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In this note we prove a conjecture and improve some results presented in a recent paper of
Sridharan et al. [N. Sridharan, M.D. Elias, V.S.A. Subramanian, Total reinforcement number
of a graph, AKCE Int. J. Graphs Comb. 4 (2) (2007) 197–202].
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1. Introduction

A total dominating set, abbreviated as TDS, of a graph G is a set S of vertices of G such that every vertex in G is adjacent
to a vertex in S. Every graph without isolated vertices has a TDS, since V (G) is such a set. The total domination number of
G, denoted by γt(G), is the minimum cardinality of a TDS of G. A TDS of G of cardinality γt(G) is called a γt(G)-set. Total
domination was introduced by Cockayne et al. [3] and is now well studied in graph theory. The literature on the subject of
domination parameters in graphs has been surveyed and detailed in the two books [6,7]. A recent survey of total domination
in graphs can be found in [8].

A dominating set S in a graph G is a set of vertices of G such that each vertex not in S is adjacent to a vertex of S. The
domination number of G, γ (G), equals the minimum cardinality of a dominating set. Kok and Mynhardt [9] introduced
the reinforcement number r(G) of a graph as the minimum number of edges that have to be added to the graph in order
to decrease the domination number. Since the domination number of every graph G is at least 1, by convention Kok and
Mynhardt defined r(G) = 0 if γ (G) = 1.

This concept of the reinforcement number in a graph was further considered for several domination variants, including
fractional domination and independent domination. See, for example, [2,4,5,11] and elsewhere. Sridharan et al. [10] introduced
the concept of total reinforcement in graphs. The total reinforcement number, rt(G), of a graph with no isolated vertex is the
minimum number of edges that need to be added to the graph in order to decrease the total domination number. Since the
total domination number of every graph G with no isolated vertex is at least 2, by convention rt(G) = 0 if γt(G) = 2. Total
reinforcement in trees was recently studied by Blair et al. in [1].

In this paper we prove a conjecture due to Sridharan, Elias, and Subramanian [10] on the total reinforcement number of
a graph, as well as improving some results presented in [10].
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1.1. Notation

For notation and graph theory terminology not defined herein, we refer the reader to [6]. Let G = (V , E) be a graph
with vertex set V of order n = |V | and edge set E of size m = |E|, and let v be a vertex in V . The open neighborhood of v is
NG(v) = {u ∈ V | uv ∈ E} and the closed neighborhood of v is NG[v] = {v} ∪ NG(v). If the graph G is clear from the context,
we simply write N(v) and N[v] rather than NG(v) and NG[v], respectively. For a set S ⊆ V , its open neighborhood is the set
N(S) =


v∈S N(v) and its closed neighborhood is the set N[S] = N(S) ∪ S. The degree of a vertex v in G is dG(v) = |NG(v)|.

The maximum degree among the vertices of G is denoted by ∆(G). A cycle on n vertices is denoted by Cn, while a path on n
vertices is denoted by Pn.

If X and Y are subsets of vertices in a graph G, then the set X totally dominates Y in G if Y ⊆ N(X). In particular, if Y = V ,
then X is a TDS in G. An efficient total dominating set in a graph G = (V , E) is a TDS S in G for which the open neighborhoods
N(v), where v ∈ S, form a partition of V . Thus if S is an efficient total dominating set in G, then |N(v) ∩ S| = 1 for every
vertex v ∈ S.

Suppose that S ⊆ V and that v ∈ S. The S-private neighborhood of v, denoted by pn(v, S), consists of all vertices in the
open neighborhood of v but not in the open neighborhood of S\{v}; that is, pn(v, S) = N(v)\N(S\{v}). Thus if u ∈ pn(v, S),
then N(u) ∩ S = {v}. We call a vertex u ∈ pn(v, S) an S-private neighbor of v. The S-external private neighborhood of v is
defined by epn(v, S) = pn(v, S) ∩ (V \ S) and its S-internal private neighborhood by ipn(v, S) = pn(v, S) ∩ S. Hence,
pn(v, S) = epn(v, S) ∪ ipn(v, S). We call a vertex in the set epn(v, S) an external S-private neighbor of v, and a vertex in
ipn(v, S) is called an internal S-private neighbor of v.

1.2. Known results

Sridharan et al. [10] studied the total reinforcement number of a graph. In particular, they obtained the following results.

Theorem A ([10]). Let G ≠ mK2 be a graph with γt(G) ≥ 3 and with maximum degree ∆, and let D be an arbitrary γt(G)-set.
If rt(G) = ∆, then the graph G satisfies the following conditions.

(1) G[D] = mK2 and |V (G)| = 2m∆ for some integer m ≥ 2.
(2) Every vertex in D is of maximum degree ∆.
(3) Every vertex in V (G) \ D is adjacent to exactly one vertex in D.

Theorem B ([10]). If G is a graph of order n with γt(G) ≥ 3 and with maximum degree ∆, then rt(G) ≤ min {∆, ⌊(n − 2)/2⌋}.

Sridharan et al. [10] made the following conjecture.

Sridharan–Elias–Subramanian Conjecture ([10]). The three necessary conditions for rt(G) = ∆(G) given in Theorem A are
also sufficient conditions.

2. The main result

We now state and prove our results.

Theorem 1. If G is a graph of order n with γt(G) ≥ 3, then rt(G) ≤ n/γt(G). Further if equality holds, then G has an efficient
total dominating set all of whose vertices have the same degree in G.

Proof. Suppose that G = (V , E) and let D be a γt(G)-set. Then, pn(v,D) ≠ ∅ for every vertex v ∈ D. By assumption, |D| ≥ 3.
Let v be a vertex in D with |pn(v,D)| a minimum. Since

w∈D

pn(w,D) ⊆ V ,

we have that

|D| · |pn(v,D)| ≤

−
w∈D

|pn(w,D)| =


w∈D

pn(w,D)

 ≤ n, (1)

and so |pn(v,D)| ≤ n/|D| = n/γt(G). We now construct a graph H from G as follows. If ipn(v,D) = ∅, then let u be an
arbitrary vertex in D \ {v} and let H be the graph obtained from G by joining u to every vertex in pn(v,D). If |ipn(v,D)| ≥ 1,
suppose that u ∈ ipn(v,D). If |ipn(v,D)| = 1, let H be the graph obtained from G by joining u to every vertex in epn(v,D)
and to one vertex in D \ {u, v}. If |ipn(v,D)| ≥ 2, let H be the graph obtained from G by joining u to every vertex in
pn(v,D) \ {u}. In all three cases, the set D \ {v} is a total dominating set in H and we add at most |pn(v,D)| edges to G.
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Hence, rt(G) ≤ |pn(v,D)| ≤ n/γt(G). Further if rt(G) = n/γt(G), then in particular |pn(v,D)| = n/|D| = n/γt(G). This
implies equality throughout the inequality chain (1). Therefore, |pn(v,D)| = |pn(w,D)| for all w ∈ D and

w∈D

pn(w,D) = V .

This in turn implies that D is an efficient total dominating set in G all of whose vertices have the same degree in G. �

As a consequence of Theorem 1, we have the following result.

Theorem 2. Let G be a graph with γt(G) ≥ 3 and with maximum degree ∆. Then, rt(G) ≤ ∆, with equality if and only if G has
an efficient total dominating set all of whose vertices have degree ∆ in G.

Proof. Let G = (V , E) have order n and let D be a γt(G)-set. Then,
v∈D

N(v) = V ,

and so,

n = |V | =


v∈D

N(v)

 ≤

−
v∈D

d(v) ≤ |D| · ∆, (2)

or, equivalently, n/γt(G) = n/|D| ≤ ∆. Hence by Theorem 1, rt(G) ≤ ∆. This establishes the desired upper bound.
Suppose that rt(G) = ∆. Then, rt(G) = n/γt(G) = ∆. By Theorem 1, rt(G) = n/γt(G) implies that G has an efficient total

dominating set all of whose vertices have the same degree in G. Further, n/γt(G) = ∆ implies that we must have equality
throughout the inequality chain (2). Therefore, d(v) = ∆ for every vertex v ∈ D. Hence, G has an efficient total dominating
set all of whose vertices have degree ∆ in G.

Conversely, let G be a graph with γt(G) ≥ 3 and with maximum degree ∆ and suppose that G has an efficient total
dominating set S all of whose vertices have degree ∆ in G. Then, V = NG(S), and so, n = |V | = |NG(S)| = ∆|S|. Let E ′ be
a minimum set of edges that need to be added to G in order to decrease the total domination number. Then, rt(G) = |E ′

|.
Suppose that H = G+ E ′ and let S ′ be a γt(H)-set. Then, V = NH(S ′), and so |NH(S ′)| = |V | = n = ∆|S|. Let V ′

= V \NG(S ′)
denote the set of vertices not totally dominated by the set S ′ in G. Then, |V ′

| ≤ |E ′
|. Thus since |S ′

| < |S|, we have that
|NH(S ′)| = |NG(S ′)| + |V ′

| ≤ ∆|S ′
| + |E ′

| ≤ ∆(|S| − 1) + |E ′
|. Hence, ∆|S| = |NH(S ′)| ≤ ∆(|S| − 1) + |E ′

|, and so
rt(G) = |E ′

| ≥ ∆. As shown earlier, rt(G) ≤ ∆ for all graphs Gwith no isolated vertex. Consequently, rt(G) = ∆. �

A proof of the Sridharan–Elias–Subramanian conjecture is an immediate consequence of Theorem 2 since a graph G has
an efficient total dominating set all of whose vertices have maximum degree ∆ in G if and only if the three conditions given
in Theorem A hold.

As observed earlier, if G is a graph of order n with γt(G) ≥ 3 and with maximum degree ∆, then n/γt(G) ≤ ∆. Further,
n/γt(G) ≤ n/3. Hence, Theorem 1 is a stronger result than that of Theorem B.

The total reinforcement number of a path and a cycle can now be computed by using Theorem 2. By convention,
rt(Pn) = rt(Cn) = 0 for n = 3 or n = 4.

Corollary 3. For n ≥ 5, rt(Pn) = rt(Cn) =


2 if n ≡ 0 (mod 4)
1 if n ≢ 0 (mod 4).

Proof. Suppose that n ≥ 5 and that G ∈ {Pn, Cn}. By Theorem 2, rt(G) ≤ ∆(G) = 2. Further suppose that rt(G) = 2.
Then, by Theorem 2, G has an efficient total dominating set all of whose vertices have degree 2 in G. This implies that n ≡ 0
(mod 4). �
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