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4Faculty of Physics, Adam Mickiewicz University, Umultowska 85, PL-61-614 Poznań, Poland
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Superadditivity effects of communication capacities are known in the case of discrete variable quantum
channels. We describe the continuous variable analog of one of these effects in the framework of Gaussian
multiple access channels (MACs). Classically, superadditivity-type effects are strongly restricted: For example,
adding resources to one sender is never advantageous to other senders in sending their respective information
to the receiver. We show that this rule can be surpassed using quantum resources, giving rise to a type of truly
quantum superadditivity. This is illustrated here for two examples of experimentally feasible Gaussian MACs.
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The study of the power of utilizing quantum resources for
information-processing tasks is key to the field of quantum
information [1,2]. Quantum resources can be harnessed to beat
performance attainable in certain tasks by using only classical
bit processing. In particular, certain impossible tasks under
classical processing turn out to be possible using quantum
resources. Apart from the analysis of single resources, a
fundamental question is whether the quantum parallel use of
two or more resources is better that than their separate use for
certain tasks.

Entanglement catalysis [3] for the transformation of one
pure state into another pure state attainable by adding a
fixed entangled resource was the first example of such a
superadditivity effect in the pure-state domain. In the mixed-
state scenario, the first superadditivity effect consisted of
the activation of bound entanglement [4] using free, weakly
entangled states. An even more striking effect was shown to
exist in the multipartite case where pure-state entanglement
can be distilled from different types of bound entanglement [5].
In the context of communication theory, quantum channel
capacity was shown to be superadditive in a multisender-
multireceiver scenario where two-way unlimited classical
communication can be used [6]. The strongest version of
superaddivity of quantum capacity between a single sender
and receiver without access to classical communication was
recently proved by Yard and Smith [7]. Recently, an analogous
effect has been proved for the so-called private capacity in
the one-sender–one receiver scenario [8,9]. The question of
superaddivity of classical capacity of quantum channels is
open, although certain milestone steps have been made [10].
In the case of multiple access channels (MACs), however, it has
been shown [11] that entangled encodings allow one to break
the additivity of classical capacity regions. This result has been
recently generalized to both quantum and classical capacities
when one of the used channels is entanglement breaking [12].

All the results up to date pertain to the case of discrete
variables. Here we address the question of additivity of
classical capacity of continuous variable MACs (see [13])
and present two simple schemes involving Gaussian channels
which exhibit an analog of the superadditivity effect of

Ref. [11]. Importantly, these schemes may be realized in the
near future, as they may require as little as 6 dB of squeezing.
One of these schemes based on a beam-splitter channel is
directly related to standard fiber coupler theory [14] and is a
natural formalism for optical networks [15].

We consider Gaussian MACs with two senders and one
receiver. Classical Gaussian MACs (see [16]) are characterized
by a locality rule: That is, increasing local resources of one
sender (e.g., by providing the sender with more power or a new
connection to the receiver) can never increase the maximal
transmission rate of another sender.

This rule can be beaten in quantum Gaussian MACs. In a
single-channel scenario, one sender may use all the energy at
his disposal to produce a highly squeezed vacuum state, that
is, a quantum resource, which is constantly fed into his input.
This squeezing (quantum noise reduction) allows the other user
to achieve a higher transmission rate (which depends on the
squeezing level) than classically possible (see [17] for details),
violating the dependence of individual rates only on individual
power resources.

However this is not the sought-after superadditivity in a
communication scheme. In general this effect takes place if
and only if we have two channels � and � that satisfy the
superadditivity condition:

IAk→B(� ⊗ �) > IAk→B(�) + IAk→B(�). (1)

Here I denotes the transmission rate or maximal mutual
information between the sender Ak and receiver B. We show
in the following the possibility of fulfilling this relation, thus
also beating the achievable rates described in the previous
paragraph. In the presented schemes, two channels, that is,
a two-to-one MAC � and a one-to-one identity channel �

provided only to one user, are used in parallel to communicate
to a common receiver.

The first scheme [see Fig. 1(a)] consists of a beam-
splitter MAC � : A1A2 → B with only one output mode
B, that is, �(�1 ⊗ �2) = tr1(UBS�1 ⊗ �2U

†
BS), where UBS =

exp[iθ (a†
1a2 + a1a

†
2)]. The transmitivity of the device is

τ = cos2 θ . The first (second) user accesses only one arm
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FIG. 1. Two schemes for entanglement-assisted single-user clas-
sical capacity superadditivity based on (a) a beam-splitter MAC and
(b) a triple quantum nondemolition sum gate MAC. The quantity of
interest is the capacity attainable by the top sender.

A1(A2) of this MAC. The second user has sole access to
� : A′ → B ′.

We choose an entanglement-assisted (EA) transmission
scheme where the lower sender always inputs a two-mode
squeezed vacuum state containing no information into A2A

′:

|ψr〉 = exp[r(a†
2a

′† − a2a
′)]|00〉. (2)

The messages are encoded by the upper user in coherent
states |α〉 [18]. The receiver decodes these messages by
mixing the two signals output from both channels at a 50:50
beam-splitter and performing homodyne measurements on the
mixed signals. Note that, inputting a strong coherent state to
one arm A1 of an almost perfectly transmitting beam-splitter
effectively displaces the state input at the other arm A2, that
is, �(|α〉〈α| ⊗ �2) → D(α sin θ )�2D(α sin θ )† when θ → 0,

|α| → ∞,|α| sin θ → constant, as shown in [19]. Thus, in this
limit, the displacement modulates half of the entangled state
used here and we obtain dense coding of the messages, through
our scheme.

By assuming a Gaussian probability distribution for the
messages α (see [13,20]),

p0(α) = 1

πσ 2
e
− |α|2

σ2 , (3)

the mutual information of A1 and BB ′ is

I (A1 : BB ′) = log

[
1 + σ 2 sin2 θ

(coshr − cos θsinhr)2

]
. (4)

This reproduces the dense coding formula in the limit θ → 0,
σ → ∞, σ sin θ = constant [21], as expected: I → log(1 +
e2rσ 2 sin2 θ ), with an effective dispersion σ 2 multiplied by the
beam-splitter reflectivity sin2 θ .

We maximize Eq. (4) under power (average photon number)
constraints P for the two users:

{upper sender power} = σ 2 � N1, (5)

{lower sender power} = 2sinh2r � 2N2. (6)

The unconstrained maxima of I of (4) are located at

cos θ = tanh r. (7)

The constraint (6) leads to two cases: cos2 θ � N2/(N2 + 1)
and cos2 θ > N2/(N2 + 1). We will study only the first case
now [22]. Then the constrained maximum of I is attained at
(7) and σ 2 = N1:

I ent
max = log (1 + N1) . (8)

The matching condition (7), connecting the signal parameter
(squeezing r) to the device parameter (transmitivity cos2 θ ),
eliminates the explicit dependence of I ent

max on N2 or θ . Note
that I ent

max scales only as log N instead of the expected log N2

for ideal dense coding [13] due to the highly lossy nature
of the channel in the high-transmitivity (i.e., dense coding)
limit.

We are interested in whether the EA scheme leads to
enhancement of capacity with respect to the case where
no entanglement is used. We therefore bound the optimal
capacity I

prod
max attainable using any entanglement-free encoding

schemes (i.e., not necessarily using Gaussian states) restricted
only by the same energy constraints on each sender as
used earlier. Without entanglement, the identity channel is
of no direct use to the upper sender, so the quantity of
interest is only the MAC capacity. The total rate of this
channel R1 + R2 � maxρ1⊗ρ2 S(�(ρ1 ⊗ ρ2)) is bounded by
the maximal possible output entropy by Holevo’s theorem [23].
Using the extremality property of Gaussian states, this entropy
is maximized by some Gaussian state for bosonic systems
(see [24]). In particular, therefore, we obtain for the capacity
of the first user

I prod
max � g(Nmax), (9)

where g(x) = (1 + x) log(1 + x) − x log(x) is the single-
mode Gaussian entropy and Nmax is the maximal number of
output photons (see [25]).

For a given beam-splitter channel,

Nmax = Nmax(θ ) = N1 sin2 θ + 2N2 cos2 θ (10)

under the constraints (5) and (6). The bound Eq. (9) in this
case can be achieved, if the lower user sends no information
(R2 = 0), inputting instead a squeezed vacuum utilizing all his
available energy, 2N2 [17].

To simply show the possibility of superadditivity, consider
MACs with high transmitivity, where quantum effects are
most prominent in the EA protocol. Under (6), the largest
transmittivity is (cf. [26])

cos2 θ = N2

N2 + 1
. (11)

For such a beam-splitter Nmax = [N1 + 2(N2)2]/(N2 + 1)
determines I

prod
max . For comparison with the EA scheme, assume

the worst case scenario [i.e., equality in Eq. (9)]. Now, the ratio
I ent

max/I
prod
max is maximized by the condition N1 = 2N2(N2 + 2),
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FIG. 2. (Color online) Ratios of the classical capacities of
entanglement-assisted channels and regularized capacities of the
same channels with product inputs as functions of the power
constraints for (a) the beam-splitter channel of Fig. 1(a), (b) the cut
for N1 = 1000; and (c) the triple QND sum gate channel of Fig. 1(b),
(d) the cut for N = 100. In (b), the bold line depicts results obtained
using condition (7), while the other lines are results for exemplary
beam-splitters with transmittivities of 80%, 90%, 94%, and 98%. The
break-even squeezing values for these beam-splitters are 6.34, 5.73,
5.79, and 7.69 dB, respectively.

leading to Nmax = 4N2. The maximum value of this parameter
is therefore log[1 + 2N2(N2 + 2)]/g(4N2), which is easily
seen to surpass unity for large enough N2, indeed proving
quantum superadditivity. In particular, I ent

max/I
prod
max approaches

2 as N2 → ∞.
More generally, ramping up the local input powers leads

to superadditivity [Fig. 2(a)]. For example, Fig. 2(b) shows
the capacity enhancement for the a modest input power
N1 = 1000. Note that each point in the figure corresponds
to a distinct physical channel—different N2’s correspond via
Eq. (11) to different beam-splitters. Superadditivity appears
for N2 � 1.73, corresponding to a squeezing r � 9.46 dB of
the lower sender’s signal state.

It is interesting practically to consider the time of onset
of superaddivity for beam-splitters of given transmitivites, in
particular whether this occurs at lower squeezing than just
described. Consider therefore the ratio of EA capacity (see
Eq. (4) and [22]) to product input capacity, away from the curve
(7) (treating the beam-splitter parameter θ as an independent
parameter now) under the constraints (5) and (6) as the power
N2 is increased. By choosing a reasonable value of N1 = 1000,
superadditivity effects appear [see Fig. 2(b)] for beam-splitters
characterized by small yet finite reflectivity for squeezing in
the range 5.7–7.7 dB, which is very close to values routinely
obtained in laboratories.

Our second example [Fig. 1(b)] consists of the Gaussian
MAC channel � : A1A2A3 → B defined by �(�12 ⊗ �3) =
tr12(U�12 ⊗ �3U

†), where

U = exp [−i(x̂1p̂3 − p̂2x̂3)] . (12)

This unitary is generated by two quantum nondemolition
(QND) type interactions and can be decomposed into three

QND sum gates [27] among modes 1, 2, and 3. The upper
sender holds both lines A1 and A2, while the lower one holds
lines A3 and A′ of channel �.

The EA transmission protocol is the following. The upper
sender encodes a message α = αR + iαI into the displaced
state: |ψin〉A1A2 = D(αR,0)|R〉 ⊗ D(0,αI )| − R〉, where |±R〉
are single-mode squeezed vacuum states with squeezing
parameters ±R. For large squeezing R → ∞, the action of
� again approaches the displacement D(α). Just as before,
we assume that (i) the lower sender always sends a two-mode
squeezed state ψr , cf. Eq. (2), on the lines A3A

′; (ii) the input
probability p0(α) is given by Eq. (3); and (iii) the decoding
is done through homodyne detection on the output lines BB ′
(see Fig. 1).

The mutual information between the upper sender A1A2

and the receiver BB ′ is

I (A1A2 : BB ′) = log

[
1 + σ 2

e−2r + (e−2R/2)

]
. (13)

As expected, in the limit R → ∞ we again recover the con-
tinuous variable dense coding capacity [21]. We apply similar
photon number constraints P as before in Eqs. (5) and (6):

{upper sender power} = σ 2 + 2sinh2R � N, (14)

{lower sender power} = 2sinh2r � 2N ′. (15)

The constrained maximum of I of Eq. (13) is achieved when
the inequalities (14) and (15) are saturated: sinh2r = N ′ and
σ 2 = N − 2sinh2R, the latter leading through maximization of
Eq. (13) to 2e2R = −e2r +

√
e4r + 4e2r (N + 1) + 4. Substitut-

ing into (13) yields the desired maximum achievable one-shot
rate I ent

max.
Using the same argument as in the previous scheme, we

compare I ent
max with the capacity of � with product input states.

By analogous calculation, it is bounded by Eq. (9) (see [25])
with

Nmax =
(√

2N ′ + 1

2
+ √

N + 1

)2

− 1

2
, (16)

which, due to the quadratic character of the channel [see
(12)], is the maximum output number of photons. This bound
follows directly from the input-output relations for the MAC
(12) and constraints (14) and (15) for product inputs in the
cut A1A2|A3. Regions of superadditivity are manifest in the
plot of I ent

max/I
prod
max in Fig. 2(c). Figure 2(d) shows the cut for

N = 100 [cf. Eq. (14)]. Quantum superadditivity occurs for
power N ′ � 0.63 or 6.33 dB of two-mode squeezing while
the upper sender uses 4.21 photons in each line requiring
single-mode squeezing of 12.73 dB. In the end of the range,
that is, N ′ = 6 (noise reduction of 14.15 dB) the upper sender
uses at most 9.45 photons per line or 16.02 dB.

We have shown capacity superadditivity in Gaussian MAC
channels, which has no classical analog. Finally, we comment
on perspectives for implementation of proof-of-principle
experiments of these effects. The first scheme consists of
an extremely basic linear optics setup, while a QND sum
gate has also been implemented [28]. The main obstacle
for observation of superadditivity effects is the amount of
squeezing required. However, recently, techniques yielding
squeezing of up to 10 dB have been reported, with 15 dB being
claimed attainable in the near future [29]. Such parameters
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are sufficient for manifestation of superadditivity as shown in
this Rapid Communication. Indeed squeezing above 5.7 dB
suffices to observe this effect using a beam-splitter with 90%
transmitivity.
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