζ(P ) otherwise.

Proof. According to Remark 4.4(∗∗∗), attaching at some vertex l′′ = (2R · s)′′ one of the sequences (A)–(F) gives

Γl′′ =
∑
s|d|P

adReg(dl)′′ .

As P is odd, d must also be odd, so we will in fact attach only sequences of one of the types (A)–(D) and only at (2R)′′
by Lemma 6.1. We will need at least ζ(P ) − 1 of them, because each of them has only one ak regk with k > 1 and so
realizes one a(2R ·k)′′ Reg(2R ·k)′′ (cf. the similar proof in [3, Theorem 4.10]). On the other hand, notice that by Corollary 5.4 the

coefficient at Reg(2R )′′ is equal to 1−β2R

2R+1 , so it can be obtained as a sum of (ζ(P ) − 1) sequences ± reg1 which are the parts
of the sequences (B)–(D) if and only if∣∣∣∣1 − β2R

2 · 2R

∣∣∣∣ � ζ(P ) − 1,

otherwise we must use one additional sequence of the type (A) attached at (2R)′′ to realize it. �
9. Upper bounds for NJDr[ f , V b]

In this section we will find the upper bound for the decomposition number of the big component (Lemma 9.4).
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We consider the sum S = S1 + S2, where

S1 =
∑
p|P

ap′ Regp′ + ap′′ Regp′′ + a(2p)′Reg(2p)′ ,

S2 =
R−1∑
s=1

∑
p|P

a(2s p)′′ Reg(2s p)′′ + a(2s+1 p)′ Reg(2s+1 p)′ . (9.1)

In two lemmas given below we present some decompositions of the sum S . Their decomposition numbers are, by the
definition, upper bounds of NJDr[ f , Vb]. Later we will show that, under the corresponding assumptions, these bounds are
equal to NJDr[ f , Vb].

Lemma 9.1. The minimal decomposition number for

S2 =
R−1∑
s=1

∑
p|P

a(2s p)′′ Reg(2s p)′′ + a(2s+1 p)′ Reg(2s+1 p)′

is less than or equal to (2R − 2)ζ(P ).

Proof. We will find a decomposition of S2 whose decomposition number is equal to (2R − 2)ζ(P ).

S2 =
R−1∑
s=1

∑
p|P

a(2s p)′′ Reg(2s p)′′ + a(2s+1 p)′ Reg(2s+1 p)′

=
R−1∑
s=1

∑
1 
=p|P

Reg(2s)′′ + a(2s p)′′ Reg(2s p)′′ + a(2s+1 p)′Reg(2s+1 p)′ (F )/(2s)′′

+
R−1∑
s=1

(
a(2s)′′ − ζ(P ) + 1

)
Reg(2s)′′ + a(2s+1)′Reg(2s+1)′ , (A)/(2s)′′

where on the right-hand side of the above formula we indicated that the first sum is realized by the sequences of the
type (F) attached at (2s)′′ and the second by (A) attached at (2s)′′ .

Thus, the decomposition number in this case cannot be greater than

R−1∑
s=1

∑
1 
=p|P

2s +
R−1∑
s=1

2s = (
ζ(P ) − 1

) R−1∑
s=1

2s +
R−1∑
s=1

2s = (
2R − 2

)
ζ(P ). �

Before we continue, we recall that |β| > 1 and a1′ = a1′′ = 1−β
2 . Depending on the value of 1−β

2 in relation to β and P ,
none, one or both coefficients a1′ and a1′′ may be realized as a part of other sequences which are necessary to realize some
coefficients ak∗ with k > 1. In the following lemma we explore this problem for a part of the Reidemeister graph determined
by S1.

Lemma 9.2. Minimal decomposition number for

S1 =
∑
p|P

ap′ Regp′ + ap′′ Regp′′ + a(2p)′Reg(2p)′

is less or equal to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2ζ(P ) if

∣∣∣∣1 − β

2

∣∣∣∣ � ζ(P ),

2ζ(P ) − 1 if

∣∣∣∣1 − β

2

∣∣∣∣ < ζ(P ) and β > 0,

2ζ(P ) − 1 if

∣∣∣∣1 − β

2

∣∣∣∣ < ζ(P ),
3 + β2

22
> ζ(P ) and β < 0,

2ζ(P ) − 2 if

∣∣∣∣1 − β

2

∣∣∣∣ < ζ(P ),
3 + β2

22
� ζ(P ) and β < 0.
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Proof. In each case we will find decompositions with the appropriate decomposition number.

Case (1). | 1−β
2 | � ζ(P ).

S1 =
∑
p|P

ap′Regp′ + ap′′ Regp′′ + a(2p)′Reg(2p)′

=
∑

1 
=p|P

Reg1′′ + ap′′ Regp′′ + a(2p)′Reg(2p)′ (F )/1′′

+
∑

1 
=p|P

ap′ Regp′ (D)/1′

+ (a1′Reg1′ + a2′Reg2′) (A)/1′
+ ((

a1′′ − ζ(P ) + 1
)
Reg1′′ + 0 · Reg2′

)
. (A)/1′′

Thus, the decomposition number is equal to 2ζ(P ).

Case (2). | 1−β
2 | < ζ(P ) and β > 0.

Let

DIV P = {p: p|P and p > 1}.
We can then find two subsets P1 and P2 of DIV P which satisfy P1 ∩ P2 = ∅, P1 ∪ P2 = DIV P and |P1| = | 1−β

2 | = |a1′ |.
Then

S1 =
∑
p|P

ap′Regp′ + ap′′ Regp′′ + a(2p)′Reg(2p)′

=
∑

1 
=p|P

Reg1′′ + ap′′ Regp′′ + a(2p)′Reg(2p)′ (F )/1′′

+
∑
p∈P1

−Reg1′ + ap′ Regp′ (C)/1′

+
∑
p∈P2

ap′ Regp′ (D)/1′

+ ((
a1′′ − ζ(P ) + 1

)
Reg1′′ + a2′ Reg2′

)
. (A)/1′′

Thus, the decomposition number in this case is equal to 2ζ(P ) − 1.

Case (3). | 1−β
2 | < ζ(P ), 3+β2

22 > ζ(P ) and β < 0.

In this case a1′ = 1−β
2 > 0. Thus, if we use the decomposition from Case (2), but instead of the sequences (C) we use (B),

we get the decomposition with decomposition number equal to 2ζ(P ) − 1.

Case (4). | 1−β
2 | < ζ(P ), 3+β2

22 � ζ(P ) and β < 0.

Notice that for β � −3 there is: (1−β)2

4 >
3+β2

22 >
1−β

2 . We consider two subcases (4a) (1−β)2

4 � ζ(P ) � β2+3
4 and (4b)

ζ(P ) >
(1−β)2

4 .

Subcase (4a). First we prove the following lemma:

Lemma 9.3. Let (1−β)2

4 � ζ(P ) � β2+3
4 . Then the inequalities

1 � (1 − β)2

4
− (

ζ(P ) − 1
)
� ζ(P ) − 1

hold for all integers |β| � 3.

Proof. Since the first inequality follows immediately from the first inequality of assumption, we concentrate on the second
one. It may be rewritten as

(1 − β)2

4
� 2

(
ζ(P ) − 1

)
,

or

β2 − 2β + 9 � ζ(P ).

8
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Since by the assumption β2+3
4 � ζ(P ), it remains to observe that the inequality

β2 − 2β + 9

8
� β2 + 3

4
is equivalent to

0 � β2 + 2β − 3

and the last inequality holds for |β| � 3. �
For the sake of simplicity let us first consider the subcase of Case (4) defined by two additional assumptions:

(4.a1) The number ζ(P ) − 1 is even.

(4.a2) The difference (1−β)2

4 − (ζ(P ) − 1) is also even.

We will indicate a decomposition of S1 with the decomposition number equal to 2ζ(P ) − 2. We divide DIV P , into two
subsets: P3 and P4 which satisfy P3 ∩ P4 = ∅, P3 ∪ P4 = DIV P and |P3| = |P4|.

We fix subsets P̄3 ⊂ P3, P̄4 ⊂ P4 both of cardinality

1

2
·
(

(1 − β)2

4
− (

ζ(P ) − 1
))

.

This is possible due to Lemma 9.3. Now we consider the decomposition of

S1 =
∑
p|P

ap′ Regp′ + ap′′ Regp′′ + a(2p)′Reg(2p)′ into six sums:

S1 =
∑
p∈P3

Reg1′′ − Reg2′ + ap′′ Regp′′ + a(2p)′Reg(2p)′ (G)/1′′

+
∑
p∈P4

Reg1′ − Reg2′ + ap′ Regp′ + a(2p)′Reg(2p)′ (G)/1′

+
∑
p∈ P̄4

Reg1′′ − Reg2′ + ap′′ Regp′′ (E)/1′′

+
∑

p∈P4\ P̄4

(−Reg1′′) + ap′′ Regp′′ (C or D)/1′′

+
∑
p∈ P̄3

Reg1′ − Reg2′ + ap′ Regp′ (E)/1′

+
∑

p∈P3\ P̄3

(−Reg1′) + ap′ Regp′ (C or D)/1′

where the parentheses in sums (4) and (6) mean that we may choose as each summand either (C) or (D).
We notice that the sums realize coefficients ap′ , ap′′ , a(2p)′ for p 
= 1. Moreover, their contribution to the coefficient a2′ is

−(|P3| + |P4|
) − (| P̄4| + | P̄3|

) = −(
ζ(P ) − 1

) −
(

(1 − β)2

4
− (

ζ(P ) − 1
)) = −(1 − β)2

4
,

as required.
To complete the proof of the fact that the decomposition has the decomposition number equal to 2ζ(P ) − 2 it remains

to show that we can choose the sequences (C) and (D) in sums (4), (6) so that we obtain the coefficients a1′ = a1′′ = 1−β
2 .

The sums (2), (5) and (1), (3) give the contribute 1
2 · (1−β)2

4 to each of a1′ , a1′′ respectively. This may be greater than the

required 1−β
2 . If we can use 1

2 · (1−β)2

4 − 1−β
2 sequences (C) in each sum (4) and (6) then this contribution drops to the

required 1−β
2 . This is possible if

1

2
· (1 − β)2

4
− 1 − β

2
� |P3| − | P̄3|. (9.2)

But this means

1

2
· (1 − β)2

4
− 1 − β

2
� ζ(P ) − 1

2
− 1

2
·
(

(1 − β)2

4
− (

ζ(P ) − 1
))

,

(1 − β)2

− 1 − β + 1 � ζ(P )

4 2
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and the last inequality is equivalent to the assumption 3+β2

4 � ζ(P ). This completes the proof under the assumption that
the conditions (4.a1) and (4.a2) hold.

The above approach can be easily modified to cover the remaining cases (we drop the auxiliary assumptions (4.a1) and
(4.a2)). We can choose appropriately adjusted subsets P3, P4, P̄3, P̄4 with ||P4| − |P3|| � 1 and || P̄4| − | P̄3|| � 1 and repeat
the same reasoning.

Subcase (4b). We choose subsets P3, P4, P̄3, P̄4 with P3 ∩ P4 = ∅, P3 ∪ P4 = DIV P , ||P4| − |P3|| � 1 and || P̄4| − | P̄3|| � 1

such that | P̄3| + | P̄4| = (1−β)2

4 .
Now we consider the following decomposition of S1:

S1 =
∑
p∈ P̄3

Reg1′′ − Reg2′ + ap′′ Regp′′ + a(2p)′Reg(2p)′ (G)/1′′

+
∑
p∈ P̄4

Reg1′ − Reg2′ + ap′ Regp′ + a(2p)′Reg(2p)′ (G)/1′

+
∑

p∈P3\ P̄3

Reg1′′ + ap′′ Regp′′ + a(2p)′Reg(2p)′ (F )/1′′

+
∑

p∈P4\ P̄4

Reg1′ + ap′ Regp′ + a(2p)′Reg(2p)′ (F )/1′

+
∑
p∈P3

(−Reg1′′) + ap′′ Regp′′ (C or D)/1′′

+
∑
p∈P4

(−Reg1′) + ap′ Regp′ (C or D)/1′

where the parentheses in sums (5) and (6) mean that we may choose as each summand either (C) or (D).
By the same reasoning as in Subcase (4a), to show that the decomposition number is equal to 2ζ(P ) − 2, it is enough to

choose the sequences (C) and (D) in the sums (5) and (6) so that a1′ = a1′′ = 1−β
2 . The sums (1)–(4) contribute |P3| to a1′

and |P4| to a1′′ . This may be greater than the required 1−β
2 , but we can use |P3| − (1−β)

2 sequences (C) in the sum (5) and

|P4| − (1−β)
2 in (6) to establish the equality. The assumption of Subcase (4b) implies that both differences determining the

number of sequences (C) are non-negative. This ends the proof of Subcase (4b) and the proof of Lemma 9.2. �
We recall that we are assuming that r = 2R · P with R � 1 and P odd.

Lemma 9.4.

NJDr[ f , Vb] �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2Rζ(P ) if | 1−β
2 | � ζ(P ),

2Rζ(P ) − 1 if | 1−β
2 | < ζ(P ) and β > 0,

2Rζ(P ) − 1 if | 1−β
2 | < ζ(P ),

3+β2

22 > ζ(P ) and β < 0,

2Rζ(P ) − 2 if | 1−β
2 | < ζ(P ),

3+β2

22 � ζ(P ) and β < 0.

Proof. We again represent S = S1 + S2 (cf. formula (9.1)). We realize the sum S1 and S2 separately with the decompositions
given in Lemmas 9.2 and 9.1 respectively, and this completes the proof. �
10. Lower bounds for NJDr[ f , V b]

We will consider two cases: ζ(P ) small (Subsection 10.1) and ζ(P ) large (Subsection 10.2). In the first case we will
obtain the lower bound, and thus the exact value of NJDr[ f , Vb] in Theorem 10.5. In the second case NJDr[ f , Vb] will be
given in Theorems 10.8 and 10.9.

Lemma 10.1. Let us fix a number s = 1, . . . , R − 1.
A minimal decomposition for∑

p|P ,p 
=1

a(2s p)′′ Reg(2s p)′′

must contain at least ζ(P ) − 1 sequences attached at (2s)′′ .

Proof. It is sufficient to notice that to realize a(2s p)′′ Reg(2s p)′′ (for p 
= 1) we need a sequence (B)–(G) attached at (2s)′′ .
Moreover, such a sequence cannot realize a(2s p1)′′ Reg(2s p1)′′ and a(2s p2)′′ Reg(2s p2)′′ for p1 
= p2. �
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10.1. ζ(P ) is small

In this subsection we assume that | 1−β
2 | = |a1′′ | � ζ(P ). Notice that this also implies that | 1−β2k

2k+1 | = |a(2k)′′ | � ζ(P ) for
k � 1.

We will consider some different parts of the big component. For some parts we are able to give a minimal realization,
for the other parts we obtain only a lower bound for NJDr[ f , Vb]. As a result, for the whole big component we get the lower
bound.

Lemma 10.2. Let us fix 0 < s � R − 1 and assume that | 1−β
2 | � ζ(P ). Then the minimal decomposition number for∑

p|P

a(2s p)′′ Reg(2s p)′′ (10.1)

is equal to 2sζ(P ).

Proof. It follows from Lemma 10.1 that at least ζ(P ) − 1 sequences must be attached at (2s)′′ . On the other hand, we have
the following realization: ζ(P ) − 1 sequences of the type (D) and one sequence (A), all attached at (2s)′′ .

It remains to show that ζ(P ) − 1 sequences cannot realize the sum and we need one more sequence based at (2s)′′ .
Assume to the contrary that these ζ(P )− 1 sequences realize the sum (10.1). Since a(2s)′′ < 0 and the decomposition is min-
imal, |a(2s)′′ | of them must be sequences of the type (C). However, this is impossible by the assumption that |a(2s)′′ | � ζ(P ),
so we have not enough sequences (C) to do that. As a result, we have to attach one additional sequence (A) at (2s)′′ to
realize a(2s)′′ . �
Lemma 10.3. Let | 1−β

2 | � ζ(P ). The minimal decomposition number for

R−1∑
s=1

∑
p|P

a(2s p)′′ Reg(2s p)′′ (10.2)

is equal to (2R − 2)ζ(P ).

Proof. By Lemma 10.2 the minimal decomposition number is �
∑R−1

s=1 2sζ(P ) = (2R − 2)ζ(P ). In fact we have equality here,
since there is no vertex preceding both (2s · p)′′ and (2s̄ · p̄)′′ for s 
= s̄. �
Lemma 10.4. Let | 1−β

2 | � ζ(P ). The minimal decomposition number for∑
p|P

ap′ Regp′ + ap′′ Regp′′ (10.3)

is greater or equal to 2ζ(P ).

Proof. In order to realize the sum (10.3) we may attach sequences at 1′ or 1′′ . Notice that no vertex precedes both p′
and q′′ . Thus, by the same argument as in the proof of Lemma 10.2, we must use at least 2(ζ(P ) − 1) sequences to realize
the coefficients ap′ and ap′′ of the sum (10.3) for p > 1, and two sequences of the type (A) to realize the coefficients a1′
and a1′′ . �
Theorem 10.5. Let | 1−β

2 | � ζ(P ), then

NJDr[ f , Vb] = 2Rζ(P ).

Proof. � follows from Lemma 9.4. It remains to show that the decomposition number of each decomposition of the big
component is at least 2Rζ(P ).

In every ”global” minimal decomposition we must realize the sum (10.3) by 2ζ(P ) sequences in the way indicated in
the proof of Lemma 10.4. However, each such realization does not affect the realization of any part of the sum (10.2), which
follows from the fact that in the oriented Reidemeister graph there is no path from the vertices p′ (or p′′) to (2s p)′′ (s � 1).
As a result, by Lemmas 10.4 and 10.3 we get

NJDr[ f , Vb] � 2ζ(P ) + (
2R − 2

)
ζ(P ) = 2Rζ(P ). �
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10.2. ζ(P ) large

Now we assume that | 1−β
2 | = |a1′′ | < ζ(P ).

Lemma 10.6. Let | 1−β
2 | < ζ(P ). The minimal decomposition number for∑

p|P

ap′ Regp′ + ap′′ Regp′′ + a(2p)′Reg(2p)′ (10.4)

is greater than or equal to⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2ζ(P ) − 1 if β > 0,

2ζ(P ) − 1 if
3 + β2

22
> ζ(P ) and β < 0,

2ζ(P ) − 2 if
3 + β2

22
� ζ(P ) and β < 0.

Proof. Let us notice that each sequence (A)–(G) attached at 1′ or 1′′ realizes at most one ap∗ Regp∗ for p 
= 1. Thus, we need

at least 2ζ(P ) − 2 sequences, which completes the proof in the case of 3+β2

22 � ζ(P ) and β < 0.
Suppose that there is a decomposition of the sum (10.4) using 2ζ(P )−2 sequences for β > 0. These 2ζ(P )−2 sequences

must also realize the remaining coefficients. To realize a(2p)′ Reg(2p)′ (for p 
= 1) we need a sequence of the type (F ) or (G)

attached at 1′ or 1′′ , hence we need ζ(P ) − 1 such sequences. But the coefficient at 1∗ in each such sequence is +1 while
a1∗ is negative. Thus we also need ζ(P ) − 1 − a1′ − a1′′ sequences of the type (C). Thus we need at least(

ζ(P ) − 1
) + (

ζ(P ) − 1 − a1′ − a1′′
) = 2

(
ζ(P ) − 1

) − a1′ − a1′′ > 2ζ(P ) − 2

sequences, which contradicts the assumption that the minimal decomposition number is equal to 2ζ(P ) − 2.

We have to consider the last case, where 3+β2

22 > ζ(P ) and β < 0. Suppose, contrary to our claim, that 2ζ(P ) − 2 se-

quences will realize the sum (10.4), in particular the coefficients a1∗ and a2′ . To realize a2′ = − (1−β)2

22 we have to attach

exactly (1−β)2

22 sequences (E) or (G) (the coefficient at 2′ in each such sequence is −1). On the other hand, the coefficient at
1∗ in each sequence (E) or (G) is +1. Moreover, we have the inequality a1′ + a1′′ � |a2′ | for β � −3, which implies that we
need to attach in addition at least |a2′ | − (a1′ + a1′′) sequences (C). Thus, we need at least

|a2′ | + |a2′ | − (a1′ + a1′′) = 2 · (1 − β)2

22
− (1 − β)

= 2

(
3 + β2

22

)
− 2 > 2ζ(P ) − 2 (10.5)

sequences (E), (G) or (C) which contradicts the assumption that the minimal decomposition number is equal to
2ζ(P ) − 2. �

The proof of Theorem 10.8 will follow from the next key lemma.

Lemma 10.7. Let |β| > 3. There exists a minimal decomposition of the big component satisfying:

at each vertex (2s)′′ , for s = 1, . . . , R − 1, there are attached (at least) ζ(P ) sequences.

Proof. Let s = 0, . . . , R − 1 be the minimal number satisfying:

there is a minimal decomposition in which at each (2s+1)′′, . . . , (2R−1)′′ there are attached (at least) ζ(P ) sequences.

Then the thesis of Lemma 10.7 is equivalent to s = 0. Contrary to our claim, we assume that s � 1 and we will get either
a contradiction or another minimal decomposition in which also at (2s)′′ (at least) ζ(P ) sequences are attached. In any case
we get a contradiction, which implies s = 0.

It follows from the proof of Lemma 10.1 that ζ(P ) − 1 sequences must be attached at (2s)′′ . Since a(2s)′′ < 0 (cf. Corol-
lary 5.4) and the decomposition is minimal, |a(2s)′′ | of them must be sequences of the type (C). We assume here that
ζ(P ) − 1 � |a(2s)′′ |, because otherwise we cannot realize |a(2s)′′ | and we get a contradiction. If we use these |a(2s)′′ | se-
quences of the type (C) to realize a(2s)′′ (during the realization of a(2s p)′′ ), then the corresponding coefficients a(2s+1 p)′
cannot be realized by them. To realize each a(2s+1 p)′ , where p > 1, we can use:
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• sequence (B)–(E) at 1′ , or
• sequence (B)–(E) at (2g)′′ , where g < s, or
• sequence (B)–(E) at 2′ for s > 1, or
• sequence (B)–(G) at 2′ for s = 1.

Let us notice that any sequence attached at 1′ , 2′ or (2g)′′ , where g < s, can realize two different a(2s+1 p1)′ and a(2s+1 p2)′ ,
where p1, p2 > 1, so there must be |a(2s)′′ | such additional sequences.

Let us make one more observation: a sequence (F) or (G) attached at 2′ can realize a(2s p)′ and a(2s+1 p)′ only if s = 1. By
ξ2′ we will denote the number of the sequences attached at 2′ which realize a(2s+1 p)′ .

We will now modify the initial decomposition in the following way.

Remove:

(I) All ζ(P ) − 1 sequences attached at (2s)′′ ,
(II) ξ2′ sequences attached at 2′ ,

(III) |a(2s)′′ | − ξ2′ sequences attached at 1′ or (2g)′′ .
Parts (II)–(III) embrace the sequences that realize a(2s+1 p)′ .

While removing the set of sequence (I)–(III) we decrease the decomposition number by at least(
2s(ζ(P ) − 1

)) + (2ξ2′) + (|a(2s)′′ | − ξ2′
) = 2s(ζ(P ) − 1

) + |a(2s)′′ | + ξ2′ . (10.6)

Add:

(1a) One sequence (A) attached at (2s)′′ to realize a(2s)′′ and a(2s+1)′ ,
(1b) ζ(P ) − 1 sequences (F) attached at (2s)′′ to realize a(2s p)′′ and a(2s+1 p)′ ,

(2) s sequences (A) attached at (2g)′′ for each 0 � g � s − 1 to realize a(2g )′′ and a(2g+1)′ ,
(3) one sequence (A) attached at 1′ to realize a1′ and a2′ ,
(4) ξ2′ sequences (D) attached at 1′ to realize a(2p)′ (if applicable).

By adding the set of sequences (1)–(4) we increase the decomposition number by exactly(
2s) + (

2s(ζ(P ) − 1
)) + (

2s − 1
) + (1) + (ξ2′) = 2s(ζ(P ) − 1

) + 2s+1 + ξ2′ . (10.7)

During the remove phase we possibly changed the value of the following coefficients:

(i) a(2s p)′′ , a(2s+1 p)′ , where p|P ,
(ii) a(2g )′′ and a(2g+1)′ , where g < s,

(iii) a1′ ,
(iv) a(2s p)′ , if s = 1.

However, during the add phase we restored the original values, as the items (1)–(4) correspond to (i)–(iv).
Note that we have actually proved that after the modification we realize at least the same coefficients that were realized

in the initial decomposition. Comparing the change of the decomposition number (see (10.2) and (10.7)) we get

2s(ζ(P ) − 1
) + |a(2s)′′ | + ξ2′ � 2s(ζ(P ) − 1

) + 2s+1 + ξ2′ ,

β2s − 1

2s+1
� 2s+1 (10.8)

which is true for |β| � 5 and s � 1.
A sharp inequality would mean that the new decomposition has a lower decomposition number which contradicts the

minimality of the given one. In the case of equality we get a new decomposition with ζ(P ) sequences at (2s)′′ and get the
contradiction, which proves our theorem. �

Under the assumption | 1−β
2 | < ζ(P ) we give in Theorems 10.8 and 10.9 the value of NJDr[ f , Vb] for |β| > 3 and |β| = 3,

respectively.

Theorem 10.8. Let | 1−β
2 | < ζ(P ).

NJDr[ f , Vb] =

⎧⎪⎪⎨
⎪⎪⎩

2Rζ(P ) − 1 if β > 3,

2Rζ(P ) − 1 if 3+β2

22 > ζ(P ) and β < −3,

2Rζ(P ) − 2 if 3+β2
� ζ(P ) and β < −3.
22
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Proof. � follows from Lemma 9.4. To prove the opposite inequality we consider a decomposition of the big component.
We again let S = S1 + S2 (cf. the formula (9.1)), where

S1 =
∑
p|P

ap′ Regp′ + ap′′ Regp′′ + a(2p)′Reg(2p)′ ,

S2 =
R−1∑
s=1

∑
p|P

a(2s p)′′ Reg(2s p)′′ + a(2s+1 p)′ Reg(2s+1 p)′ .

First we consider the sum S2.
The total contribution to the decomposition number of the set of sequences attached at 2′′, (22)′′, . . . , (2R−1)′′ must be

at least

R−1∑
s=1

2sζ(P ) = (
2R − 2

)
ζ(P )

(Lemma 10.7). On the other hand, these sequences do not realize coefficients ap′ ,ap′′ ,a(2p)′ from S1. By Lemma 10.6, the
minimal decomposition number of S1 is at least

2ζ(P ) − 1 for β > 3,

2ζ(P ) − 1 for
3 + β2

22
> ζ(P ) and β < −3,

2ζ(P ) − 2 for
3 + β2

22
� ζ(P ) and β < −3.

This completes the proof in all cases. �
Theorem 10.9. Let | 1−β

2 | < ζ(P ).

NJDr[ f , Vb] =

⎧⎪⎪⎨
⎪⎪⎩

2Rζ(P ) − 1 if β = 3,

2Rζ(P ) − 1 if 3+β2

22 > ζ(P ) and β = −3,

2Rζ(P ) − 2 if 3+β2

22 � ζ(P ) and β = −3.

Proof. � follows from Lemma 9.4. Our proof for the opposite inequality starts with the observation that the formula (10.8)
given in Lemma 10.7 is true for β = ±3 and s � 2. Thus we can follow the proof of Lemma 10.7 to get a minimal decom-
position satisfying the condition that at each vertex (2s)′′ , for s = 2, . . . , R − 1, there are attached at least ζ(P ) sequences.
The contribution to NJDr[ f , Vb] for this part will be at least

R−1∑
s=2

2sζ(P ) = 2Rζ(P ) − 22ζ(P ). (10.9)

However, these sequences do not realize ap′ , ap′′ , a(2p)′ , a(2p)′′ , a(22 p)′ , where p|P . We will prove that the minimal
decomposition number for a realization of the above coefficients is at least

22ζ(P ) − 1 for β = 3,

22ζ(P ) − 1 for
3 + β2

22
> ζ(P ) and β = −3,

22ζ(P ) − 2 for
3 + β2

22
� ζ(P ) and β = −3. (10.10)

This will complete the proof, because adding both contributions (10.9) and (10.10) to the minimal decomposition number
gives the required value of NJDr[ f , Vb].

To realize coefficients a(2p)′′ we must attach at least ζ(P ) − 1 sequences at 2′′ (Lemma 10.1). We have the following two
alternatives depending on how many sequences m are attached at 2′′ .

m = ζ(P ). By Lemma 10.6 the minimal decomposition number for the coefficients ap′ , ap′′ , a(2p)′ , which were not realized
by the sequences attached at 2′′ , is at least
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2ζ(P ) − 1 for β = 3,

2ζ(P ) − 1 for
3 + β2

22
> ζ(P ) and β = −3,

2ζ(P ) − 2 for
3 + β2

22
� ζ(P ) and β = −3.

If we add the decomposition number for these two phases we will get (10.10).

m = ζ(P ) − 1. The coefficient a2′′ will be realized by the sequences of the type (C).

We recall that

a2′′ = 1 − (−3)2

22
= −2.

We will consider three cases.

Case (1). ζ(P ) = 2. We need at least two sequences (C) at 2′′ to realize a2′′ . However, under the given assumption, we can
attach only one (1 = ζ(P ) − 1) sequence at 2′′ which gives the contradiction.

Case (2). ζ(P ) = 3. Let 1 < p1 < p2 and p1|P , p2|P . We can use only two sequences of the type (C) at 2′′ to realize a2′′ = −2,
a(2p1)′′ , a(2p2)′′ . Then we have to realize coefficients ap′

1
, ap′

2
, ap′′

1
, ap′′

2
, a(22)′ , a(22 p1)′ , a(22 p2)′ with a contribution at least 7 to

the decomposition number. Finally the minimal decomposition number in this case is at least 4 + 7 = 11 = 22ζ(P ) − 1.

Case (3). ζ(P ) � 4. We need at least two sequences of the type (C) to realize a2′′ . If we used only two sequences of
the type (C), the rest of the coefficients a(2p)′′ with p|P , p > 1 will be realized together with the corresponding a(22 p)′ by
sequences (F)–(G) at 2′′ , but this would change the coefficient a2′′ . This implies that there are in fact at least three sequences
of the type (C) at 2′′ , so at least three coefficients a(22 p)′ need to be realized separately.

Thus, sequences at 2′′ do not realize (at least) the following coefficients ap′ , ap′′ , a(22 p1)′ , a(22 p2)′ , a(22 p3)′ , where 1 
= p|P
and p1, p2, p3 are some fixed divisors of P . Let us notice that coefficients ap′ , ap′′ cannot be realized together with a(22 p)′
using one sequence. As a consequence, we need at least 2(ζ(P ) − 1) sequences at 1∗ to realize ap′ , ap′′ and three additional
sequences for a(22 p1)′ , a(22 p2)′ , a(22 p3)′ . Finally, taking into account that (by the assumption) we used ζ(P ) − 1 sequences

at 2′′ , the minimal decomposition number is at least 2(ζ(P ) − 1) + 2(ζ(P ) − 1) + 3 = 22ζ(P ) − 1, which is more than in the
case m = ζ(P ). �

Now we are in a position to prove the main result of this paper.

Theorem 10.10. Let f : RP 3 → RP 3 be a smooth map of odd degree β , and let r = 2R · P where P is odd and R � 1, then

for β = ±1,

NJDr[ f ] =
{

0 if β = 1,

2 if β = −1;
for β � 3,

NJDr[ f ] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2R+1ζ(P ) if | 1−β
2 | � ζ(P ),

2R+1ζ(P ) − 1 if | 1−β
2 | < ζ(P ), | 1−β2R

2R+1 | � ζ(P ),

2R+1ζ(P ) − 2R − 1 if | 1−β2R

2R+1 | < ζ(P );
for β � −3,

NJDr[ f ] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2R+1ζ(P ) if | 1−β
2 | � ζ(P ),

2R+1ζ(P ) − 1 if | 1−β
2 | < ζ(P ),

3+β2

22 > ζ(P ), | 1−β2R

2R+1 | � ζ(P ),

2R+1ζ(P ) − 2 if | 1−β
2 | < ζ(P ),

3+β2

22 � ζ(P ), | 1−β2R

2R+1 | � ζ(P ),

2R+1ζ(P ) − 2R − 2 if | 1−β2R

2R+1 | < ζ(P ).

Proof. The special cases of β = ±1 and r = 2R were discussed in Section 7 (notice that for |β| � 3 and P = 1 the condition
| 1−β

2 | � ζ(P ) is satisfied).
By Theorem 8.1 we know the number NJDr[ f , V s]. Theorems 10.5, 10.8 and 10.9 provide the value of NJDr[ f , Vb]. Finally,

by Lemma 6.3 NJDr[ f ] = NJDr[ f , V s] + NJDr[ f , Vb] which completes the proof. �
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