
Theoretical Computer Science 412 (2011) 4721–4728

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Consensus models: Computational complexity aspects in modern
approaches to the list coloring problem
Damian Bogdanowicz, Krzysztof Giaro, Robert Janczewski ∗
Department of Algorithms and System Modeling, Faculty of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Narutowicza
11/12, Gdańsk, Poland

a r t i c l e i n f o

Article history:
Received 8 December 2010
Accepted 9 May 2011
Communicated by J. Díaz

Keywords:
List coloring
Edge list coloring
Consensus models
Tree

a b s t r a c t

In the paper we study new approaches to the problem of list coloring of graphs. In the
problem we are given a simple graph G = (V , E) and, for every v ∈ V , a nonempty set of
integers S(v); we ask if there is a coloring c of G such that c(v) ∈ S(v) for every v ∈ V .
Modern approaches, connected with applications, change the question—we now ask if S
can be changed, using only some elementary transformations, to ensure that there is such
a coloring and, if the answer is yes, what is the minimal number of changes. In the paper
for studying the adding, the trading and the exchange models of list coloring, we use the
following transformations:

• adding of colors (the adding model): select two vertices u, v and a color c ∈ S(u); add
c to S(v), i.e. set S(v) := S(v) ∪ {c};

• trading of colors (the tradingmodel): select two vertices u, v and a color c ∈ S(u); move
c from S(u) to S(v), i.e. set S(u) := S(u) \ {c} and S(v) := S(v) ∪ {c};

• exchange of colors (the exchange model): select two vertices u, v and two colors
c ∈ S(u), d ∈ S(v); exchange c with d, i.e. set S(u) := (S(u) \ {c}) ∪ {d} and
S(v) := (S(v) \ {d}) ∪ {c}.

Our study focuses on computational complexity of the above models and their edge
versions. We consider these problems on complete graphs, graphs with bounded cyclicity
and partial k-trees, receiving in all cases polynomial algorithms or proofs of NP-hardness.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be a simple graph with vertex set1 V and edge set E. By n andmwe mean the number of vertices and the
number of edges of G, respectively. By N(v) we denote the neighborhood of vertex v, i.e. the set of its neighbors; ∆ stands
for the maximum degree over all vertices of G. We also use symbol γ to denote the cyclomatic number of G, i.e. the minimal
number of edges that must be removed from E to make G acyclic.

Let S be a list assignment for G, i.e. a function that assigns nonempty finite subsets of N to vertices of G. By an S-coloring
of Gwe mean any function c : V → N such that

(1) c(u) ≠ c(v) for every two adjacent vertices u, v ∈ V ;
(2) c(v) ∈ S(v) for every vertex v ∈ V .

∗ Corresponding author. Tel.: +48 583471064.
E-mail addresses: Damian.Bogdanowicz@eti.pg.gda.pl (D. Bogdanowicz), giaro@eti.pg.gda.pl (K. Giaro), skalar@eti.pg.gda.pl (R. Janczewski).

1 All notations introduced here are functions of G. We drop the reference to the graph, if G is clear from the context.

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.05.020

http://dx.doi.org/10.1016/j.tcs.2011.05.020
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:Damian.Bogdanowicz@eti.pg.gda.pl
mailto:giaro@eti.pg.gda.pl
mailto:skalar@eti.pg.gda.pl
http://dx.doi.org/10.1016/j.tcs.2011.05.020

4722 D. Bogdanowicz et al. / Theoretical Computer Science 412 (2011) 4721–4728

Functions c : V → N that satisfy the first of the above conditions only are called vertex colorings of G. Vertex colorings
c : V → {1, 2, . . . , k}, k ∈ N are called k-colorings. If G has an S-coloring (k-coloring), we say that the pair (G, S) (graph G)
is list colorable (k-colorable). We also define l = |


v∈V S(v)| and L =

∑
v∈V |S(v)|.

The problem of deciding if a pair (G, S) is list colorable (the list coloring problem) has been intensively studied. It is NP-
complete for many simple classes of graphs and very restricted list assignments. The list of NP-complete cases includes
complete bipartite graphs [4,13], line graphs of complete [10] and complete bipartite graphs [2], unions of two intersecting
complete graphs [7,13] and even the case when a graph is subcubic, planar and bipartite [8,13]. On the other hand, there is
a linear algorithm for trees [9].

In the paper we study consensus models for list colorings. These models were introduced by Mahadev and Roberts in
[11] as a tool for modeling some aspects related to error correction in a physical mapping of DNA, where classic coloring
seems to be insufficient. In an ideal situation, data resulting from biological experiments (modeled by some graph G with
vertices corresponding to DNA fragments of unknown position and list assignment S) is correct and (G, S) is list colorable. In
a real situation, both graph and list assignment contain some errors and they must be changed to make (G, S) list colorable.
This is the place where consensus models can be applied. These models can be described as follows: given a simple graph G
and list assignment S for G; can we transform S into S ′, using only some elementary transformations, to ensure that (G, S ′)
is list colorable? If it is possible, what is the minimal number of such transformations?

Mahadev and Roberts introduced three types of transformations: adding, trading and exchanging of colors (consensus
models related to them are named the adding, the trading and the exchange coloring model, respectively). They can be
defined as follows:

• adding of a color: select two vertices u, v and a color c ∈ S(u); add c to S(v), i.e. set S(v) := S(v) ∪ {c};
• trading of a color: select two vertices u, v and a color c ∈ S(u); move c from S(u) to S(v), i.e. set S(u) := S(u) \ {c} and

S(v) := S(v) ∪ {c};
• exchange of colors: select two vertices u, v and two colors c ∈ S(u), d ∈ S(v); exchange c with d, i.e. set S(u) :=

(S(u) \ {c}) ∪ {d} and S(v) := (S(v) \ {d}) ∪ {c}.

Theminimal number of adding (trading, exchanging) operations that is needed to change a pair (G, S) into list colorable one
will be called the added (traded, exchanged) inflexibility and will be denoted by Iad(G, S) (Itr(G, S), Iex(G, S)). If such a change
is not possible, we assume Iad(G, S) = +∞ (Itr(G, S) = +∞, Iex(G, S) = +∞).

Fact 1 ([11]). Let G be a simple graph and S be a list assignment for G. Then
(1) Iad(G, S) is finite if and only if l ≥ χ , where χ is the chromatic number of G;
(2) Itr(G, S) is finite if and only if there exists a vertex coloring c : V →


v∈V S(v) such that every color i is used at most

|{v ∈ V : i ∈ S(v)}| times;
(3) if Iex(G, S) is finite then Itr(G, S) is finite; if Itr(G, S) is finite then Iad(G, S) is finite. �

Graph-theoretical properties of Iad, Itr and Iex were investigated in [11]. In this paperwe focus on complexity of computing
Iad, Itr and Iex for different graph classes and identifying computationally hard cases. First observe that the problems under
consideration are closely related to the list coloring, because the pair (G, S) is list colorable if and only if Iad(G, S) = 0
(Itr(G, S) = 0, Iex(G, S) = 0).

Fact 2. Consider any class of graphs G (with polynomial time verifiable membership), for which the list coloring problem is NP-
complete. Then for pairs (G, S) with G ∈ G:
(1) the problems of computing Iad, Itr and Iex are NP-hard;
(2) if G is closed under graph disjoint union operation then for every fixed t ∈ N the problems of verifying whether Iad(G, S) ≤ t,

Itr(G, S) ≤ t and Iex(G, S) ≤ t are NP-complete.

Proof. (1) Obvious, since verification whether Iad = 0 (Itr = 0, Iex = 0) is assumed to be NP-complete.
(2) It easily follows from the fact thatwhen performing atmost t list transformations on the graphmade of 2t+1 disjoint

copies of G, lists of vertices of some copy will not change. �

The above fact leads to the following conclusion: Iad, Itr and Iex can be computed efficiently only for those classes of graphs
for which the list coloring problem is polynomially solvable. Moreover, it shows that the problems of verifying inequalities
Iad(G, S) ≤ t , Itr(G, S) ≤ t and Iex(G, S) ≤ t are NP-complete even for subcubic planar graphs because the list coloring
problem for the class is known to be NP-complete [8,13].

Fact 3. Suppose that the list coloring problem on a certain (polynomially verifiable) class of graphs G is solvable in polynomial
time. Then for every fixed t ∈ N the verification whether Iad(G, S) ≤ t for G ∈ G (Itr(G, S) ≤ t, Iex(G, S) ≤ t) is also polynomial.

Proof. It follows immediately from the fact that there is a polynomial number of ways in which we can add/trade/exchange
at most t colors since t is a constant. �

Later we will see that when t is a part of the instance of the problem then it may become NP-hard.
The list coloring problem has its edge version—the so-called edge list coloring problem. In the problem, we are given a

graph G = (V , E) and edge list assignment S, i.e. a function that assigns nonempty finite subsets of N to edges of G. The goal
is to verify whether there is an edge S-coloring of G, i.e. a function c ′

: E → N so that:

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

D. Bogdanowicz et al. / Theoretical Computer Science 412 (2011) 4721–4728 4723

(1) c ′(e) ≠ c ′(f) for every two adjacent edges e, f ∈ E;
(2) c ′(e) ∈ S(e) for every edge e ∈ E.

If G has an edge S-coloring, the pair (G, S) is said to be edge list colorable.
Consensusmodels have their natural edge versions, too. This timewe are given a pair (G, S), whereG is a simple graph and

S is an edge list assignment forG. The goal is to verify if (G, S) can be changed into edge colorable pair (G, S ′), using analogous
transformations: adding, trading and exchanging of colors. As in vertex consensusmodels, we ask if it can be done and, if the
answer is yes, what is the minimal number of transformations needed to do so. We also define edge inflexibilities I ′ad(G, S),
I ′tr(G, S) and I ′ex(G, S) as the minimal number of added/traded/exchanged colors that change (G, S) into edge list colorable
one (or +∞, if it is not possible). Obviously I ′ad(G, S) = Iad(L(G), S), I ′tr(G, S) = Itr(L(G), S) and I ′ex(G, S) = Iex(L(G), S),
where L(G) is the line graph of G.

The remainder of the paper is organized as follows. In Section 2 we show that adding, trading and exchange models are
polynomially solvable on complete graphs. Next, in Section 3, we will show that the adding model and its edge version are
polynomially solvable on trees and even bounded cyclicity graphs. The trade model is not that simple—NP-completeness
occurs even in the case of trees of very simple structure (caterpillars) for both vertex and edge versions. However, bounding
the colors set’s size by any fixed constant reestablishes polynomiality; procedures for partial k-trees and simple almost trees
(edge version) will be presented in Section 4. Similar results for the exchange model will be presented, too.

2. Complete graphs

It is easy to see that the adding and the trading model do not differ much on complete graphs. Indeed, every color can
be used only once, so adding is equivalent to trading in this case. Moreover, for any shortest sequence of exchanges that
changes (Kn, S) into list colorable (Kn, S ′) there is an S ′-coloring of G such that exactly one of the two colors that appear in
any exchange in the sequence will be used in the S ′-coloring. This leads to the following conclusion:
Fact 4. For complete n-vertex graph Kn the inflexibility Iad(Kn, S) is finite if and only if l ≥ n. Moreover, Iad(Kn, S) = Itr(Kn, S) =

Iex(Kn, S). �

The problem of computing the added (traded/exchanged) inflexibility of complete graphs can be easily reduced to the
problem of finding maximum cardinality matching in bipartite graphs. Let us recall that we can find such a matching in a
given graph G in O(m

√
n) time [12].

Theorem 5. Computing of Iad(Kn, S) (Itr(Kn, S), Iex(Kn, S)) can be done in O(L
√
n + l) time.

Proof. Verifying whether Itr(Kn, S) is finite can be done in O(L) time by Fact 4. Then we construct a bipartite graph
G′

= (V ′

1 ∪ V ′

2, E
′), where V ′

1 = V (Kn), V ′

2 =


v∈V (Kn) S(v) and

E ′
= {{v, x} : v ∈ V ′

1 ∧ x ∈ V ′

2 ∧ x ∈ S(v)}.

We will show that ifM is a maximum cardinality matching in G′ then
Itr(Kn, S) = n − |M|.

(≤)We construct coloring c of Kn as follows. In the first step we set c(v) = x for all such vertices v that {v, x} ∈ M . In the
second step we color with colors from V ′

2 all remaining vertices in any way that leads to a proper coloring. This step needs
at most n − |M| trades.

(≥) Let c be a coloring of Kn that requires Itr(Kn, S) trades. ThenM ′
= {{v, c(v)} : v ∈ V ′

1 ∧ c(v) ∈ S(v)} is a matching in
G′. Vertices v for which {v, c(v)} /∈ M , are the only that require trades. Thus Itr(Kn, S) = n − |M ′

| ≥ n − |M|.
To complete the proof, it suffices to see that n(G′) = n + l andm(G′) = L. �

Notice that even a slight generalization of the problem, to the case when the graph is formed of two intersecting cliques
leads to NP-hardness—this follows from already mentioned NP-completeness of the list coloring for such graphs. The
problems of computing I ′ad, I

′
tr and I ′ex for complete graphs are also NP-hard since the list coloring problem is NP-complete

for line graphs of complete graphs [10].

3. Trees and almost trees

The complexity of the three consensus models differs on trees: the adding model is polynomially solvable; the trading
and exchange models are NP-complete. The same holds for their edge versions.

The adding model is closely related to the so-called cost list coloring problem. In the problem we are given a graph
G′

= (V ′, E ′), list assignment S ′ for G′ and the function f ′
: {(v, x) : v ∈ V ′

∧ x ∈ S ′(v)} → N ∪ {0}; we seek for an
S ′-coloring c ′ of G′ that minimizes its cost, i.e. the number

∑
v∈V ′ f ′(v, c ′(v)).

To see that these problems are related, let us consider an instance of the adding model. It consists of a graph G and list
assignment S for G. If we set G′

= G, S ′(v) =


u∈V S(u) for v ∈ V and

f ′(v, x) =


0 if x ∈ S(v),
1 otherwise,

then it should become obvious that the cost of any solution of the cost list coloring problem equals Iad(G, S).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4724 D. Bogdanowicz et al. / Theoretical Computer Science 412 (2011) 4721–4728

Fig. 1. The scheme of the reduction from the proof of Theorem 8.

The cost list coloring can be solved in linear time for trees by methods analogous to [9]. Moreover, it can be solved
for graphs with any fixed γ in O(n∆1+2γ) time (see [5] for even more general case of total coloring). Thus, we obtain the
following corollary.

Corollary 6. Iad can be computed in O(n∆1+2γ) time for graphs with fixed γ . Iad can be computed in linear time for trees. �

Similar reasoning can be applied to the edge version of adding model and the edge cost list coloring problem (the edge
equivalent of the cost coloring). The edge list coloring problem is solvable for graphs with any fixed γ in O(n∆2+γ log Cn)
time [5], where C = maxe∈E,x∈S′(e) f ′(e, x). Thus, we obtain the following corollary.

Corollary 7. I ′ad can be computed in O(n∆2+γ log n) time for graphs with fixed γ . I ′ad can be computed in O(n∆2 log n) for
trees. �

As we have seen, the adding model and its edge version are polynomially solvable for trees and graphs with bounded
cyclomatic number. The trading and exchange models are not that simple.

Theorem 8. The problem given as follows is NP-complete.

Instance: Tree G, list assignment S for G and a positive integer t;
Question: Is Itr(G, S) ≤ t?

Proof. It is known [4] that the following problem PTHC is NP-complete.

Instance: Path G′, list assignment S ′ for G′ and function p′
:


v∈V (G′) S

′(v)→ N satisfying
∑

v∈V (G′) p
′(v) = |V (G′)|;

Question: Is there an S ′-coloring of G′ such that each color x ∈


v∈V (G′) S
′(v) is used exactly p′(x) times?

We will show the polynomial reduction from it to our problem.
We construct a pair (G, S) as follows. Gwill be a supergraph of G′ obtained by executing two steps. At first we repeat the

following procedure for every vertex v ∈ V (G′):

(1) add two new vertices u1
v , u

2
v to G;

(2) add t(v) = |


u∈V (G′) S
′(u) \ S ′(v)| new vertices w1

v , w
2
v, . . . , w

t(v)
v to G;

(3) make newly added vertices pendant by connecting them with v.

Let v0 be an arbitrary vertex of G′. In the second step, for each color x ∈


v∈V (G′) S
′(v) we add to G p′(x) new vertices r1x ,

r2x , . . . , r
p′(x)
x and make them pendant by connecting with v0.

Let x0 /∈


v∈V (G′) S
′(v) be an integer. To receive S, execute the following procedure for every vertex v ∈ V (G′):

(1) set S(v) = S(u1
v) = S(u2

v) = {x0};
(2) set S(wi

v) for i = 1, 2, . . . , t(v) in such a way that |S(wi
v)| = 1, S(wi

v) ≠ S(wj
v) for i ≠ j and

t(v)
i=1 S(wi

v) =
u∈V (G′) S

′(u) \ S ′(v).

Finally, set S(r ix) = {x0, x} for all vertices r ix and set t = n(G′). The scheme of this reduction is given in Fig. 1.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

D. Bogdanowicz et al. / Theoretical Computer Science 412 (2011) 4721–4728 4725

It is easy to see thatG is a tree, S is a list assignment forG and |V (G)| =
∑

v∈V (G′)(L(S
′)−t(v)+2)+2n(G′) = O(n(G′)L(S ′)),

so the reduction is polynomial. To complete the proof, it suffices to show that there exists such S ′-coloring of G′ that each
color x ∈


v∈V (G′) S

′(v) is used exactly p′(x) times if and only if Itr(G, S) ≤ t .
(⇒) Let us suppose that there exists a coloring c ′ which fulfills restrictions created by a list of allowed colors and a

function p′ for the path G′. We construct a coloring c of G in the following way:
(1) c(v) = c ′(v) for v ∈ V (G′);
(2) c(u1

v) = c(u2
v) = x0 for v ∈ V (G′);

(3) c(wi
v) ∈ S(wi

v) is defined unambiguously, because |S(wi
v)| = 1;

(4) c(r ix) = x0.

Coloring c is not a legal list coloring, but only vertices v ∈ V (G′) receive colors which are not on their lists. We can obtain
a new list assignment for which the coloring is proper using t = n(G′) trades by moving the needed colors from lists of
vertices r ix. Therefore Itr(G, S) ≤ t .

(⇐) Note that, if Itr(G, S) ≤ t then Itr(G, S) = t , because for each v ∈ V (G′) 3-vertex path Gv induced in G by vertices v,
u1

v , u
2
v is not list colorable. Thus we need at least one trade for every Gv . The only way to do so is to use one trade to extend

S(v) by a color that does not appear on lists of vertices w1
v , w

1
v, . . . , w

t(v)
v that is a color from the list S ′(v). Thus, in each

trade a vertex r ix must appear exactly once because only vertices r ix have lists of size two; the situation fulfills the restrictions
created by function p′. Therefore, if Itr(G, S) ≤ t then there is a solution to the PTHC problem. �

We can see that the trees used in the proofs of Theorem 8 belongs to a special class of very simple trees called caterpillars
(paths with some pendant vertices attached to it). Two natural open problems arise: is it possible in polynomial time
(1) to compute Itr(G, S), where G is a path;
(2) to verify if Itr(G, S) is finite, where G is a tree?

By Fact 1, to answer the last question, it suffices to show how to solve the following problem in polynomial time: given a
tree G and positive integers c1, c2, . . . , cs; is there an s-coloring of G such that the number of vertices receiving color i is at
most ci? The solution is known if G is a path [3]:
(1) the s-coloring we are looking for exists if and only if

∑s
i=1 ci ≥ n and

∑s
i=1 ci − max1≤i≤s ci ≥ ⌊n/2⌋;

(2) the s-coloring, if exists, can be obtained by coloring vertices of G (from one endpoint to the other) by color j such that
obtained partial coloring is legal and cj − rj is as big as possible, where rj is the number of vertices currently colored by
color j (see [3] for details).

Theorem 9. The problem given as follows is NP-complete.

Instance: Tree G, list assignment S for G and a positive integer t;
Question: Is Iex(G, S) ≤ t?

Proof. We sketch the proof only since it is similar to the previous one. We show that PTHC can be reduced to our problem.
We construct (G, S) in a way described in the proof of Theorem 8 and, for every wj

v , add to G a new vertex ŵj
v such that wj

v

is its only neighbor and S(ŵj
v) = {x0}. Moreover, S(r ix) = {x} instead of {x0, x} for all r ix. It suffices to show that reduction

does not change the answer.
(⇒) We use the coloring constructed in the proof of Theorem 8 and extend it by setting c(ŵj

v) = x0. The rest of this part
is analogous to reasoning from the proof of Theorem 8.

(⇐) Every Gv needs at least one color (different from x0) from lists of the vertices from V (G) \


u V (Gu), so there are
exactly t exchanges. Vertices w

j
u cannot participate in exchanges since otherwise c(wj

u) = c(ŵj
u) = x0 in the final coloring

c. Therefore t vertices r ix must appear in exchanges (each of them in the other exchange). Thus there is a solution to the PTHC
problem. �

Theorem 10. The problem given as follows is NP-complete.

Instance: Tree (caterpillar) G, edge list assignment S for G and a positive integer t;
Question: Is I ′tr(G, S) ≤ t?

Proof. Careful analysis of the proof of NP-completeness of thePTHC problem (see the proof of Theorem8) given in [4] shows
that it remains NP-complete even if we assume that

v∈V (G′)

(S ′(v) \ S ′(w)) ∩ S ′(u1) ∩ S ′(u2) = ∅ (1)

for every vertex w of G′ that has two neighbors u1, u2. We will show the polynomial reduction from the above subproblem
of PTHC to our problem.

Without loss of generality we can assume that V (G′) = {v′

1, v
′

2, . . . , v
′

n(G′)
}, where v′

1 is one of the endpoints of G′, v′

2
is the neighbor of v′

1, v
′

3 is the only neighbor of v′

2 different from v′

1 and so on. Let C =


v∈V (G′) S
′(v) and x0, x1 /∈ C be

integers. We construct the graph G as follows:

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4726 D. Bogdanowicz et al. / Theoretical Computer Science 412 (2011) 4721–4728

Fig. 2. A scheme of the reduction from the proof of Theorem 10.

(1) V (G) = {vi, u1
i , u

2
i , v

j
i : 0 ≤ i ≤ n(G′) ∧ j ∈ Li} ∪ {r ix : x ∈ C ∧ 1 ≤ i ≤ p′(x)}, where L0 = C \ S ′(v′

1),
Li = C \ (S ′(v′

i−1) ∪ S ′(v′

i)) for 1 ≤ i ≤ n(G′) − 1 and Ln(G′) = C \ S ′(v′

n(G′)
).

(2) v0 is a neighbor of v1, v1 is a neighbor of v2 and so on;
(3) u1

i , u
2
i and v

j
i are pendant vertices connected with vi;

(4) r ix constitutes an n(G′)-vertex path with one endpoint connected to u2
n(G′)

.

To receive S, we assign sets to edges of G in the following way:

(1) S({vi, vi+1}) = {x0} for 0 ≤ i ≤ n(G′) − 1;
(2) S({vi, u1

i }) = {x0} and S({vi, u2
i }) = {x1} for 0 ≤ i ≤ n(G′);

(3) S({vi, v
j
i}) = {j} for 0 ≤ i ≤ n(G′) and j ∈ Li;

(4) for edges incident with r ix we assign lists of the form {x0, x1, x} (x ∈ C) in such a way that every x ∈ C is an element of
exactly p′(x) of those lists.

Finally, we set t = n(G′). The scheme of this reduction is given in Fig. 2.
Obviously, G is a tree (it is even a caterpillar) and S is an edge list assignment for G. The reduction is polynomial since

n(G) = 3n(G′) +
∑n

i=0 |Li| +
∑

x∈C p′(x) = O(n(G′)l(S ′)). To complete the proof, it suffices to show that there exists an
S ′-coloring of G′ such that each color x ∈


v∈V (G′) S

′(v) is used exactly p′(x) times if and only if I ′tr(G, S) ≤ t .
(⇐) Since I ′tr(G, S) ≤ t then after at most t trades we should be able to color edges of Gwith colors from their lists. Let c

be such a coloring. We will show that function c ′ given by c ′(v′

i) = c({vi−1, vi}) is a solution of PTHC.
Let H be the subgraph of G that consists of edges {vi, vi+1} and {vi, u1

i } (and all necessary vertices). H contains only one
maximal matching that consists of edges {vi, u1

i }. Moreover,H has 2n(G′)+1 edges and all its edges e satisfy S(e) = {x0}. All
edges that have color x0 (as a value of c)must be amatching. This implies that edges {vi, vi+1} are the only ones that enlarged
their lists, so there are exactly t trades. There is only one group of edges that could reduce their lists—the edges with lists
of cardinality at least 2, i.e. edges incident with vertices r ix, so the traded colors must be from C since S({vi, u2

i }) = {x1}.
But there are exactly t such edges and each of them could participate in at most one trade (there is only one color different
from x0 and x1 on their lists). This means that every such edge participated in one trade and, since there are exactly p′(x)
edges with color x ∈ C on their lists, color x participated in p′(x) trades. To complete the proof, it suffices to show that
c ′ is an S ′-coloring of G′. Since edges {vi−1, vi} have neighbors with lists {x0}, {x1} and {x} for all x ∈ Li ∪ Li−1, then
they could receive a color from C \ (Li−1 ∪ Li) only. But S ′(v′

i−2) ∩ S ′(v′

i) ⊆ S ′(v′

i−1) by (1) for 2 ≤ i ≤ n(G′) − 1 and
C \ (Li−1 ∪ Li) = (C \ Li−1) ∩ (C \ Li) = (S ′(v′

i−2) ∪ S ′(v′

i−1)) ∩ (S ′(v′

i−1) ∪ S ′(v′

i)) = S ′(v′

i−1). The same holds for i = 1 and
i = n(G′).

(⇒) Let c ′ be such S ′-coloring of G′ that color x ∈ C is used exactly p′(x) times. We construct edge coloring c of G as
follows:

(1) c({vi−1, vi}) = c ′(wi) for 1 ≤ i ≤ n(G′);
(2) c({vi, u1

i }) = x0, c({vi, u2
i }) = x1;

(3) c({vi, v
j
i}) ∈ S({vi, v

j
i}) is defined unambiguously, since |S({vi, v

j
i})| = 1;

(4) the remaining edges are colored alternately with x0 and x1.

Coloring c is not a legal edge list coloring, but only edges {vi−1, vi} receive colors which are not on their lists. We can obtain
a new list assignment for which the coloring is proper using t = n(G′) trades by moving the needed colors from lists of
edges incident with vertices r ix. Therefore I ′tr(G, S) ≤ t . �

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

D. Bogdanowicz et al. / Theoretical Computer Science 412 (2011) 4721–4728 4727

Theorem 11. The problem given as follows is NP-complete.

Instance: Tree (caterpillar) G, edge list assignment S for G and a positive integer t;
Question: Is I ′ex(G, S) ≤ t?

Proof. We sketch the proof only since it is similar to the proof of Theorem 10. The reduction is almost the same—the only
difference is that we use sets {x1, x} instead of {x0, x1, x} for edges incident to r ix.

(⇐) Similar reasoning to that from the analogous part of the proof of Theorem 10 leads to the conclusion that there are
exactly t exchanges and each of them takes color different from x0 from lists of edges outside H and adds it to lists of edges
{vi, vi+1}. Edges that participate in exchanges and do not belong to H must be incident to vertices rxj , because all the other
edges are incident with some {vj, u1

j } and c({vj, u1
j }) = x0. Moreover, every exchange must add a color different from x1 to

an edge {vi, vi+1}, because c({vj, u2
j }) = x1. Therefore every edge {vi, vi+1} exchanges color x0 with a color from C with edge

incident one of the vertices rxj . The rest of the proof proceeds like in the analogous part of the proof of Theorem 10.
(⇒) The reasoning is the same as in the previous proof (the only difference is thatweuse exchanges instead of trades). �

4. Bounded treewidth graphs

Let k be a positive integer. A graph G is called k-tree if and only if it satisfies one of the following conditions:

(1) G is a complete graph on k vertices;
(2) G has such a vertex v that the neighborhood of v induces a clique of size k in G and G − v is a k-tree.

Subgraphs of k-trees are called partial k-trees. It is easy to see that trees and connected partial 1-trees are synonyms.
Partial k-trees have very convenient representation for dynamic programming approach, the so-called tree-

decomposition. A tree-decomposition of a partial k-tree G is a pair (F , Γ), where F is a tree with set of vertices I and
Γ = {Xi : Xi ⊆ V , i ∈ I} satisfies the following conditions:

(1)


i∈I Xi = V ;
(2) for each edge {v, w} ∈ E, there is i ∈ I such that v, w ∈ Xi;
(3) Xi ∩ Xm ⊆ Xj for each triple i, j,m ∈ I such that j is on the path between i and m in F ;
(4) for each i ∈ I , |Xi| ≤ k + 1.

A nice tree-decomposition is a tree-decomposition with two new conditions added:

(1) F is a rooted (oriented) binary tree with root r;
(2) each node i of F is of one of the following four types:

(a) leaf node of F (and then |Xi| = 1);
(b) introduce node (having one child j and there exist v ∈ V such that Xi = Xj ∪ {v});
(c) forget node (having one child j and there exist v ∈ V such that Xj = Xi ∪ {v});
(d) join node (with two children j1, j2 and Xi = Xj1 = Xj2).

Every partial k-tree has a nice tree-decomposition [1,7]. A nice tree-decomposition of a given partial k-tree can be found in
linear time for any fixed k [1]. The number of nodes in F is also linear in terms of n. For each node i ∈ I we can define a triple
Gi = (Vi, Ei, Xi), where (Vi, Ei) is the subgraph of G induced by

Vi = {v : v ∈ Xj and j is i or a descendant of i in F}.

Now we consider the problem of computing of Itr for partial k-trees in the case when the number of colors is bounded.

Theorem 12. Let k, q ∈ N be constants. We can compute Itr(G, S) for partial k-trees G and list assignments satisfying l ≤ q in a
polynomial time.

Proof. Without loss of generality we can assume that


v∈V S(v) = {1, 2, . . . , l}. For every node i ∈ I we define Wi as
the set of all sequences c ′

: Xi → {1, 2, . . . , l}, n1, n2, . . . , nl, p1, p2, . . . , pl such that c ′ can be extended to a legal coloring
c : Vi → {1, 2, . . . , l} of Gi satisfying nx = |{v ∈ c−1(x) : x ∈ S(v)}| and px = |{v ∈ c−1(x) : x /∈ S(v)}| for all 1 ≤ x ≤ l.
Sets Wi will be computed starting from leaves of F and going up to the root. The procedure that computes Wi depends on
the type of node i:

(a) i is a leaf node. Then Vi = {v} for a certain vertex v ∈ V and it is easy to see that Wi consists of l sequences and the
xth sequence is:

• if x ∈ S(v): c ′, n1, n2, . . . , nl, 0, . . . , 0 where c ′(v) = x and nj = 1 for j = x and 0 otherwise;
• if x /∈ S(v): c ′, 0, . . . , 0, p1, p2, . . . , pl where c ′(v) = x and pj = 1 for j = x and 0 otherwise.

(b) i is an introduce node. Then all neighbors of v in Gi belong to Xi. For each sequence d, n1, n2, . . . , nl, p1, p2, . . . , pl
from Wj and color x ∈ {1, 2, . . . , l} \ d(Xj ∩ N(G, v)) we define c ′ as extension of d to Xi by setting c ′(v) = x. Wi consists of
sequences of the following form:

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4728 D. Bogdanowicz et al. / Theoretical Computer Science 412 (2011) 4721–4728

• if x ∈ S(v): c ′, n′

1, n
′

2, . . . , n
′

l , p1, . . . , pl where n′

j = nj + 1 for j = x and n′

j = nj otherwise;
• if x /∈ S(v): c ′, n1, . . . , nl, p′

1, p
′

2, . . . , p
′

l where p′

j = pj + 1 for j = x and p′

j = pj otherwise.

(c) i is a join node. Then all common vertices of Gj1 and Gj2 belong to Xi and there are no edges that would connect Vj1 \Xi

with Vj2 \ Xi. For each pair of sequences d, n1
1, n

1
2, . . . , n

1
l , p

1
1, p

1
2, . . . , p

1
l (fromWj1) and d, n2

1, n
2
2, . . . , n

2
l , p

2
1, p

2
2, . . . , p

2
l (from

Wj2) we define dnx = |{u ∈ Xi : d(u) = x ∈ S(u)}| and dpx = |{u ∈ Xi : d(u) = x /∈ S(u)}|; Wi consists of sequences of the
form d, n1

1 + n2
1 − dn1, . . . , n1

l + n2
l − dnl, p11 + p21 − dp1, . . . , p1l + p2l − dpl.

(d) i is a forget node. ThenWi = {(c ′
|Vi , n1, . . . , nl, p1, . . . , pl) : (c ′, n1, . . . , nl, , p1, . . . , pl) ∈ Wj}.

Finally, when Wr is known, we can calculate Itr . First, we remove from Wr all sequences c ′, n1, n2, . . . , nl, p1, p2, . . . , pl
for which there is x fulfilling nx + px > |{v ∈ V : x ∈ S(v)}|. Second, we note that

Itr(G, S) =


+∞ ifWr = ∅,

min


l−

x=1

px : (c ′, n1, . . . , nl, p1, . . . , pl) ∈ Wr


otherwise.

Wi has at most lk+1n2l elements and it can be constructed in O(n4l) time even in the most demanding case of a join node.
Therefore the algorithm is polynomial and its complexity is O(n4l+1). �

As we have shown in the previous section, if we allow unbounded number of colors, the problem becomes NP-complete.
The case of computing Iad is different—it is polynomially solvable for partial k-trees without restriction on colors set’s size.

Corollary 13. Let k ∈ N be a constant. We can compute Iad(G, S) for partial k-trees G in a polynomial time.

Proof. Computing of Iad can be reduced to the cost list coloring (see Section 4 for details). The thesis follows now from the
fact that this problem is polynomially solvable for partial k-trees [6]. �

Now we prove a result similar to that of Corollary 7, but in the trade model.

Lemma 14. The line graph of G is a partial (∆ + γ − 1)-tree.

Proof. Graph arising from partial k-tree H by adding a new vertex v (and some edges incident to it) is a partial (k+ 1)-tree.
Indeed, the tree-decomposition of the graph arises from tree-decomposition of H by adding v to all sets Xi.

Since every connected graph can be formed from a spanning tree by adding γ edges (whichmeans that its line graph can
be formed from line graph of a tree by adding γ vertices and some edges incident to them), it suffices to prove our claim for
trees. But it is easily seen that line graph of a tree G is a partial (∆ − 1)-tree since we can define its tree-decomposition by
setting F = G, I = V and Xv = {e ∈ E : v is incident with e} for all v ∈ V . �

Corollary 15. Let t, q ∈ N be constants. We can compute I ′tr(G, S) for graphs G with γ ≤ t and list assignments satisfying l ≤ q
in a polynomial time.

Proof. If ∆ > q then obviously I ′tr = +∞. Otherwise the line graph of G is a partial (q + t − 1)-tree and the thesis follows
by Theorem 12. �

References

[1] H.L. Bodlaender, Treewidth: algorithmic techniques and results, Lecture Notes in Computer Science 1295 (1997) 19–36.
[2] C.J. Colbourn, Complexity of completing partial Latin squares, Discrete Applied Mathematics 8 (1984) 25–30.
[3] D. de Werra, On a multiconstrained model for chromatic scheduling, Discrete Mathematics 94 (1999) 171–180.
[4] M. Dror, G. Finke, S. Gravier, W. Kubiak, On the complexity of a restricted list-coloring problem, Discrete Mathematics 195 (1999) 103–109.
[5] K. Giaro, M. Kubale, Efficient list cost coloring of vertices and/or edges of bounded cyclicity graphs, Discussiones Mathematicae Graph Theory 29

(2009) 361–376.
[6] K. Jansen, The optimum cost chromatic partition problem, Lecture Notes in Computer Science 1203 (1997) 25–36.
[7] K. Jansen, P. Scheffler, Generalized coloring for tree-like graphs, Discrete Applied Mathematics 75 (1997) 135–155.
[8] J. Kratochvil, Z. Tuza, Algorithmic complexity of list colorings, Discrete Applied Mathematics 50 (1994) 297–302.
[9] L.G. Kroon, A. Sen, H. Deng, A. Roy, The optimal cost chromatic partition problem for trees and interval graphs, Lecture Notes in Computer Science

1197 (1997) 279–292.
[10] M. Kubale, Some results concerning the complexity of restricted colorings of graphs, Discrete Applied Mathematics 36 (1992) 35–46.
[11] N.V.R. Mahadev, F.S. Roberts, Consensus list colorings of graphs and physical mapping of DNA, DIMACS, Technical Report, 2002.
[12] S. Micali, V.V. Vazirani, An O(

√
| V | | E |) algorithm for finding maximum matching in general graphs, in: 21st Annual Symposium on Foundations

of Computer Science, 1980, pp. 17–27.
[13] Z. Tuza, Graph colorings with local constraints—a survey, Discussiones Mathematicae Graph Theory 17 (1997) 161–228.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

	Consensus models: Computational complexity aspects in modern approaches to the list coloring problem
	Introduction
	Complete graphs
	Trees and almost trees
	Bounded treewidth graphs
	References

