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New Algorithms for Adaptive Notch Smoothing

Maciej Niedzwiecki, Member, IEEEand Michat Meller

Abstract—The problem of extraction/elimination of a nonsta- There are also quite a number of off-line processing tasks,
tionary complex sinusoidal signal buried in noise is considered. such as removal of sinusoidal interference from a prerecorded
This problem is usually solved using adaptive notch filtering signal, where causality restrictions do not apply at all (since

(ANF) algorithms. It is shown that accuracy of signal estima- . . . . .
tion can be increased if the results obtained from ANE are the entire signalis available). Such tasks can be accomplished

further processed using a cascade of appropriately designed Using fixed-interval ANS algorithms.
filters. The resulting adaptive notch smoothing (ANS) algorithms

can be employed in many off-line or nearly real-time on-line E th h adaoti tch th h i
applications. Whenever signal frequency varies in a sufficiently ven though adaptive notch smoothers, whenever applica-

smooth manner, the proposed fixed-interval and fixed_|ag ANS ble, y|e|d ConSiderably better results than adaptive notch filterS,
algorithms, based on a new, quasi-linear model of frequency they are almost absent from the signal processing literature.

changes, outperform the existing solutions. The problem of adaptive notch smoothing was studied, in a
Index Terms—adaptive notch filtering, adaptive notch smooth- Wider context of identification of quasi-periodically varying
ing, noncausal estimation systems in [4], [5] and [6]. Identification of quasi-periodically

varying systems can be carried out using algorithms known as

generalized adaptive notch filters/smoothers (GANF/GANS).

In the special, signal case, GANF/GANS algorithms reduce
N many applications (e.g. biomedical or telecomunicationhemselves to “ordinary” adaptive notch filters/smoothers.
oriented) one arises at the problem of either extraction or

suppression of a complex sinusoidal signal (cisoid) buried inFOr real-valued systems/signals, simple versions of

noise [1], [2], [3]. When frequency of the cisoid is constang ANs/ANS algorithms, obtained by means of compensating

and kno_wn, this problem can be so.lved using classical sig imation delays that arise in the frequency tracking and
processing tools known as notch filters. When frequency 9 plitude tracking loops of GANF/ANF algorithms, was

the extracted/eliminated signal is unknown, and possiblytimﬁfOposed in [5] (for complex-valued systems/signals a

varying, one can use adaptive versions of notch filtering. hitieq version of this solution was presented earlier in
algorithms. The problem of adaptive notch filtering (ANF) waE%

I. INTRODUCTION

. . LS ), The approach described in [6] is more sophisticated.
intensively studied in the past three decades and has resu %led on analysis of tracking properties of GANF/ANF

n a .Iarge numper Of_ ANF algorithms, dlﬁer|ng in des'grhesigned for complex-valued systems/signals, a cascade of
principles, tracking efficiency and computational complexityoqnocessing filters that increase accuracy of frequency and
Adaptive notch filters are (_:ausal estlmapon SPhemeS’ _Wh'ﬁrhplitude estimation was elaborated. It was shown that in the
means that at each ime instant they yield signal eSt'mam'%)ortant benchmark case, where the instantaneous frequency
that depend on past measurements only. Even though iey,o gignal drifts according to the random-walk model,
causality constraint is inevitable when tasks must be perfor proposed GANS/ANS algorithms are, under Gaussian
in real time, quite a number of applications exist that allowsq,mntions,  statistically efficient frequency smoothers,
one to postpone_me_asurement-based decisions by a CE_I’E%I'I’J they reach the corresponding CémRao-type lower
number of sampling intervals. For example, when removing,,ihing bounds. They are robust to frequency/amplitude
hum from a signal transmitted over a telecommunicatiqloqe| misspecification, and they yield better estimation

channel, a reasonably long deqision delay is _acpeptable aRlults than GANF/ANF algorithms irrespective of the choice
will simply add-up to the (unavoidable) transmission delay. 8¢ adaptation gains.

applications such as the one described above, usually referred

to as nearly real-time, signal estimation can be based on all . o )

past and a certain number of “future” measurements, allowing!™ Many practical applications narrowband signals (sound,
one to significantly improve estimation results. Adaptive notcf{eration) originating from rotating machinery, such as en-

algorithms based on this principle are called fixed-lag adaptigi'® or propeller, have quasi-linearly modulated frequency.
notch smoothers (ANS). Whene\_/er known in advance,_ this fact can be taken advan_tage
of, as it allows one to design adaptive notch filters with
Copyright (c) 2011 IEEE. Personal use of this material is permittetimproved tracking capability. In this paper we will propose
However, permission to use this material for any other purposes must &§§ch an improved adaptive notch tracker, prove its statistical
obtained from the IEEE by sending a request to pubs—permissions@ieee.orﬁy . d G . . d sh h .
This work was supported in part by MNiSW and Foundation for poliskrHicleNcy (un er_ aussmn_a_ssumptlo_ng), and s _OW ow it
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University of Technology, ul. Narutowicza 11/12, Gu&, Poland, Tel: h ield b Its th h d ibed in 14
+48 58 3472519; fax: +48 58 3415821 (e-mail: maciekn@eti.pg.gda.;'[ﬂ,ew schemes yield better results than those described in [4]-
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[I. PROBLEM STATEMENT under zero initial condition&(0) = 0, (4) reduces down to the
Consider the problem of extraction or elimination of &lgorithm studied in [6] — the equivalence holds for= .,

nonstationary cisoid(¢) from noisy measurementgt) where is the adaptation gain used in [6].
s Tracking properties of the pilot ANF will be analyzed for
s(t) = a(t)f(t), [(t)=e Bz the constant-modulus signat):
y(t) = s(t) + v(t) D) (A3) |s(t)] = |a()] = ao, s(t)=e*Ds(t—1), Vi
wheret = ..., —1,0,1,... denotes the normalized discrete Using the approximating linear filter (ALF) technique — the

time. We will assume that both the complex-valued amplituddochastic linearization approach proposed in [7] — one can
a(t) (incorporating the initial phase shift) and the real-valueghow that (see Appendix I) the frequency and frequency rate
instantaneous angular frequeneyt) € (—m, ] are slowly- estimation errors

i tities, and that ~ ~ ~ ~
varying quanti |§s and tha _ _ _ AG(t) = w(t) — B(1),  A&() = alt) — a(t)
(A1) {wv(t)} is a zero-mean circular white sequence with

variances?. can be approximately expressed in the form
- AG(t) = Hi(q™ )e(t) + Ha(g™ w(t) ®)
A. Quasi-linear Frequency Changes
~ —1 —1
Consider frequency variations governed by the following Aa(t) = Li(g)e(t) + Ia(g w(t) (6)
model where {e(t)}, e(t) = —Im{v(t)s*(t)/a2}, is a zero-mean
wt) =w(t—1)+alt—1) white noise, independent ofw(t)}, with variances? =
2 2
alt) = alt —1) + w(t) @ o/ (200),
—1 —1 —1 —1
where o(t) denotes frequency rate and(t) — the one-step 19 )= =) + (o —w)a1/D(g)

(1—q ") ?w(t) =g w(t) @)
where ¢~! is the backward shift operator. Sincgl —
g H)?w(t) = 0 implies w(t) = wo + d,t, Wherew, andéd,, and
denote arbitrary constants, (2) can be regarded as a perturbed DigY)y=1+dig '+ dog™2 + d3q™3
linear growth/decay model. When

(A2) {w(t)}, independent ofv(t)}, is a zero-mean white
sequence with variance?,
equation (3) defines the so-called second-order random-walk

H
frequency rate change. According to (2) it holds that H,
I
I

di = p+Y + % —3
do =3 —2pu— "

model. The corresponding frequency changes will be further ds =p—1.

referred to agjuasi-linear All filters are asymptotically stable if adaptation gains fuffill
the following (sufficient) stability conditionsd < u < 1,

B. Pilot ANF and Its Tracking Properties 0<7 <1,0<7% <landu(ve +7) > Ya-

Consider the following ANF algorithm, which combines It is worth noticing that ALF approximations remain valid

frequency tracking with frequency rate tracking for any uniformly small sequencefu(t)} and {w(t)}, i.e.,
they are not restricted to sequences obeying assumptions (Al)

Flt) = el@t=D+at-Dl g _ 1) and (A2). Additionally, the functional form of ALF equations
e(t) = y(t) —a(t — 1)f(t) dges not ch_ange when signal gmplltude is also slowly varying
N = ~ with time, i.e., when assumption (A3) does not hold true.
a(t) =a(t = 1) + pf*(H)e(t) These facts have important implications when it comes to
a(t) =a(t —1) +7.9(t) robustness analysis of ANF/ANS algorithms.
Ot) =0t —1)+a(t —1) +1,0(t) We will show that under Gaussian assumptions:
£(t) .(A_4) The sequenceqwv(t)} and {w(t)} are normally

6<t) =Im m dlstnbuted

alt —
N B the optimally tuned algorithm (4) is a statistically efficient
s(t) = a(t)f(t) (4)  frequency and frequency rate tracker, i.e., it reaches the

where « denotes complex conjugation, apd> 0, ., > 0, corresponding lower tracking bounds. First, note that — due
Yo > 0,70 < 7w < u, are small adaptation gains determinind® orthogonality ofe(t) and_w(t) — the mean-squared tracking
the rate of amplitude adaptation, frequency adaptation af@fors can be expressed in the form

frequency rate adaptation, respectively. We will show that thi N2y 1 2 1 2
algorithm, further referred to as pilot ANF, can favorably cope%{mw(t)] b= J£H1<Z N[ @]+ J[H: (27 )IE[w(?)]
with quasi-linear frequency changes. Note thatfgr= 0 and = 0P (1, Yooy Yai K) )
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TABLE | 0
OPTIMAL ANF SETTINGS AND THE CORRESPONDING NORMALIZED
LOWER TRACKING BOUNDS

K popPt O APt LTB, /o2 | LTBa /02

w

1010 0.0472 | 0.00113| 0.0000138| 2.05-10° 8.21 - 10!
5.10~10 | 0.0613 | 0.00192 | 0.0000306| 9.09 - 10* 6.28 - 101
109 0.0685 | 0.00241| 0.0000432| 6.39-10* | 5.58-10!
5.1079 | 0.0886 | 0.00407 | 0.0000955| 2.82-10* 4.26 - 10t
10-8 0.0990 | 0.00509 | 0.000134 | 1.97-10* | 3.79-10!
5.10"8 0.127 | 0.00852| 0.000295 | 8.66-10° 2.89 - 10!
10~7 0.142 | 0.0106 | 0.000414 | 6.06-10% | 2.57-10%
5.10°7 0.181 | 0.0177 | 0.000905 | 2.63-10° 1.95 - 10!
106 0.201 | 0.0219 0.00126 | 1.83-10° 1.73 - 10!

EllAw®)]

5.10=6 0.254 | 0.0359 0.00273 | 7.81-102 1.32- 10! 107
105 0.281 | 0.0443 0.00379 | 5.39-102 1.17 - 10t

5.-107° | 0.350 | 0.0712 | 0.00806 | 2.25-102 8.84 = = — 4
10~4 0.384 | 0.0869 | 0.0111 | 1.54-102 7.83 10 10 10 10

E{[AG(1)]*} = J[L (=" DIE[*(1)] + J[I2(=~]E[w?(#)]

= 00 Fa(t, Yos Yas ) ®) ol
where ) p
Xz = — ¢ X(2)X(z"HZ —
TG = 5 § XE@XEDS e
(=}
is the integral evaluated along the unit circl& (1) is =
assumed to be a stable proper rational transfer function] anc 10°
Ew’(t)] _ adoy 2
= = 0w _gNR- 9
S0 R o ®

10 4
denotes the rate of nonstationarity of the analyzed signal [7
(SNR=13 /02 stands for the signal-to-noise ratio). 100 10° 10° 107
Optimal settingsu°P*, v°P* and v2P* should be chosen so K

w

as to minimize (7) — to achieve the best frequency tracking, or

R _ ; . Fig. 1. Comparison of the theoretical values of the lower frequency
to minimize (8) to achieve the best frequency rate tra‘Ckméi'pper figure) and frequency rate (lower figure) tracking bounds (solid lines)

Note that in both cases the optimal valuesofy,, and v, with experimental results obtained for the signal with quasi-linear frequency
depend exclusively on the rate of signal nonstationasity changes for 3 different SNR values: SNR=0 dB),( SNR=10 dB ),
Even though the analytical expressions EE() and Fa() SNR=20 dB ), and 13 different values of the rate of nonstationarity

can be easily derived using residue calculus (the corresponding

formullas ganbe found €.g.1n [8].)’ th.ey aze too "?”9”“’ and t?/%Iues (0 dB, 10 dB and 20 dB) and 13 different values of
complicated to enable optimization in a “symbolic” form. FO{
this reason they are not presented here. For a given valu
K, the optimal parameter values can be found using numeri

search — the results are shown in Table 1, along with t

he% rate of nonstationarity;, ranging from10~=1° to 10~%.
ﬂe mean-squared frequency estimation errors were evaluated
&faé)r the optimally tuned ANF algorithm) by means of joint
: . time and ensemble averaging. First, for each realization of
corresponding values of lower tracking bount$B, and : o
. . . : . the measurement noise sequence and each realization of the
LTB,, derived in Appendix II. Since it was found that thef .
: . T requency trajectory, the mean-squared errors were computed
functions F,,(-) and F,,(-) attain their minima for the same : . : :
i ) from 40000 iterations of the ANF filter (after the algorithm
values ofyu, 7, and~,, only one set of optimal gains was . )
. has reached its steady-state). The obtained results were next
listed for each value of. averaged over 20 realizations ¢fv(t),v(t)}. There are no
There is a perfect agreement between the lower trackin g ! )

. s Sults for SNR=0 dB and > 10~° since the algorithm was
bounds and the values obtained by mininizing (7) and (gd able to track under such extremely difficult conditions.

respectively — in some cases the computed values agreed up ote the very good agreement between the theoretical
the six decimal place (however, due to space constraints onla/ ) .
rves and the results of computer simulations.

two decimal places are shown). This means that, at least el
oretically, the pilot ANF (4) should be a statistically efficienRemark: The algorithm (4) is simpler than the state-of-the-
frequency and frequency rate tracker. A special simulati@mt multiple linear frequency tracker (MFT-L) proposed in
experiment was arranged to show that this actually holds trfi@]. It also performs better than MFT-L. In [9] the authors
Fig. 1 shows comparison of theoretical values of the lowepncluded that MFT-L nearly reaches lower tracking bounds
tracking bounds with experimental results obtained for tHer frequency tracking and frequency rate tracking. The loss
signal (2) obeying assumptions (Al)—(A4), 3 different SN performance, compared to the optimal scheme, ranges from
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1% to 7% for frequency tracking and from 9% to 28%et A(¢~') = 1/(1 — ¢~ '). Due to orthogonality of{e(t)}
for frequency rate tracking. Moreover, the optimal settingand {w(t)}, one obtains

for frequency tracking differ from those for frequency rate 1/ ‘
tracking. We have shown that the algorithm (4) is able to reach E{[Aa(t)]?} = — / h[X(e77%)] d¢ (13)
both bounds, and that it reaches them simultaneously. 27 Jx
where
C. From ANF to ANS W) — XX o 201 _ oy 2
. (X] = NG o +AFQ1-X)1—-X7") oy, . (14)

The pilot algorithm (4) and its approximate error model = = = . L
(5)-(6) will serve as a starting point for derivation of aﬁ\/llmmliz%tlon of (14) can be achieved by minimizing
adaptive notch smoother. Basically, we will follow the step&lX (¢7*)] for every value of & (—, 7.
of [6], i.e., we will design a cascade of postprocessing filters Denote by

increasing accuracy of amplitude, frequency, and frequency 0 1 0 .0
rate estimation. We will show that, using such a multistage 92 2 [5Re[2] _Jalm[z]}
scheme, one can significantly improve estimation results. ) 1 9 )
Moreover, for quasi-linear frequency changes and under Gaus- 9 92 [aRe[z] +J(“)Im[z]}

sian assumptions, the ANS algorithm obtained in this way is o o _ o _
a statistically efficient frequency and frequency rate smooth&€ so-called Wirtinger derivatives — symbolic derivatives with
i.e., when optimally tuned it reaches the corresponding lowédSPect to a complex variable, applicable to non-analytic

smoothing bounds. functions, such as(-) [10].
To find the optimal transfer functioiy(¢~'), i.e., the one
that minimizes (13), we will request that
. , oh Xo o
Smoothed frequency rate estimates can be obtained by X+ = w Oc —
means of lowpass filtering of the results yielded by the
pilot ANF. Such an approach will be called postfiltering. Wé&olving (15), one obtains
will start from considering a general postfiltering scheme, 2%
incorporating any linear noncausal filter. Then we will show Xo(g™!) = 2+ (1—q )31 —q3" (16)
that the best results can be obtained when the smoothing filter ) 1 ) q_
is anticausal and “matched” to the frequency characteristig§'e Of the key observations of this paper is that the transfer
of optimally tuned ANF. Finally, we will explain why the function Xo(¢~") can be factorized as follows
proposed scheme_ s_hould work satisffictorily for any slow Xo(g™Y) 2 So(q)So(q) 17)
frequency rate variations, not necessarily of the random-walk
type, and for any adaptation gains, not necessarily optima#nereSo(q=") = S(q1)|(u,ye 7a)ort ANAEOPE, A2PE, 4Pt de-
tuned. note optimal settings for the adaptive notch tracker (4). Since
the optimal gain settings for quasi-linear frequency changes
can't be established analytically — they are a solution of the

IIl. FREQUENCY RATE SMOOTHING
IA]2(1 - Xg) 02 =0. (15)

X=X,

A. Optimization set of high-order % 4), and hence algebraically unsolvable,
Suppose that the entire measurement record is availablepgynomial equations — the verification of (1®ustbe carried
to the instantN: Y(N) = {y(1),...,y(N)}. To obtain a out numerically. Our check was based on comparison of fre-

fixed-interval smoothed estimate of(), further denoted by gquency characteristicX(e~7¢) and So(e~7¢)S,(e/¢). Since
a(t), we will pass the estimaté®(¢) through a noncausal filter an ideal match was observed for all values:af [10~1°,0.1],

RlgY)=...4r_1g +ro+rigt + ... and all values of € (—m, x|, we have the right to claim that
the possible factorization errors, if any, are negligible.
a(t) = R(g~ha(t) - (10)  Combining (12) with (17), one arrives at the following
ransfer function of the optimal postfiltering scheme

The filter R(¢~!) will be designed so as to minimize thet

mean-squared frequency rate estimation eB¢fAc(t)]?}, _ Xo(g™t
Joahed revency N Rola™) = 0 = s1(0). (18)
where Aa(t) = «af(t) — a(t). After elementary but tedious So(g™1)
calculations, one can show that Since the filterSy (¢) is anticausal, postfiltering can be realized
- _ _ 1—-X(¢Y) by means of backward-time filtering of the frequency rate
— 1\2 1
Aa(t) = (1=¢ )" X(g e(t+1)+ 1— g1 w(t) (11) estimatesa(t) yielded by the pilot algorithm. When post-
filtering takes the form (18), the theoretical MSE, evaluated
where numerically using the formula (13), coincides, with high
X(g~Y) = R(gH)8(¢™Y) degree of precision, with the lower smoothing bouriB,,
S(qfl) =1-(1- q’l)fz(qfl) 1This relationship can be conjectured from an analogous result proved

(12) analytically in [6] for a simpler case of random-walk frequency drift (see

=74 "/D(q"). equation (15) in [6]).
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derived in Appendix II. This completes our theoretical proof dBince the nominal delay of the filtef(¢)S(¢~!) is equal to
statistical efficiency. Later on, in Section 1X, we will confirm,zero, and its static gain is equal to 1, the steady-sthte (
by means of computer simulations, that the performance o0& N) smoothed estimate is approximately unbiased

the optimized scheme based on postfiltering indeed reaches

its theoretical limit, exactly as predicted by the ALF-based Ela(t)la(s),1 < s < N] = aft) (25)

analysis. which considerably increases estimation accuracy. Importantly,
this conclusion holds true irrespective of the shape of the

B. Robust Smoothing Scheme estimated frequency rate trajectory (as long as it is sufficiently

) ) . . ) smooth), and for any choice of adaptation gaing.,, and~,
Although interesting from the theoretical viewpoint, they, . guarantee stable operation of the pilot ANF.
facts established so far are of little practical value — the opti-

mality results are restricted to a specific model of frequency
rate changes and they were derived under assumption that the _ _ _
optimal settings for the pilot filter are known. We will show Frequency smoothing can be achieved in an analogous way

IV. FREQUENCY SMOOTHING

that when postfiltering has the form as frequency rate smoothing, i.e., by means of postfiltering
N R the estimated frequency trajectory yielded by the pilot ANF.
a(t) = S(g)a(t) (19)  Similar to frequency rate smoothing, the proposed approach

improvement in estimation accuracy can be expected fté)rfrequency smoothing is robust to modeling errors.

any smooth frequency rate trajectory and famy choice of S
adaptation gains. Our robustness analysis will be based on fheOptimization

following relationship Denote bya(t) the smoothed frequency estimate
a(t) = S(g Ha(t) — Li(gHe(t) (20) 5(t) = P(¢Ha(t) (26)
which is an equivalent of (6). Importantly, as already stressethere P(¢~!) = ... + p_1q7! + po + p1g* + ... is any

in Section II-B, ALF approximations (5) and (6) [and henceoncausal filter. We will proceed similarly as as in Section
also the relationship (20)] remain valid for any sequence df-A, i.e., we will find the filter P(¢~!) that minimizes the
small one-step frequency rate chandes(t)}, i.e., for any mean-squared frequency estimation eftdfAo(t)]?}, where
trajectory{«(¢)} that is sufficiently smooth and hence can b&\&(t) = w(t) — &(t). One can show that
regarded as a lowpass signal. 1—Y(g)

Note that for zero-mean measurement noise it holds thah&(t) = (1 —¢ 1Y (¢ He(t) + 71112
Ele(t)] = 0, leading to 1-g¢7)

where

w(t—1) (27)

Ela(t)|a(s),s < 1] = S(g~Ha(t) . (21)
Note also thatS(¢ ) is a lowpass filter with unity static gain Y(g™) = Pla)Ql)
Qg ") =1—q(1—q ")’Hs(q ")
-1

S(1) = 1. Hence, when the instantaneous frequency rate varies

slowly with time, the mean path of frequency rate estimates is =+ (Ya — ) /D). (28)
approximately the time-delayed version of the true trajectorlxue to orthogonality of(e(t)} and {w(f)}, (27) leads to
Ela(t)|a(s),s <t] = a(t — 74) (22) _ 1 [T .
BIAS0P) =52 [ o[Vl @)
where 7, = int[t,] denotes the so-called estimation delay, TS =
equal to the integer part of the nominal (low-frequency) delayhere
of the filter S(¢~!). The nominal delay of5(¢~!) is defined Yy .\ )
as Q[Y]:W%‘HA‘ (1-Y)(1-Y")oy,. (30)
t :—hm%:flimw
« &—0 d€ g—0 & The optimal transfer functioy(¢=!) can be obtained by
) Ivi
where ¢(¢) = arg [S(e™%)] is the phase characteristic of V19
S(g™'). One can show that in the case considered 9y _ Y o2 —|AM1=Y)) 0% =0 31)
oY * _ - |A|2 e w T
Yw Y=Yo
ty = Ir(1) = 12 . 23
2() Vo @3) which leads to
Estimation delay is a source of the bias error (sometimes Yo(g™!) = Xolg™)- (32)

called lag error) which, especially for large valuesrgf may Finally,
seriously degrade tracking performance of the pilot ANF.

For the smoothed estimate (19) the situation is different.
Combining (19) with (20), one arrives at

after combining (32) with (28) and (17), one arrives

~ So(g7")So(q)
 Qolg™Y)

a(t) = S(9)S(g Ha(t) — S(e) (g Me(®).  (24) whereQo(q™") = Q(q™ )| (e 7a)ovt-

Py(q™") (33)
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Note that, rather unexpectedly, the optimal filter (33), de- V. AMPLITUDE SMOOTHING

signed for frequency smoothing, differs from the analogous y5ing smoothed frequency estimates, one can re-estimate

filter (18) that was earlier designed for frequency rate smootfps amplitude coefficients. This can be achieved using the

ing. frequency-guided version of the algorithm (4), obtained by
Similar to frequency rate smoothing, when postfilteringep|acing the filtering-type (causal) frequency estimaiés

takes the form (33), the theoretical MSE, evaluated numgith their smoothed (noncausal) counterpar(s), derived in
ically using the formula (29), coincides, with high degree ofection IV

precision, with the lower smoothing bouictB,, derived in

Appendix Il. In Section IX we will confirm, by means of flty =D f(t—1)
computer simulations, that the optimized scheme based on E(t) =y(t) —a(t — l)f(t)
postfiltering is statistically efficient, i.e., that its performance _ _ T =
indeed reaches the theoretical limit mentioned above. a(t) =a(t —1) + pf* ()

)
s(t) = a()f(t). (37)
Since the frequency-guided ANF (37) is identical with the
analogous algorithm studied in [6], we will simply repeat

Based on (33) we propose the following postﬁnerin@onclusions reached there: the smoothed estimates of ampli-
scheme tude coefficients can be obtained by means of backward-time

filtering of the estimates yielded by the algorithm (37)
a(t) = F(g)a(t) (38)

B. Robust Smoothing Scheme

G(t) = S(g)T(q~)d() (34

where

1
_S(g™Y) Yaq ™ big~? F(q)

11— p)g
is the unity-gain anticausal lowpass filter “matched” to track-

b_’)/a _'Voz_’Yw
1=—, a=—.
Yo VYw

Note that the filterT'(¢~1) is causal and the filte6(q) is

ing characteristics of (37). When the amplitude trajectory
{a(t)} can be modeled as a lowpass processardt < N
(steady-state conditions), it holds that

Efa(t)la(s),1 < s < N = F(q)F(q¢”")a(t) = a(t) (39)

anticausal. Therefore, postfiltering can be realized by means ) )
of forward-time filtering of the frequency trajector(t)} whlch means th_at the smoothed amplitude gstlmates are ap-
using the filterT'(¢~1), followed by backward-time filtering Proximately unbiased - see [6] for more details.

of the results using the filte$(q).

Robustness analysis of (34) is similar to that carried o

(19). Using (5), one can show that

5(t) = Qg™ Mw(t) — Hi(g™He(?)

leading to (in steady-state)

EG(t)]w(s),1 < s <N =S(@T(¢ Qg w(t)
1

= S(¢)S(q~

When smoothing is not incorporated, the corresponding
?Iationship reads

Ela(t)|a(s),s < t] = F(¢~")alt) = a(t — 7a) (40)

where 7, = int[t,] denotes estimation delay arising in the
amplitude tracking loop of the frequency-guided ANF, equal
to the integer part of the nominal delay of the filt8(g—1)

o= 1T

1

V1. FIXED-INTERVAL ADAPTIVE NOTCH SMOOTHER

for any frequency trajectory that can be modeled as a lowpassrhe fixed-interval ANS algorithm can be obtained by com-

signal and for any selection of stabilizing adaptation gains.pining all steps described in Sections II-V and adding the final
Suppose that postfiltering is restricted to the forward passignal reconstruction step

w(t) =T(g H)a(t).
Then it holds that (in steady-state)

Elo(t)|w(s), s < f] = T(¢~)Qlg ()
= 5(g " w(t) 2 w(t - 7.)

wherer, = 7, is the delay introduced by the filte¥(¢~!)

3(t) = a(t) f(). (41)

To reduce computational burden, we will rewrite all re-
cursions in an equivalent form that alleviates the need to
compute the quantitieg(t), a(t), f(t), a(t), f(t) anda(t).
The resulting cost-optimized ANS is summarized in Table Il
(the output filter, specified in Table Il, incorporates amplitude
smoothing). Computational load associated with this algorithm

is equal to 37 real multiply/add operations and 1 real division

— identical with that established in Section Il for frequencyperation per time update for the variant with frequency

rate tracking.

rate estimation, and 33 real multiply/add operations and 1
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TABLE I

real division operation when frequency rate estimation is not FIXED-INTERVAL ADAPTIVE NOTCH SMOOTHER.

needed.

Unless a specific prior knowledge about the analyzed signal

is available, we recommend settingl) = y(1), a(1) = 0, pilot filter :

and adopting forw(1) the value that stems from spectral B ISP +a(—1)]

analysis (parametric or nonparametric) of a short initial frag- st = ylt)—e st—1)

ment of the available data record. Less careful choice of st) = ePUDFADIGE — 1) + pe(t)
initial conditions may result in long initialization transients bt) = [5(t—1)2

(especially for small adaptation gains) but does not prevent the 5(t) = Imle(t)e—d@E=DFa=Dlg ¢ — 1)]/b(t)
pilot algorithm from reaching the small-error tracking mode

after a sufficiently long initial convergence period. alt) = alt—1)+70(1)

Remark: Denote byp(t) = s00+2f:1 w(l) the instantaneous w(ti B :(t ZJra(t D +7%.00)

phase ofs(t), which under (2) obeys

frequency rate smoother [optional] :

p(t+1) = o(t) + w(t) + aft) (42)
and suppose that the time-varying signal amplitude (real- am) = ‘j(N)
valued) can be modeled as a random-walk process aN-1) = al-1
t+1) = a(t) +n(t (43) aN-2) = aN-2
alt +1) = alt) +n(?) alt) = —dia(t+1) —doa(t+2)
where {n(t)} is a Gaussian white noise, independent of ds@(t + 3) + vadlt + 1)

{w(t)} and {v(t)}. Combining (2) with (42) and (43), one

can write down the analyzed signal in the following nonlinear

state space forfn

x(t+1) = Ax(t) + Bn(t)

t = N-=3,...,1
frequency smoother :

21) = o)

a(t) = £lx(t)] + (1) (44) () = —e@(t— 1)+ - 1)
where the state vector is given by(t) = [p(t),w(t), a(t), b= 2N
a(t)]T, the observation vectar(t) = [Re{y(t)}, Im{y(t)}]T O(N) = o(N)
is comprised of the real and imaginary partg 0f), the driving GIN-1) = &(N-1)
and measurement noise vectors are givem@y = [w(t+1), . _
n(t)]* and((t) = [Re{v(t)},Im{v(t)}]T, respectively, and GIN-2) = e -2)
Ot) = —did(t+1) —ded(t +2)
Lo 00 —d3@(t +3) + vaw(t +1)
A= 01 10 B— 0 0 B
00 10}/ 10 b= N=3...1
00 01 0 1 frequency—guided filter :
Flx()] = [ a(t) cos (1) ] . s = 5
a(t)sing(t) st) = y(t)—eI®W5(t — 1)
Based on (44), one can seek the solution to our estimation s() = e®Ws(t— 1)+ pa(t)
problem by employing the classical extended Kalman filter-
ing/smoothing approach [11]. Not getting into details, we = 4N
note that extended Kalman smoothing (EKS) can be realized output filter :
by means of backward-time filtering of the results yielded 3(N) 5(V)

by the extended Kalman filter (EKF) — the corresponding ()
recursive algorithm is known as the Rauch-Tung-Striebel
(RTS) smoother. Note that, from the qualitative viewpoint, the
procedure proposed in this paper resembles the classical one.

The main difference lies in computational complexity. Even
the special form of the matrice& andB is exploited to avoid
unnecessary multiplications, the backward-time filtering st

and 1 inversion oft x 4 covariance matrices per time update,

ép-
of the RTS algorithm requires performing 3 multiplicationén

(1 — p)e 7@ DF(E + 1) 4 ps(t)
t = N-1,...,1
if
1,..., N). In contrast with this, the algorithm summarized

Table Il does not involve any matrix calculations and does
not require saving any matrix-valued quantities. This results

This computational burden is further increased by the cd8nuge computational savings.

of running the extended Kalman filter and saving its results VII

(including alla priori anda posterioricovariance matrices for

2For simplicity we ignore the problem of phase unwrapping.

. FIXED-LAG ADAPTIVE NOTCH SMOOTHER

The fixed-lag ANS can be obtained by restricting postpro-
cessing of ANF estimates to the recenttime-steps only.


http://mostwiedzy.pl

A\ MOST

TABLE Il

The resulting “sawtooth” smoothing algorithm is summarized FIXED-LAG ADAPTIVE NOTCH SMOOTHER
in Table Ill. To avoid confusion most of the quantities were
indexed byt.

Additional computational cost of carrying out postprocess- pilot filter :
ing steps, i.e., the computational overhead of smoothing, A1y~
grows linearly with the time lag, and is equal t@27 real et) = y(t) - JEUTDTAETIEE 1)
multiply/add operations per time update for the algorithm 5(t) = el@t=DHalt=DIgE — 1) + pe(t)
that incorporates frequency rate estimation, afd + 4 real bt) = [5t—1)2
mu]tlply/add operations for the variant without frequency rate 5t) = Tmle(t)e—IB-D+a0-DIgx(; _ 1)|/b()
estimation. R R

The tracking accuracy improvements offered by smoothing at) = at=1)+70()
gradually saturate with growing. Similarly as in [6], one can o) = wt-1+alt—1)+v6(t)
argue that only marginal improvements can be expected when frequency rate smoother [optional] :
7 is increased beyond the “principal” delay equal to N

a(t) = at)
To = max{7,, 7.} Gt—1) = at—1)
VIII. EXTENSIONS a(t-2) = at-2)

Using the framework described in [12] (see Section II-C a(i) = —diGe(i+1) —dade(i+2)
there), the proposed ANS algorithm can be easily extended to —dsy(i+ 3) + yali(i + 1)
the multiple frequencies case, where i = t—3,...,t—1T

k
S(t) _ Z Sl(t) frequency smoother :
i=1 w(t) = —caolt—-1)+bw(t—1)
si(t) = ai(t) fi(t), fi(t) = e/ 2=l i(t) = @)
and k. denotes the number of cisoids embedded in noise. ott—1) = @t-1)

The resulting algorithm is a parallel estimation scheme Bit-2) = @(t-2)
combining k£ “local” ANS filters. The component filters are B B (1) doS (i
designed to track different frequency components @f and @ie) = —diGi(i41) - 2 (i+2)
are driven by “global” prediction errors —d3wt (i +3) +va@(i + 1)

k T = t—=3,...,t—1T
_ i[w; (t—1)+a; (t—1 I~ _
g(t) o y(t) - Z e/Bit=D) ( )]Sl (t 1) frequency—guided filter :
=1
k B gl(thfl) = /S\[l(t*T*l)
2ty =y(t) — > e/ Dsi(t —1). 5(6) = y(i) —ed®Wa, - 1)
i=1
5.(1) = %W (i— 5, (i

All algorithms can be applied to real-valued signafy(t). St(l)_ s~ 1) F puei)
In order to process such signals, one may formally regard the e
input data as complex-valued by settip¢t) = y®(¢) + 50, output filter :
and ignore imaginary parts at the ANF/ANS outpaif () = 50 50

iy R _ Y _ St = St
Re[s(t)], s, (t — 7) = Re[s(t — 7)]. 5() = (1—p)e @ 0t05,(i + 1) + us(4)
IX. SIMULATION AND EXPERIMENTAL RESULTS i o= t—1,...,t—1

Our simulation study will focus on two aspects of the
proposed adaptive notch smoothing scheme: optimality and
robustness.

Although demonstration of the algorithm’s optimality, ey Optimality

its ability to reach the Craér-Rao-type lower smoothing
bounds is mainly of theoretical value, it is important as it Fig. 2 shows comparison of theoretical values of the lower
allows one to specify conditions under which some absolusgioothing bounds with experimental results obtained for the
performance limits can be reached. signal (2) obeying assumptions (Al)—(A4), 3 different SNR
From the practical viewpoint, the most important propertyalues (0 dB, 10 dB and 20 dB) and 13 different values of
of the estimation algorithm is its robustness, i.e., insensivitiie rate of nonstationarity,, ranging from10=1° to 10—
to modeling errors. We will show that, exactly as predicte®imilarly as in Section 1I-B, all MSE values were computed for
the proposed ANS algorithm outperforms its ANF counterpdiie optimally tuned ANS algorithm by means of joint time and
for a wide range of operating conditions, including differerensemble averaging. Note the excellent agreement between the
(nonstandard) frequency/amplitude trajectories and differgheoretical curves and the results of computer simulations.
(non-optimal) values of adaptation gains. The possible margins of improvemeh'B, /LSB,, and
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changes, for 3 different SNR values: SNR=0 d8),( SNR=10 dB ),
SNR=20 dB {), and 13 different values of the rate of nonstationakity

LTB,/LSB,, which are functions ok, are depicted in Fig.
3.

B. Robustness

a

LTBC(/LSB

w

LTB /LSB
w

12 - - )
10 10 10 10

Fig. 3. Dependence of the limiting tracking versus smoothing variance ratios
on the degree of signal nonstationarity

Yo = WY./4 — in agreement with the general tendency
revealed in Table I. The ANF/ANS algorithms without fre-
guency rate estimation were obtained by setting = 0.
The results obtained for the MFT-L algorithm [which can be
rewritten in a form similar to (4)] were slightly but uniformly
inferior (by approximately 3 dB) to those obtained for our
pilot tracker. For this reason they are not shown. All MSE
values were obtained by means of joint time averaging (the
evaluation interval [2001,8000] was placed inside a wider
analysis interval [1,10000]), and ensemble averaging (100

Comparison of the theoretical values of the lower frequency (uppegalizations of measurement noise were used). As expected,
figure) and frequency rate (lower figure) smoothing bounds (solid line:
with experimental results obtained for the signal with quasi-linear frequen

the ANS algorithms vyielded uniformly better results than
fleir ANF counterparts. The achievable variance reduction is
approximately equal to 20 dB for frequency estimation and 10
dB for signal estimation, respectively. Rather surprisingly, for
the particular signal analyzed, a very small signal estimation
gain can be achieved by switching from the ANS algorithm
without frequency rate estimation, to the ANS algorithm with
frequency rate estimation (Fig. 5), even though the frequency
estimation benefits are evident (Fig. 4).

To check performance of the fixed-interval ANS algorithm, Finally, Table IV shows comparison of the mean-squared
a noisy quas-iperiodically varying signal (2) was generatggbquency and signal estimation errors yielded by the well-

with fast amplitude and frequency changes

a(t) =1+ 0.5cos(27t/2000) , w(t) = sin(27t/2000) .

tuned EKF/EKS algorithms, based on the model (44), with
the analogous results provided by the well-tuned ANF/ANS
algorithms, based on the (equivalent) model (2). The EKF/EKS

Figs. 4 and 5 show the comparison of the steady-statkgorithms were supported with the true values of the measure-
mean-squared frequency and signal estimation errors, yieldednt noise intensitiesosf = 0.31 or 0.01). The remaining
by the ANF algorithm without frequency rate estimationtwo variances 42 and 02) were also set equal to the true
the ANS algorithm without frequency rate estimation, theean-squared rates of change of the corresponding quantities

ANF algorithm with frequency rate estimation, and the AN$a(¢) and «(t), respectively]:o? =
algorithm with frequency rate estimation. The comparison wag, =~ wj/2 =

made for 40 different values of the adaptation gaiand for
two noise intensitiess, = 0.56 (SNR=5 dB) ands, = 0.1

wg/8 = 1.23 - 1075,
4.87 - 10711, where wg = 2m/2000. The
numbers shown for the ANF/ANS algorithms correspond to
the lowest points on the/x plots depicted in Figs. 4 and

(SNR=20 dB). To reduce the number of design degrees ®f Note that, in spite of their computational simplicity, the
freedom, the two other gains adopted for ANF/ANS algorithneoposed ANF/ANS algorithms compare very favorably with
with frequency rate estimation were set tg; = p2/2 and the classical EKF/EKS tools.
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Fig. 5. Dependence of the mean-squared signal estimation error on adaptation
gain . for: ANF algorithm without frequency rate estimation (+), ANS algo-
Fig. 4. Dependence of the mean-squared frequency estimation error "sim without frequency rate estimatiorxj, ANF algorithm with frequency
adaptation gainu for: ANF algorithm without frequency rate estimationrate estimation®), and ANS algorithm with frequency rate estimatich)(
(+), ANS algorithm without frequency rate estimatior){ ANF algorithm  Upper figure — SNR=5 dB, lower figure — SNR= 20 dB.
with frequency rate estimatiorP], and ANS algorithm with frequency rate
estimation ¢). Upper figure — SNR=5 dB, lower figure — SNR= 20 dB.

C. Application example

Conventional methods of measuring the rotational speed

c TABLE IV of a combustion engine rely on dedicated sensors, such as
OMPARISON OF THE MEANSQUARED FREQUENCY ESTIMATION ERRORS
(UPPER TABLE) AND SIGNAL ESTIMATION ERRORS(LOWER TABLE), taChometerSj photo prOb?S' etc. Deployment _Of such sensors
YIELDED BY THE WELL-TUNED EKF/EKSALGORITHMS AND may be difficult, expensive and/or inconvenient. However,
WELL-TUNED ANF/ANS ALGORITHMS. the sound emitted by an operating engine usually provides

sufficient information to enable a cheap and accurate remote

MSE.: RPM (revolutions per minute) measurement using acoustic
SNR EKF ANF EKS ANS sensing.
5dB || 53-10=4 | 7.7.-10-5 || 94-10-7 | 6.8.10—7 The proposed smoothing scheme was used to analyze a 4-
20dB || 45-1075 | 1.0-107° || 54-1078 | 1.5-10~7 second recording of a motorcycle engine noise, sampled at a

MSE. frequencyfs = 1.1 kHz. The analyzed fragment corresponds

= to subsequent: acceleration, gear change, acceleration and

SNR EKF ANF EKS ANS braking, respectively. The complex-valued version of the sig-
5a8 Il 24.10-% | 24.10-2 || 7.0.10-2 | 3.3.10-3 nal was obtained using the Hilbert transform. The spectrogram
20dB |l 93-10-3 | 1.3.10-3 31-1074 | 1.2.104 of the recording, depicted in Fig. 6, shows that the signal

containsk = 12 harmonic components with instantaneous
frequenciesv; (¢) that are linearly related to the fundamental
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frequencyws (¢):

To cope with the harmonic signal structure, a slightly mod-
ified version of the pilot filter was employed. All harmonic __ 400}
components were tracked using a parallel structure made
of 12 pilot filters

5i(t) = i t=DFa =I5 ¢ 1) + pe(t)
i=1,...,12

Frequency [iz]
N w
o o
Q o

driven by the common prediction error signal

12
=3 el DD 1)
=1

In order to estimate the instantaneous angular frequencies Time [s]

w;(t) and frequency rates;(t), the proposed pilot frequency

tracker was applied to the 5-th harmonic signal componery. 6. Spectrogram of the acoustic recording of an accelerating motorcycle.
(since this component is strong, it guarantees high signal-fd period between 2 s and 2.5 s corresponds to gear shifting.

noise ratio):

=
o
o

b (1) = [85(t — 1) a0l - - - ]
05 (t) = Tmle(t)e 7 @e(t=DFas=NIgz (¢ —1)] /bs (2) )
~ = 200} ]
ai5(t) = as(t) + 7ads(t) =
Ws(t) =0s(t — 1) + as(t) + 7w05(t) - «— 100f ;
The estimates of the remaining frequencies and frequency rates 00 1 2 3 2
were obtained by exploiting (45)
a;(t) =ias(t)/5, @i(t) =1iws(t)/5 300} ) ) ) 1
=1,...,12, 5. N
i i I zoo/\/\_
The parameters of the pilot filter were set to the foIIowng 100k ]
values:iu = 0.05, 7, = p?/2 andy, = uy./4 — in agreement P

with the rule of thumb presented in the preceding subsection. 0
The smoothed estimates ©f (t) and as(t) were obtained by 0 1 T 2 3 4
backward-time filtering of the pilot estimatés (t) andas(t) ime [s]

using the algorlthms summarized in Table II. Fig. 7. Estimated instantaneous frequency of the 5-th harmonic signal
Fig. 7 shows the comparison of the frequency estimates component. Top plot: pilot estimates. Bottom plot: smoothed estimates.

N CU5( )fs

fs(t) = o _
obtained using the pilot filter (top plot) and frequencyQ of
smoother (bottom plot). The corresponding mstantaneo&_s

RPM values can be obtained frolRPM(t) = 60f5(t)/5. g —200¢
Similar comparison of the frequency rate estimates is shown#q,, —400}
Fig. 8. In both cases, the results obtained using the noncausal . . .
estimation scheme are significantly better than those yielded 0 1 2 3 4
by the pilot (causal) algorithm.

X. CONCLUSION

Extraction/elimination of nonstationary sinusoidal signalss
buried in noise can be carried out using adaptive notch filte®®
(ANF). We have designed a new ANF algorithm based o%m
guasi-linear model of signal frequency changes, and we have 0 1 2 3 4
shown that, under Gaussian assumptions, it is a statistically Time [s]
efficient frequency and frequency rate tracker. Then, based on
analysis of tracking properties of the proposed algorithm, wa. 8. Estimated instantaneous frequency rate of the 5-th harmonic signal
have designed a cascade of postprocessing filters increagfigponent. Top plot: pilot estimates. Bottom plot: smoothed estimates.

[Hz/s]
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accuracy of signal frequency, frequency rate, and amplitu@e derive recursions foA®(t) and Aa(t), note that in the
estimation. We have shown that the resulting adaptive notrthcking mode it holds that

gmoother (ANS) is stgtlstlcally efﬂmgnt (un@er .|deal cqndl— B e(t)] . Imle(t)e* ()]

tions) and robust to signal model misspecification. It yields 4(t) = Im o) 5 :

improved estimation results compared to its causal (ANF) %0

counterpart. It also works better than the currently availableombining (46) with (47), and applying the ALF rules, one
simpler ANS algorithm. arrives at the following approximation

et (t) = |s()]* — s(t — 1)AF*(t - 1)
+jls(t) P[AB(E - 1) + Ad(t — 1)]
+o(t)s™(t) — [ (t)]?

APPENDIX |

o leading to
Derivation of (5) and (6)
N N _ o 0(t) 2 AZ(t— 1)+ AD(t — 1) + Aa(t — 1) — e(¥).
Denote byAs(t) = s(t) — s(t) the signal estimation error
and let AZ(t) = Im[A3(t)s*(t)/a?]. According to [7], when Note that
carrying ALF analysis one should neglect all terms of order AG() = AG(t —1 0~ St
higher than one INAG(), A&(t), As(t), w(t) and v(t), a(t) = Aa(t 1) + w(l) = 7a0(t)
including all cross-terms. AL(t) = Ab(t — 1) + Aa(t — 1) = 71.0(t).

To derive recursion foAZ(t), note that Combining the last three equations, one arrives at
S(t) = (t) + pe(t) Aa(t) 2 (1 —ya)Aa(t — 1) + w(t) + vae(t)
e(t) = s(t) +v(t) — ¥(t) (46) — VALt — 1) =7 AZ(t — 1) (49)
where S04 o2 (1 — Ot — _ ot —
B(t) = IPE=D+aE-Dlgy _ 1), As() = (1 %)Aw(tA D+ —w)aalt—1)
+Ywe(t) — 1 AZ( - 1) (50)
Therefore R Finally, solving the set of linear equations (48), (49) and
s(t) = Mp(t) + ps(t) + po(t) (50) for A&(t) and A@(t), one arrives at (5) and (6), respec-
where A = 1 — p. This leads to tively.
A5(t) = As(t) — Mp(t) — po(t). APPENDIX II
Observe that Computation of Lower Tracking/Smoothing Bounds
W(t) = ejw(t)e—jAfu(t—l)e—jA&(t—1)[S(t ~ 1) — AS(t— 1), In this appendix, we will derive expressions for theoretical

upper bounds that limit tracking/smoothing capabilities of
Using the approximations=/4“(t=1) =~ 1 — jAZ(t — 1) and any causal/noncausal frequency and frequency rate estima-
e—JAG(t—1) v 1 _ jAQ(t — 1), that hold for small frequency tion algorithms applied to signals with quasi-linear frequency
and frequency rate errors, respectively, and applying AL¢hanges. The corresponding lower tracking bounds (LTB)

rules, one arrives at and lower smoothing bounds (LSB) belong to the class of
) A posterior (or Bayesian) Cra&nRao bounds, applicable to
¥(t) = s(t) — e/ VAS(E - 1) signals/systems with random parameters R
—js(@)[AB(t — 1) + Aa(t —1)]. 47) Denote byy the vector of measurements andééy) be an
] estimator of a real-valued random parameter ve@torhen,
This leads to under weak regularity conditions, one can show that [13]
A1) = A DAF(E 1) E[(8(y) - 0)(6(y) —0)"] > I~
+ 7 As(W)[AD(t — 1) + Aa(t — 1)] — po(t) Where
or equivalently J—_E {32 log p(y, 9)]
YN B ey A X B 8000™
AS)s"(1) = %A‘;(t :1)5 (t - 1)A . _ g [2logp(y,0) dlogp(y,0)
+ jAag[AG(t — 1) + Aa(t — 1)] — po(t)s*(t). = 90 907
Dividing the last recursion sidewise ki, and taking imagi- and p(y,8) = p(y|0)p(8) is the joint probability density
nary parts, one arrives at function of the pair(y, ).
AZ(t) 2 ANAZ(t— 1) + NAG(t — 1) 3When the estimated quantities are stochastic variables, rather than un-
~ k deterministi tants, the classical GeaRao i lity d t
+ Aa(t — 1)) + pe(t). (48) ar;t;\ll;//.n eterministic constants, the classica ao inequality does no
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In the case considered, 1@t = [a(1),a(2),...,a(t)]T and Hence, after averaging, one obtains
yvi = [y(1),y(2),...,y(t)]T. To simplify our analysis (without

2
restricting its generality), we will assume, in addition to (Al1)— E {mogp(y”et) alogp(%'t'et) = 2;@20 A, (54)
(Ad), that ag = |[s(t)| is a known deterministic quantity, 00, 00, Ty
that a(0) is uniformly distributed ovefa,in, amax|, @nd that where
w(0) =0, s(0) = ap. '
Since, un.der the assumptions listed above, the ve@tor (Al Zmax k —m, 0)-max(k —n, 0)
fully determiness(k), k=1,...,t 1
s(k) = age??) In an analogous way we will compute derivative of the prior
k n—1 density (53)
= Z a(m) (51) log p(6,)
n=1 n=1m=1 & — _ a(k _ 1)]2
) a(m) J?D aa(m
one can write k=2
a(2) —a(l) for m=1
log p(y¢|6:) = log plye[s(1),5(2), ..., s(t)]
| 1] [am+1)—a(m)]
—51—* lv(k o2 | —[a(m)—a(m—1 for l<m<t
D Io
v k=1
L —la(t) —a(t—1)] for m=t
=B — — )2 52
= b o2 ; Iy (2) 1 w(2) for m=1
) ) =—4q wm+1)—w(m) for 1<m<t
where 3, is a constant independent 6f. O —w(t) for m =
Similarly _
which leads to
log p(6:) = log ple(1), (2) —ta(l) Ssalt) —alt = 1) [abgp(et) dlogp(6)] _ 1 o (55)
Bt Z 06, 00T o2
= where
t - -
N B > 1 -1 0 0 ... 0
= fat 2= kz alk =1 (539) 1 2 -1 0 ... 0
0 -1 2 -1 ... 0
where, againg, = log[1/(@max —min)] andf are constants B, = _
independent ob,. :
Differentiating (52) with respect te(i), one obtains 8 8 _(1) ? _1
dlogp(yil6) _ 2 .+ Os(k) ining (54) wi ns
it =047 bl 7l k) — s(k Combining (54) with (55), one obtains
Daa(m) p ];Re [y(k) — s(k)] Fa(m) 9 (2 ) (55)
N 2a4 1 1
2 < J, = A+ = B, = — [26A,+ By].
== ZRe {v*(k‘) 865((7]2)} o3 et o
R The asymptotic (steady-state) bounds on accuracy of frequency
Using (51), one arrives at and frequency rate estimates can be obtained from
kol-1 LTB, = hm inf B{ [w(t) — &(t)]*}
S C) e 50
da(m) =1 i=1 = thm bt J b,
whered,, ; is the Kronecker delta
P { 0 for m#1 LTBa = tli)rgo (lxr(lf E{[o(t) —a@l}
m,1 — 1 f p— y * —
or m 1 — t}l)n;.lo [Jt l}tt
This leads to
(K where bl = [1F ,,0], and 1, denotes the vector of ones
s(k) = js(k) max(k —m,0) of length¢t. The analogous expressions for lower smoothing
da(m) bounds read
and LSB, = Jim n(lf E{ [w(f) — 3(0)]2)
0log p(y:|6:) 2 ! oo w
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wherec = [1} ,,0%,,] and 0, denotes the vector of zeros
of lengtht. The values in Table | were computed numericall
for t ranging from 100 to 600 (the convergence is slower fc
smaller values of).
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