
KASKADA – MULTIMEDIA PROCESSING PLATFORM

ARCHITECTURE1

Henryk Krawczyk
Electronics, Telecommunications and Informatics Faculty, Gdansk University of Technology

Narutowicza 11/12, Gdansk, Poland

hkrawk@pg.gda.pl

Jerzy Proficz
Academic Computer Center – TASK, Gdansk University of Technology

Narutowicza 11/12, Gdansk, Poland

jerp@task.gda.pl

Keywords: Multimedia systems, multimedia processing , cluster computing, distributed architecture.

Abstract: The architecture of Context Analysis of the Camera Data Streams for Alert Defining Applications platform

(Polish abbreviation: KASKADA, i.e. waterfall), a part of MAYDAY EURO 2012 project, is provided. A

new multilayer processing model for multimedia streams is proposed. The model layers: services,

computational tasks and processes are described. The composition of complex services with simple service

scenario descriptions is presented. An example scenario and its realization in the environment is provided.

The object-oriented domain analysis, component and deployment diagrams with their relations to the model

are proposed.

1 The work was realized as a part of MAYDAY EURO 2012 project, Operational Program Innovative Economy 2007-2013,

Priority 2 „Infrastructure area B+R”.

1 INTRODUCTION

Context Analysis of the Camera Data Streams

for Alert Defining Applications platform (Polish

abbreviation: KASKADA, i.e. waterfall), a part of

MAYDAY EURO 2012 project, is designed for

implementation and evaluation of multimedia

streams analysis algorithms. Its main goal is to

support development of the multimedia based

applications, currently represented by three pilot

projects: detection of dangerous situations in public

places, illness recognition in endoscopy and

detection of plagiarism.

Because of the high computation expectation,

deployment of the platform is placed in the cluster

environment of the Academic Computer Center in

Gdansk – TASK. The key requirements of the whole

platform include efficiency – especially regarding

the number of the processed streams, reliability –

when usage of a single algorithm on the stream is

Post-print of: H. Krawczyk and J. Proficz, "KASKADA - Multimedia processing platform architecture," 2010 International
Conference on Signal Processing and Multimedia Applications (SIGMAP), Athens, 2010, pp. 26-31.

© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

not enough, security – the natural requirement for all

systems with sensitive data, and fault-tolerance – in

case some hardware/system part is damaged.

The usage of the centralized computation site has

also the following disadvantages: network

bandwidth – many multimedia streams, especially

video HD, require fast connection, assurance of

proper quality of service – especially latency in

client notifications, long delay when starting the

tasks due to use of the typical queue system, stream

recording – the mass storage capacity.

In the next section, we present the processing

model supporting the solution of the above

problems. The section three describes the platform

architecture based on the proposed model, including

UML [9] diagrams, and the last section provides the

conclusions.

2 THE PROCESSING MODEL

Figure 1 presents the processing model used during

the KASKADA platform design. It consists of four

layers, including two layers related to webservices:

simple and complex, computational tasks analyzing

streams and processes.

The top-level layer represents complex services.

They are responsible for the functionality directly

provided to the user applications (at client or

application server). Their execution is performed

according to a defined service scenario. Such a

scenario enables composition, cooperation and data

exchange between simple services.

The sample scenario below is a part of a video-

surveillance system supporting the monitoring of

entrances with automatic comparison of the amount

of people passing the gates, generating an alert when

any gate is overcrowded, version for 2 gates:

1. call service: task startup (#1) – decoding video

stream from the gate 1

2. call service: task startup (#2) – background

exclusion on the stream received from task #1

3. call service: task startup (#3) – man detection

on the stream received from task #2

4. call service: task startup (#4) – decoding video

stream from the gate 1

5. call service: task startup (#5) – background

exclusion on the stream received from task #4

6. call service: task startup (#6) – man detection

on the stream received from task #5

7. call service: task startup (#7) – counting and

comparison of events from tasks: 4 and 6,with

parameters indicating alert (event) if the

number of passing people on any gate is 20%

greater than average

Simple services

Computation tasks

Processes/threads

stream
distribution

task
distribution

Complex services

scenario
execution

Figure 1 Layered processing model of KASKADA

platform

The typical execution of a scenario by a complex

service consists of the following steps:

1. Creation and validation of a service graph. In

the preliminary phase of service execution, the

platform creates a graph of simple services used

t2

t1 t3

t4

n2n1

(c)

t2

t1 t3

t4

s3

s2

s1

s1

s2

s3

(a) (b)

t2

t1 t3

t4

n2n1

(d)

p5-7 p1-4

p9

p8

si – simple service, ti – computation task, ni – computation node, pi – process/thread

Figure 2 Phases of preparation to service scenario execution: (a) simple services, (b) task graph, (c) graph assignment

to the computation nodes, (d) running processes/thread.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

by the particular steps of the scenario. It

consists of the vertices representing the services

and directed edges indicating data flow. We

assume the graph is acyclic – no feedback is

allowed. During this step the service

descriptions are retrieved from the repository

and the types of their input-output data types are

validated, see figure 2 (a).

2. Algorithms' selection and required resource

estimation. In this step, the service graph is

converted into a new data flow graph including

the computational tasks as vertices and directed

edges representing data streams, see figure 2

(b). This transformation is dependent on the

requested quality parameters, which can have

influence on the algorithm selection as well as

on the input data, e.g. camera resolution.

3. Task assignment to the cluster nodes. In this

step, the vertices of the data flow graph, i.e.

computational tasks (derived from the simple

services) are assigned to the concrete cluster

nodes, see figure 2 (c). We would like to

emphasize, this is not a typical scheduling

problem (see [4]): the tasks need to be executed

concurrently and none of them can be delayed –

this is a usual requirement for on-line

processing and is more similar to variable sized

bin packing problem [5]. The above node

assignment can be optimized according to the

different criteria, e.g. minimizing the number of

partially used nodes (defragmentation),

minimizing network load or the delay of the

scenario processing.

4. Scenario startup. In this step, the computational

tasks of the respective simple services are

started up on the cluster nodes according to the

given assignment. The task identifiers are

generated and distributed. The proper data

streams are connected and the communication is

initialized. Each task consists of one or more

processes/threads, whose execution is managed

directly by the operating system of the related

node, see figure 2 (d).

5. Scenario monitoring. During the scenario

execution, the platform will monitor the running

tasks: processor load, memory usage,

multimedia, event and plain data streams' flow.

The above procedures are used for continuous

collecting and verification of quality related

meta-data related to the particular services.

6. Scenario shutdown. In this last step, the

platform is responsible for the correct

finalization of all computational tasks executed

with the scenario. During this time, all related

processes and threads are finished, the

associated resources are freed, the multimedia

streams are closed, and the proper information

messages are sent to the client.

The next layer of the proposed model is involved in

execution of the simple services, which are

responsible for selection of the proper algorithm

depending on the requested quality parameters.

Afterwards, the multimedia stream distribution to

the computational tasks is established. For the sake

of minimizing network load, the RTSP [12] protocol

with the multicast will be used.

The next layer contains the computational tasks,

which are the implementation of the concrete stream

analysis algorithms. They use the libraries provided

by the platform, being embedded into the framework

supporting the cooperation with other components of

the platform, such as storage or an event server. We

can perceive the framework as a template, which

already includes common elements used by the

algorithm implementation, e.g. an image frame

iterator for a video stream, see figure 3. This layer is

responsible for task distribution and requested

resource acquisition: nodes and processors. We use a

typical launcher for these purposes, however it needs

to consider additional qualities of service policies,

e.g. delays to start of the task.

algorythm
algorythm

program
program

framework
framework

computation
task

computation
task

implementation

linking

Figure 3 Development of a computation task.

The process/thread layer enables execution of the

computational tasks. They can use typical

mechanisms of concurrency and parallelism. The

platform supports POSIX [16] threads and other

similar mechanisms provided by the underlying

operating system.

3 ARCHITECTURAL SOFTWARE

COMPONENTS

The proposed processing model was implemented as

KASKADA platform, below we present the software

components. Figure 4 contains the domain model of

KASKADA obtained by the requirements' analysis.

From the user’s point of view the main goal of the

platform is to provide the webservices in SOA [7]

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

architecture. They will be responsible for execution

of the complex service scenarios using simple

services. The example sequential diagram of the

scenario execution is presented in figure 5.

Figure 5 Domain class diagram of the KASKADA

platform.

Both service types, i.e. simple and complex ones,

are going to be deployed on the same JEE 7

application server, we consider to use a Tomcat web

container for this purpose. They will utilize SOAP

[18] technologies over HTTP(S) [17] protocol, in

case of synchronous remote calls, and a queue

system, i.e. ActiveMQ [1] for asynchronous

communication within JMS [14] interface. The

result return will be performed in separated objects

(and components): Event Handler for messages and

Dispatcher for multimedia streams.

According to the assumed processing model,

simple services manage the distribution of the input

and output data streams (see figure 1) for their

computational tasks. The object of classes

Dispatcher and Scheduler support this functionality.

Moreover the responsibility of the Dispatcher object

is the stream recording in the storage and sending

them back to the client.

Computational tasks – the executable code of the

multimedia stream analysis algorithms embedded in

the framework accomplish the appropriate

computations. They receive the multimedia streams

generated by camera, microphone, or other device

(e.g. medical equipment) and send an output data

stream including discovered event messages or

processed multimedia stream, which are delivered to

the proper components, respectively Event Handler

and Dispatcher, forwarding them through the service

layers to the client (see figure 6).

Figure 6 Component diagram of the KASKADA platform.

During the algorithm implementation, the

programmer can use software components provided

by the computation cluster environment: POSIX

threads [16] and openMP [10] library for shared

memory processing and object serialization

(supported by boost library [3]) for object data

exchange between the computational tasks.

Almost all the above domain classes can be

straightforwardly converted into the software

components of the proposed platform. The only

exception is the User Console component which

Figure 4 Sequence diagram of the complex service execution.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

aggregates Scheduler class as well as manages the

other platform components including operations on

the multimedia and other data streams (especially in

off-line mode – using recorded data), security and

service configuration and deployment.

User console functionality is provided through a

web interface and can be easily accessed with an

Internet browser. For its development, we use JEE

[13] standard supported by an application server, i.e.

a Tomcat web-container, including technologies:

JSP [15] and AJAX [2].

4 HARDWARE AND

DEPLOYMENT

ARCHITECTURE

To execute computation tasks all software

components should be deployed on computer

systems. Figure 8 presents the deployment diagram

including hardware nodes with the assigned software

components. The core of the platform is the cluster

executing computational tasks. We use the

supercomputer 'Galera' within the Academic

Computer Centre in Gdańsk (TASK). It consists of

672 two-processor nodes, each processor has 8

cores, which gives in total 5376 cores with

theoretical computational power of 50 Tflops.

The stream managing sever is responsible for

multimedia stream format and communication

protocol conversion enabling its usage by the

computational tasks and receiving by the clients. It is

especially important due to the large number of

streams and network load minimizing strategy: some

cameras or other devices, do not support mutlicast

[11] data transmission, so it needs to be provided by

the platform. The Dispatcher component is

responsible for this functionality, as well as stream

recording and archiving.

The process managing server is responsible for

direct cooperation with the client software. Here are

deployed services and the User console component.

It is prepared for serving a large number of

webservices, the simple ones – which are easily

mapped to the computational tasks, as well as the

complex ones – executing the scenarios.

The messaging server supports the Event handler

component. It enables receiving, analysis and former

processing of the data (but not multimedia) streams

containing discovered events. It cooperates with the

process managing server where the event related

services are deployed.

The data server is used for recorded data storage.

We plan to use high performance hard drives with

500TB capacity and the Lustre file system [8], the

server is going to be connected to the cluster and

other servers by the Infiniband [4] network, for its

low delay and high bandwidth.

During the initial phase of the project, three pilot

applications are to be developed. The first one is

supposed to provide automatic detection, recognition

and alerting, for dangerous events and objects in the

Figure 7 Sequence diagram of the simple service execution.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

audio-video streams received from the security

monitoring cameras. The next application is

responsible for detection of abnormal characteristics

during endoscopy. The third application enables

detection of copyright violation of the electronic

productions, compositions and documents.

5 CONCLUSIONS

The proposed architecture is supposed to process the

great amount of data generated by the multimedia

stream sources. The performed requirements

analysis indicated the software components to be

implemented for the proper functionality and

quality. The proof-of-concept prototype is already

developed providing an exemplary web-service and

the web application for managing and monitoring its

behavior.

The current development of the platform is

focused on the software components and framework

libraries. The future work is going to cover further

component development, deployment, and tests. The

quality analysis is still to be performed, especially

for such factors as: effectiveness, performance,

reliability, security and safety. The additional work

needs to be done for supporting algorithm

implementation and assessment.

REFERENCES

[1] ActiveMQ homepage, http://activemq.apache.org/

[2] AJAX wikipedia page,

http://en.wikipedia.org/wiki/Ajax_(programming)

[3] boost C++ homepage, http://www.boost.org/

[4] El-Rewini H., Lewis T. G., Ali H. H., 1994. Task

Scheduling in Parallel and Distributed Systems,

Prentice-Hall Series In Innovative Technology

[5] Haouari M., Serairi M., 2009. Heuristics for the

variable sized bin-packing problem, Computers &

Operational Research 36, 2877-2884

[6] InifniBand Trade Association homepage,

http://www.infinibandta.org/

[7] Krafzig D., Banke K., Slama D., 2004. Enterprise

SOA: Service-Oriented Architecture Best Practices,

Prentice Hall PTR

[8] Lustre homepage, http://wiki.lustre.org/

[9] Object Management Group, 2009. Unified Modeling

Language (UML), v. 2.2

http://www.omg.org/technology/documents/formal/u

ml.htm

[10] OpenMP homepage, http://openmp.org/

[11] Savola P., Overview of the Internet Multicast

Routing Architecture, RFC 5110, 2008,

http://www.faqs.org/rfcs/rfc5110.html

[12] Schulzrinne H., Rao A., Lanphier R., 1998. Real

Time Streaming Protocol (RTSP), RFC 2326,

http://www.ietf.org/rfc/rfc2326.txt

[13] Sun Inc., Java Enterprise Edition (JEE, J2EE),

http://java.sun.com/javaee/

[14] Sun Inc., Java Message Service (JMS),

http://java.sun.com/products/jms/index.jsp

[15] Sun Inc., Java Server Pages,

http://java.sun.com/products/jsp/

[16] The Open Group, 1997. The Single UNIX ®

Specification, Version 2, Threads,

http://opengroup.org/onlinepubs/007908775/xsh/thre

ads.html

[17] World Wide Web Consortium, 1999. Hypertext

Transfer Protocol – HTTP/1.1 Specification, RFC

2612,

http://www.w3.org/Protocols/rfc2616/rfc2616.html

[18] World Wide Web Consortium, Simple Object Access

Protocol Specification, http://www.w3.org/TR/soap/

Figure 8 Deployment diagram of KASKADA platform.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://activemq.apache.org/
http://en.wikipedia.org/wiki/Ajax_(programming)
http://www.boost.org/
http://www.infinibandta.org/
http://wiki.lustre.org/
http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/formal/uml.htm
http://openmp.org/
http://www.faqs.org/rfcs/rfc5110.html
http://www.ietf.org/rfc/rfc2326.txt
http://java.sun.com/javaee/
http://java.sun.com/products/jms/index.jsp
http://java.sun.com/products/jsp/
http://opengroup.org/onlinepubs/007908775/xsh/threads.html
http://opengroup.org/onlinepubs/007908775/xsh/threads.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/TR/soap/
http://mostwiedzy.pl

