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a b s t r a c t

In this paper we consider the problem of connected edge searching of weighted trees.
Barrière et al. claim in [L. Barrière, P. Flocchini, P. Fraigniaud, N. Santoro, Capture of
an intruder by mobile agents, in: SPAA’02: Proceedings of the Fourteenth Annual ACM
Symposium on Parallel Algorithms and Architectures, ACM, New York, NY, USA, 2002,
pp. 200–209] that there exists a polynomial-time algorithm for finding an optimal search
strategy, that is, a strategy that minimizes the number of used searchers. However, due to
some flaws in their algorithm, the problem turns out to be open. It is proven in this paper
that the considered problem is strongly NP-complete even for node-weighted trees (the
weight of each edge is 1) with one vertex of degree greater than 2. It is also shown that
there exists a polynomial-time algorithm for finding an optimal connected search strategy
for a given bounded degree tree with arbitrary weights on the edges and on the vertices.
This is an FPT algorithm with respect to the maximum degree of a tree.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The background and related work

Given a simple undirected graph G, a fugitive is located on an edge of G. The task is to design a sequence of moves of
a team of searchers that results in capturing the fugitive. The fugitive is invisible for the searchers — they can deduce the
location of the fugitive only from the history of their moves; the fugitive is fast, i.e. whenever he moves, he can traverse a
path of arbitrary length in the graph, as long as the path is free of searchers. Finally, the fugitive has a complete knowledge
about the graph and about the strategy of the searchers, which means that he will avoid the capture as long as it is possible.
The allowable moves for the searchers are, in general, placing a searcher on a vertex, removing a searcher from a vertex
and sliding a searcher along an edge of G. An edge is clear if it cannot contain the fugitive, otherwise it is contaminated.
Capturing the fugitive is then equivalent to clearing all the edges of G. The minimum number of searchers sufficient to clear
the graph is the search number of G, denoted by s(G). The edge searching problem has been introduced by Parsons in [31].
The corresponding node searching problem was first studied by Kirousis and Papadimitriou in [24]. For surveys on graph
searching problems, see [1,16].

A key property of a search strategy is the monotonicity. A search is monotone if the strategy ensures that the fugitive
cannot reach an edge that has been already cleared. For most graph searching models it has been proven that there exists
an optimal search strategy that is monotone. The minimum number of searchers needed to construct a monotone search
strategy for G is denoted by ms(G).

We say that a search is internal if removing the searchers from the graph is not allowed, while for the search to be
connectedwe require that after eachmove of the searchers, the subgraph of G that is clear is connected. The smallest number
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k forwhich a connected k-search strategyS exists is called the connected search number ofG, denoted bycs(G). Theminimum
number of k searchers such that there exists a monotone connected k-search for G is called the monotone connected search
number of G, and is denoted by mcs(G). If a (monotone) connected search strategy S uses (mcs(G)) cs(G) searchers, then
S is called an optimal (monotone) connected search strategy for G. Of particular interest are the connections between the
searching numbers. Clearly, cs(G) ≥ s(G) for each graph G, since each connected search strategy is also a search strategy.
For upper bounds on connected search number see e.g. [2,10,15,18].

It has been proven that recontamination does help for connected searching [35], and the difference between cs(G) and
mcs(G) can be arbitrarily large for some graphs G [35]. However, if T is a tree then cs(T ) = mcs(T ) [2]. Several algorithmic
results for connected searching of special classes of graphs are known, including (unweighted) trees [2], chordal graphs [29],
hypercubes [14,12], a pyramid [32], chordal rings and tori [13], or outerplanar graphs [17]. For results on searching planar
graphs with small number of searchers and small number of connected components of the cleared subgraph see [30]. The
non-connected searching problem for weighted trees has been proven to be NP-complete [28].

For different models of weighted graph searching and related robotic pursuit/evasion problems see e.g. [5,20,21,23,26,
34].

1.2. The summary of the results

Authors in [3] claimed an efficient algorithm for connected searching of weighted trees. However, due to some flaws in
the algorithm, it does not always produce an optimal solution (see [22,25] and Fig. 2 in Section 3 for some examples), which
results in a heuristic. The complexity status of searching weighted trees turns out to be NP-complete, which we prove in
this work. This gives a motivation for finding non-trivial subclasses of trees that are computationally tractable. From the
NP-completeness proof presented here it follows that if a tree has been partially cleared, i.e. for a given vertex v a subset X of
edges incident to v is contaminated, then finding the order of clearing the edges in X in an optimal connected search strategy
is, in general, ‘as difficult’ as finding the strategy itself. For this reasonwe focus on an algorithmdesigned for bounded degree
trees. However, unlike in the case of searching unweighted trees (both in the classical and connected models), if several
pairwise disjoint subtrees of the tree to search are contaminated, then, in general, a connected search strategy that clears
them sequentially (i.e. clears all the edges of one tree and then proceeds to clearing another tree) might not be optimal. We
design an algorithm using the dynamic programming method (we keep a collection of search strategies for some subtrees)
togetherwith a greedy rule that allowus to narrowdown the search space and derive a polynomial running time for bounded
degree trees with arbitrary weight functions. This in particular implies that the connected searching problem for weighted
trees is FPT on instances of bounded maximum degree.

This paper is organized as follows. In the next section we give the necessary definitions. In Section 3 we analyze the
basic properties of connected searching of weighted trees. Then, in Section 4, we give an algorithm for computing optimal
search strategies for weighted trees. The algorithm is exponential in the maximum degree of a tree. Thus, it is designed for
trees of bounded degree. Section 5 deals with the complexity of searching trees. In Section 5.2 we prove that finding an
optimal connected search of a weighted tree is strongly NP-hard, i.e. it is NP-hard for trees with integer weight functions
with polynomially (in the size of the tree) bounded values on the vertices and edges. This justifies the exponential, in general,
running time of the algorithm. In order to present the proofwe need a preliminary result that a special instance of scheduling
time-dependent tasks is NP-complete, which is proven in Section 5.1.

2. Preliminaries

In the following we assume that all graphs G = (V (G), E(G), w) are connected, i.e. there exists a path between each pair
of vertices of G. The sets V (G) and E(G) are, respectively, the vertices and the edges of G, while w: V (G) ∪ E(G) → N+ is
a weight function. (N+ is the set of positive integers.) For the standard graph theoretic notation used in this paper see e.g.
[11,33].

Nowwe give a formal definition of connected searching. Let k ≥ 0 be an integer. Initially all the edges of aweighted graph
G = (V (G), E(G), w) are contaminated. A connected k-search strategy S selects a vertex v0 ∈ V (G), called the homebase, and
places k searchers on v0. Each move of S consists of sliding j ≥ 1 searchers along an edge e ∈ E(G). If e is contaminated,
then we require j ≥ w(e), and e becomes clear as a result of the move. An edge uv ∈ E(G) becomes contaminated if there
exists an edge vy that can contain the fugitive (i.e. vy is contaminated) and less than w(v) searchers occupy v. The set of
clear edges has to form a connected subgraph after each move of S. After the last move of S all the edges of G are clear. If
no edge becomes recontaminated during S, then S is calledmonotone. In the Connected Searching (CS) problem we ask, for
the given G and k, whether there exists a connected k-search strategy for G. The minimum integer k such that there exists a
(monotone) connected k-search strategy for G is the (monotone) connected search number of G, denoted by (mcs(G)) cs(G).
A (monotone) connected (mcs(G)-) cs(G)-search strategy is called optimal. In the optimization version of CS the goal is to
minimize the number of searchers needed to clear G.

Given any strategy S, s(S) is the number of searchers used by S, |S| is the number of moves in S and S[i] is its ith move,
1 ≤ i ≤ |S|. For each i = 1, . . . , |S|, δ(S[i]) is the set of vertices v, occupied by searchers at the end of move i, such that
there exists a contaminated edge incident to v. We say that the vertices in δ(S[i]) are guarded in step i. Thus, if at the end of
move S[i] there exists a vertex v ∈ δ(S[i]) and less than w(v) searchers occupy v, then a recontamination occurs.
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Forcing a connected search strategy to select different homebases results in different number of searchers required to
clear a graph G. The problem where the homebase is a part of the input is denoted by CSFH (Connected Searching problem
with Fixed Homebase).

The number of searchers used for guarding at the end of step S[i] is denoted by |S[i]|. Note that

|S[i]| =

−
v∈δ(S[i])

w(v).

The searchers which are not used for guarding in a given step S[i] are called free searchers in step i. In particular, if more than
w(v) searchers occupy v ∈ δ(S[i]), then w(v) of them are guarding v, while the remaining ones are considered to be free.
Free searchers can move arbitrarily along the clear edges until the next move S[i′], i′ > i, which clears an edge uv, where
u ∈ δ(S[i]). Themove S[i′] can be performed only if the required number of j searchers (with j′ free searchers among them),
which will slide along uv in S[i′], is at u. So, each move among S[i + 1], . . . , S[i′ − 1] which is not necessary for gathering
the j searchers for clearing uv in S[i′] can be performed after S[i′]. Moreover, each set of j′ searchers, which are free at the
end of move S[i], can be used to clear uv in S[i′]. For this reason, we do not list the moves of sliding searchers along clear
edges. Thus, due to this simplifying assumption, |S| = |E(G)| for each monotone search strategy S.

We say that a strategy is partial if it clears a subset of the edges of G. Given a search strategy S for G, the symbol S[≼i],
i ∈ {1, . . . , |S|}, is used to denote the partial search strategy consisting of themoves S[1], . . . , S[i]. Clearly, if S is connected,
then S[≼i] is also connected (with the same homebase). Given a partial search strategy S′, we extend our notation so that
δ(S′) is the set of guarded vertices after the last move of S′, δ(S′) = δ(S′

[|S′
|]). The symbol CE(S

′) denotes the set of edges
cleared by a partial strategy S′. In particular, if S clears G, then δ(S) = ∅ and CE(S) = E(G).

3. Searching trees — basic properties

We will make several simplifying assumptions on connected search strategies restricted to weighted trees T =

(V (T ), E(T ), w). We use the symbol cs(T , r) to denote the minimum number of searchers needed to clear T when r is
the homebase. Then,

cs(T ) = min{cs(T , v): v ∈ V (T )}. (1)

To simplify the notation, all considered trees T are rooted at the homebase r ∈ V (T ). In the remaining part of this paper we
consider the CSFH problem with the homebase r , unless stated otherwise.

Given a tree T = (V (T ), E(T ), w) rooted at r ∈ V (T ), Ev is the set of edges between v and its children, v ∈ V (T ), and Tv

is the subtree of T rooted at v.
For each tree T it holds mcs(T ) = cs(T ) [2,3]. Thus, in what follows each connected search strategy is monotone. As

mentioned in Section 2, we only list the clearing moves of a search strategy S, which implies |S| = |E(T )|.
Consider a connected search strategy S for T . Let S[i] be a move of clearing an edge uv. If v is a leaf and v ≠ r , then the

number of searchers that need to slide along uv to clear it in step S[i] is w(uv). When uv gets clear at the end of move S[i],
there is no need to guard v, which means that the searchers that reach v in S[i] are free at the end of the move S[i]. This
holds regardless of the weight of v, w(v). Similarly, if v is a leaf and v = r , then i = 1 and max{w(uv), w(u)} searchers
suffice to clear uv, and r does not have to be guarded at the end of move S[1]. So, we may w.l.o.g. assume that

w(v) = 1 for each leaf v ∈ V (T ). (2)

Given a connected search strategy S for T with homebase r , consider a move S[i] of clearing an edge uv, where v is a
child of u. At the beginning of S[i] the vertex v is unoccupied and u is guarded by w(u) searchers. To clear uv we need to
slide max{w(uv), w(v)} searchers along uv. If w(uv) < w(v), then by (2) v is not a leaf of T , which means that at the end
of move S[i] at least w(v) searchers have to occupy v. This means that we have to slide w(v) searchers along uv regardless
of w(uv). Thus, for each edge uv, where u is the parent of v we w.l.o.g. obtain

w(uv) ≥ w(v). (3)

Our next simplifying assumption is considering the CS and CSFH problems for node-weighted trees only, and we argue
that it does not lead to the loss generality. Consider now a new tree T ′

= (V (T ′), E(T ′), w′) obtained from T by replacing
each edge uv by two edges uxuv and vxuv , where xuv is a new vertex of T ′ corresponding to the edge uv of T (in other words,
we subdivide the edges of T to obtain T ′). Let w′(uxuv) = w′(vxuv) = 1 and w(xuv) = w(uv) for each uv ∈ E(T ) and let
w′(v) = w(v) for each v ∈ V (T ). Clearly, |E(T ′)| = 2|E(T )|.

For an example of all the transformations given above see Fig. 1.

Lemma 1. For each T and its corresponding tree T ′, cs(T ′, r) = cs(T , r) for each r ∈ V (T ).

Proof. Given a connected search strategy S for T , we construct a connected search strategy S′ for T ′ as follows. Each move
S[i], 1 ≤ i ≤ |S|, clearing an edge uv, where u is the parent of v, is replaced by two moves S′

[2i − 1] and S[2i] of clearing
the edges uxuv and vxuv , respectively. A simple induction on the number of moves in S allows us to prove that s(S′) = s(S).
Indeed, by (3), clearing uv in S requires w(uv) searchers excluding the searchers used for guarding, and by the definition of
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Fig. 1. (a) A rooted tree with node and edge weights; (b) the weight of each leaf is 1; (c) the corresponding tree satisfying (3); (d) the node-weighted tree
T ′ obtained from T .

T ′, w(uv) searchers are sufficient to clear uxuv and vxuv resulting in the same set of guarded vertices in S and S′ after moves
S[i] and S′

[2i], respectively. This proves that cs(T ′, r) ≤ cs(T , r).
Let S′ be a connected search strategy for T ′. We may w.l.o.g. assume that if S′

[i] clears an edge uxuv , where xuv is a child
of u then, a move of clearing vxuv follows, because w(v) ≤ w(vxuv) by (3). Two consecutive moves of clearing uxuv and vxuv
in S′ can be translated into clearing uv in a connected search strategy which requires w(uv) = w′(xuv) searchers. Thus,
s(S) = s(S′), and consequently cs(T , r) ≤ cs(T ′, r). This proves that cs(T , r) = cs(T ′, r). �

In the remaining part of this paper we assume that the weight of each edge e ∈ E(T ) is 1.

Definition 1. Let S and S′ be partial (not necessarily connected) search strategies for T and T − CE(S), respectively. Let
R ⊆ δ(S) be the set of vertices initially occupied in S′. We define a search strategy S ⊕ S′ as follows:

1. (S ⊕ S′)[i] = S[i] and δ((S ⊕ S′)[i]) = δ(S[i]) for each i = 1, . . . , |S|,
2. (S ⊕ S′)[|S| + i], i = 1, . . . , |S′

|, clears the edge cleared in the move S′
[i], while the set of guarded vertices at the end of

the move (S ⊕ S′)[|S| + i] is δ((S ⊕ S′)[|S| + i]) = (δ(S) \ R) ∪ δ(S′
[i]).

In other words, S ⊕ S′ clears all the edges cleared by S and S′ in the order corresponding to the moves
S[1], . . . , S[|S|], S′

[1], . . . , S′
[|S′

|]. Note that in particular CE((S ⊕ S′)[≼i]) = CE(S[≼i]) for each i = 1, . . . , |S|, and
CE((S ⊕ S′)[≼(|S| + i)]) = CE(S) ∪ CE(S

′
[≼i]) for each i = 1, . . . , |S′

|. Furthermore, for S ⊕ S′ to be a partial connected
search with homebase r , S has to be a partial connected search with homebase r , while S′ does not have to be connected,
but the choice of R guarantees that each subgraph cleared by S′ has a common vertex with δ(S).

Definition 2. Suppose that we are given a tree T rooted at a homebase r , a vertex v ∈ V (T ), and an integer k ≥ 0. We say
that a partial connected k-search strategy Sv for Tv with homebase v, v ∈ V (T ), is (k, v)-minimal if w(δ(Sv)) ≤ w(v) and
w(δ(Sv)) ≤ w(δ(S′

v)) for each partial connected k-search S′
v for Tv with homebase v.

It follows from the definition that a (k, v)-minimal search strategy is also assumed to be partial and connected.
Before we continue, we give an informal description of the above concept of minimal strategies. A (k, v)-minimal search

strategy Sv (v is the homebase) partially clears Tv and uses at most k searchers. When Sv finishes, i.e. at the end of its last
move, the total weight of all guarded vertices in Tv is not greater than w(v) (guarding is necessary to protect the cleared
subgraph from recontamination, which can occur due to the edges that have not been cleared by Sv). Moreover, Sv is the
‘best’ strategy that achieves that, i.e. no partial connected k-search strategy with homebase v can ‘reach’ in Tv a ‘border’ of
smaller total weight than that of Sv .

A strategy Sv is not minimal if there exists no k such that S is (k, v)-minimal. A partial connected search strategy S for
Tr can be extended to a (k, r)-minimal search strategy for Tr if there exists a search strategy S′ such that S ⊕ S′ is a (k, r)-
minimal search strategy for Tr . The latter in particular implies that s(S) ≤ k. Given a tree Tr and E ′

⊆ E(Tr), Tr − E ′ is the
set of maximal rooted subtrees induced by the edges in E(Tr) \ E ′.

The following lemma will be used to simplify our method of extending a partial search strategy S to obtain a minimal
one. Informally speaking, we select a vertex v in δ(S) and extend S by using a (k′, v)-minimal strategy Sv for Tv , where k′

is selected to be the maximum number of searchers that Sv can use so that s(S ⊕ Sv) is at most the desired number of k
searchers.

Lemma 2. A partial non-minimal connected search strategy S for Tr can be extended to a (k, r)-minimal search strategy for Tr
if and only if there exist T ′

v (rooted at v) in T − CE(S) and a (k − w(δ(S) \ {v}), v)-minimal search strategy Sv for T ′
v , such that

S ⊕ Sv can be extended to a (k, r)-minimal search for Tr . Moreover, for each such T ′
v and Sv the strategy S ⊕ Sv can be extended

to a (k, r)-minimal search for Tr .

Proof. The ‘‘only if’’ part is obvious. To prove the ‘‘if’’ part let S⊕S1 be a (k, r)-minimal search for Tr . For each v ∈ δ(S) there
exists a contaminated edge in Ev , which implies that there exists a nonempty subtree T ′

v in Tr −CE(S) rooted at v. (If all edges
in Ev are contaminated, then T ′

v = Tv .) First we argue that there exist v ∈ δ(S) and a (k− w(δ(S) \ {v}), v)-minimal search
strategy Sv for T ′

v . For each v ∈ δ(S) and for eachmove S1[i] define B(i, v) = δ(S1[i])∩V (T ′
v). Find the minimum l such that

w(B(l, v)) < w(v) for some v ∈ δ(S). Such an integer ldoes exist, because otherwisew(δ(S⊕S1)) ≥ δ(S)which contradicts

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


5704 D. Dereniowski / Theoretical Computer Science 412 (2011) 5700–5713

Fig. 2. (a) A node-weighted tree Tr ; (b) S ⊕ St ⊕ Su ⊕ Sv .

theminimality ofS⊕S1. LetS′
v beS1 restricted to clearing the edges inCE(S1[≼l])∩E(T ′

v) in the sameorder as they are cleared
by S1. S ⊕ S′

v uses at most k searchers (which gives that s(S′
v) ≤ k − w(δ(S) \ {v})), and w(δ(S′

v)) = w(B(l, v)) < w(v).
So, the set of (k−w(δ(S) \ {v}))-search strategies S′

v for T ′
v satisfying w(δ(S′

v)) < w(v) is nonempty and, by the definition,
a strategy Sv with the minimum w(δ(Sv)) is (k − w(δ(S) \ {v}), v)-minimal.

Let Sv and T ′
v that satisfy the conditions given in the lemma be selected arbitrarily. We will use S1 to extend S ⊕ Sv to a

(k, r)-minimal search S ⊕ Sv ⊕ S2 for Tr . To obtain S2 we simply remove from S1 all the operations of clearing the edges in
CE(Sv), preserving the order of clearing the remaining edges in S1. One can prove that S ⊕ Sv ⊕ S2 is connected.

It remains to prove that s(S ⊕Sv ⊕S2) ≤ k. By the definition, s(S ⊕Sv) ≤ k, so let us consider a move (S ⊕Sv ⊕S2)[i2]
of clearing an edge e, i2 > |S ⊕ Sv|. Select i1 > |S| so that (S ⊕ S1)[i1] is the move of clearing e. It is sufficient to prove that
|(S ⊕ Sv ⊕ S2)[i2]| ≤ |(S ⊕ S1)[i1]|. Let

U = δ((S ⊕ Sv ⊕ S2)[i2]) \ δ((S ⊕ S1)[i1]). (4)
In other words, U is the set of vertices guarded in step i2 of S ⊕ Sv ⊕ S2 but unguarded in step i1 of S ⊕ S1. Clearly,
U ⊆ δ(Sv). For each u ∈ U there exists a vertex xu ∈ δ((S ⊕ S1)[i1]) on the path connecting v and u in T ′

v , because
CE((S ⊕ S1)[≼i1]) ∩ E(T ′

v) ⊆ CE((S ⊕ Sv ⊕ S2)[≼i2]) ∩ E(T ′
v). Let XU be the set of all such vertices xu, u ∈ U . We argue that

w(XU) ≥ w(U). (5)
Suppose for a contradiction that (5) does not hold. Find a set X , with minimum w(X), such that each path connecting v and
u, u ∈ δ(Sv), contains a vertex in X (possibly u). We obtain w(X) < w(δ(Sv)), because w((δ(Sv) \U)∪XU) < w(δ(Sv)) and
by the minimality of X , w(X) ≤ w((δ(Sv) \ U) ∪ XU). Define S′

v which clears the edges in

CE(Sv) \


x∈X

E(Tx)

in the same order as they are cleared in Sv . Then, s(S′
v) ≤ s(Sv) and w(δ(S′

v)) = w(X) < w(δ(Sv)). Thus, Sv is not
(k−w(δ(S) \ {v}), v)-minimal — a contradiction, which proves (5). Hence, |(S ⊕ Sv ⊕ S2)[i2]| ≤ |(S ⊕ S1)[i1]| ≤ cs(T , r).
Since i2 has been chosen arbitrarily, we have proven the thesis. �

As an example consider a tree in Fig. 2(a). Let S be a partial strategy clearing the edges ru, rv, rt (in this order). s(S) = 12
and δ(S) = {u, v, t}. Denote by Sv the (8, v)-minimal search strategy for Tv (Sv completely clears the left branch of Tv first,
for otherwise more than 8 searchers will be used). Sliding the searchers searcher along the two edges from u to x gives a
(8, u)-minimal strategy Su for Tu with δ(Su) = {x}. There exists a (8, t)-minimal search St for Tt , where δ(St) = {y, z} (St
clears the three edges on the paths connecting t and y, z). Fig. 2(b) depicts a partial strategy S ⊕ St ⊕ Su ⊕ Sv , where the
dashed arrows represent the moves of the strategy. Their labels i : c + g indicate the number i of the clearing move, while
c and g are, respectively, the number of searchers that move along the corresponding edge and guard other vertices in this
move.

Observe that S ⊕ St ⊕ Su ⊕ Sv can be extended to a connected 12-search strategy for T by clearing the subtrees Ty, Tz
and Tx (in this order, and each of those subtrees is cleared by processing its branches from left to right).

The algorithm in [3] clears any subtree Tv in the following way. While guarding the root v of Tv , a child u of v is selected
and the algorithm clears Tu completely. Once this is achieved, it proceeds to the next child of v and repeats this step until
all children are processed. Note that clearing the subtrees Tu, Tv and Tt in Fig. 2 requires 12, 8 and 11 searchers, respectively.
Therefore, clearing any of them while guarding r results in a search strategy using more than 12 searches (regardless of the
order of clearing Tu, Tv and Tt ), which implies that the algorithm for searchingweighted trees presented in [3] is not optimal.

Also note that if T is a rooted full binary n-node tree with each vertex with even (odd) distance from the root having the
weight K (1, respectively), and with each edge having the weight equal to 1, then the above-mentioned algorithm is forced
to use Ω(K log n) searchers for T . A modified method, where one immediately proceeds to both children whenever a vertex
of weight K becomes guarded, never guards two vertices of weight K simultaneously. Therefore, the number of searchers
used is O(K + log n), which means that the algorithm in [3] is not a constant factor approximation.
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4. An efficient algorithm for bounded degree trees

In Sections 4 and 5we provide the algorithm for CSFH problemon bounded degree trees and a polynomial-time reduction
from a NP-complete problem to the CSFH problem for general trees. In both cases we conclude that the corresponding result
(an efficient algorithm or a polynomial-time reduction) holds for the CS problem on trees as well.

In an informal way, our method for clearing Tr may be described as follows. We start by placing k searchers at the root
r . Assume that the algorithm calculated a partial search strategy S. If δ(S) = ∅ then S clears Tr and the computation stops.
Otherwise we select a vertex v ∈ δ(S) and we find a partial connected search Sv for Tv . We continue with S ⊕ Sv . Note that
S ⊕ Sv requires s(S) searchers to perform S and then the moves of Sv follow, where w(δ(S) \ {v}) searchers are used to
guard the vertices that are not in Tv and, in addition, s(Sv) searchers work on the subtree Tv . So, if S can be extended to a
connected k-search for Tr and we are able to find a (k − w(δ(S) \ {v}), v)-minimal strategy Sv , then, by Lemma 2, S ⊕ Sv

can be also extended to a connected k-search for Tr . The fact that any such vertex v is sufficient reduces the size of the
search space for the algorithm. However, it follows immediately from the NP-completeness proof in Section 5 that finding
a strategy Sv is intractable, unless P = NP .

For each v ∈ V (Tr) a set Cv is a global variable and will contain (k, v)-minimal search strategies for a subtree Tv and for
selected values of k.

We start by describing a procedure, called MCPS (Minimal Connected Partial Strategy), which for a given integer k, a rooted
tree Tr , and an ordering rv1, . . . , rvd of the edges in Er , finds a (k, r)-minimal search strategy S, which clears the edges in
Er according to the given order, whenever such a strategy exists. Our final algorithm will process Tr in a bottom-up fashion,
so when MCPS is called, then for each v ∈ V (Tr) \ {r} some (k′, v)-minimal search strategies for Tv belong to Cv for some
integers k′. Moreover, w(r) searchers already occupy r when MCPS starts. The procedure is as follows:

Procedure MCPS(Tr , k, (rv1, . . . , rvd)) (Minimal Connected Partial Strategy)
Input: A weighted tree Tr , an integer k, and an ordering of the edges in Er .
Output: A (k, r)-minimal search strategy for Tr that clears the edges in Er in the given order; ‘failure’ when no such strategy
exists.

Step 1. For each i = 1, . . . , d repeat the following:
(i) if k searchers are sufficient to clear rvi, then clear rvi as the next step of S and find (k′, vi)-minimal search

Svi ∈ Cvi with maximum k′ such that k′
≤ k − w(δ(S) \ {vi}). If Svi exists, then let S := S ⊕ Svi , otherwise

proceed to i + 1;
(ii) if more than k searchers are needed for the move of clearing rvi, then return ‘failure’.

Step 2. While there exist v ∈ δ(S) and Sv ∈ Cv such that Sv is (k′, v)-minimal, k′
≤ k − w(δ(S) \ {v}), then S := S ⊕ Sv .

Step 3. Return S.

Lemma 3. If there exists a (k, r)-minimal search strategy for Tr that clears the edges in Er according to the order π =

(rv1, . . . , rvd), then MCPS returns such a strategy.

Proof. Assume that there exists a (k, r)-minimal search strategy Sopt clearing the edges in Er according to the order π . Let,
for brevity, Si denote the partial connected search strategy calculated in Step 1 of MCPS, where clearing rvi is the last move
of Si, i = 1, . . . , d.

We use an induction on i = 1, . . . , d to prove that Si can be extended to (k, r)-minimal search for Tr . The claim follows
immediately for i = 1, since by assumption, Sopt starts by clearing rv1. (For a connected search starting at r an edge in Er
has to be cleared first.) Assume that rvi has been cleared by Si, i < d. The procedure MCPS proceeds in Step 1 by finding
a (k − w(δ(Si) \ {vi}), vi)-minimal search strategy Svi for Tvi . If Svi exists, then by Lemma 2, Si ⊕ Svi can be extended
to a (k, r)-minimal search strategy for Tr . By the definition, there is no v ∈ δ(Si ⊕ Svi) \ {r} for which there exists a
(k − w(δ(Si ⊕ Svi) \ {v}), v)-minimal search for Tv . Thus, the next edge e cleared by Si ⊕ Svi must be in Er . On the other
hand, if Svi does not exist, then the next edge e to clear is in Er . Hence, in both cases e = rvi+1 which results in strategy Si+1.

Thus, we obtain that Sd can be extended to a (k, r)-minimal search for Tr . Then, MCPS finds in the last iteration in Step 1
and in Step 2 a sequence of vertices vd+1, . . . , vd+l and search strategies Sd+1, . . . , Sd+l such that Sd+i is (k−w(δ(Sd ⊕· · ·⊕

Sd+i−1) \ {vd+i}), vd+i)-minimal and vd+i ∈ δ(Sd ⊕ · · · ⊕ Sd+i−1). By Lemma 2, each strategy Sd ⊕ · · · ⊕ Sd+i, i = 0, . . . , l,
can be extended to a (k, r)-minimal search for T .

Let for brevity S = Sd ⊕ · · · ⊕ Sd+l. We obtain that S is (k, r)-minimal, because otherwise, as proved above, it can be
extended to a (k, v)-minimal search for Tr , and consequently, by Lemma 2, there exists v ∈ δ(S) and a (k−w(δ(S)\{v}), v)-
minimal search Sv such that S ⊕ Sv can be extended to a (k, v)-minimal search for Tr , which gives a contradiction with the
fact that no such vertex has been found following vd+l by MCPS. �

Now we are ready to give a listing of the algorithm CTS (Connected Tree Searching) for finding an optimal connected
search strategy for a rooted tree Tr with homebase r . This algorithm is exponential in the maximum degree of T , ∆ =

max{degT (v): v ∈ V (T )}.

Procedure CTS(Tr) (Connected Tree Searching)
Input: A weighted tree Tr rooted at r .
Output: A collection Cr of partial connected search strategies with homebase r for Tr .
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Step 1. Let initially Cr := ∅. For each child v of r call Cv := CTS(Tv).
Step 2. Fix a permutation π = (rv1, . . . , rvd) of the edges in Er . Set k := 1. If Step 3 has been executed for all the d!

permutations π , then Exit.
Step 3. Call Sr := MCPS(Tr , k, π). If ‘failure’ has been returned, then increase k and repeat Step 3.1 Otherwise, if there is

no S ∈ Cr such that w(δ(S)) ≤ w(δ(Sr)) and s(S) ≤ s(Sr), then add Sr to Cr and remove from Cr all search
strategies S ≠ Sr such that w(δ(S)) ≥ w(δ(Sr)) and s(S) ≥ s(Sr). If δ(Sr) = ∅ then go to Step 2 to fix the next
permutation π . Otherwise increase k and repeat Step 3.

Step 4. Return Cr .

Note that Step 1 of CTS guarantees that for each v ∈ V (T ) \ {r} the collection Cv of all minimal search strategies for Tv is
calculated (which is required for subsequent calls of MCPS). The next lemma gives a characterization of the strategies that
belong to Cr computed by CTS.

Lemma 4. Let k be an integer. As a result of the execution of CTS(Tr) the set Cr contains a (k, r)-minimal search strategy for Tr
whenever such a strategy exists.

Proof. We prove the lemma by induction on the number of vertices of a tree. For a tree with one vertex the claim follows.
Let T be a tree with n > 1 vertices. By the induction hypothesis, after Step 1 of CTS, the set Cv contains a (k′, v)-minimal

search strategy for each v ∈ V (T ) \ {r} and for each k′
≥ 1 whenever such a strategy exists.

Then, CTS iterates over all permutations π of the edges in Er and for each permutation all integers k are used (we stop
when a strategy clearing Tr has been found). Moreover, whenever a search strategy S is removed from Cr or is computed
by CTS, but not added to Cr , then the instructions in Step 3 of CTS guarantee that another search strategy S′ belongs to C,
where w(δ(S′)) ≤ w(δ(S)) and s(S′) ≤ s(S). Thus, if S is (k, r)-minimal for some integer k, then so is S′. Lemma 3 gives
the thesis. �

Lemma 4 in particular implies that CTS finds an optimal solution to the CSFH problem, because an optimal connected search
strategy S is (cs(T , r), r)-minimal and δ(S) = ∅. We finish this section with some complexity remarks.

Lemma 5. Let Tv be a tree rooted at v and let π be a permutation of the edges in Ev . If S = MCPS(Tv, k, π) and S′
=

MCPS(Tv, k′, π), where k ≤ k′, then CE(S) ⊆ CE(S
′) and w(δ(S)) ≥ w(δ(S′)).

Proof. First note that, by construction, each partial search strategy computed by MCPS has the property that for each vertex
u ∈ Tv either all or none of the edges in Eu have been cleared. Define A to be the set of vertices u ∈ δ(S) such that the edge
connecting u to its parent has not been cleared by S′. Let A′ be the set of vertices u ∈ δ(S′) such that the edges in Eu have
been cleared by S. Informally speaking, A′ consists of the vertices u in δ(S′) such that the strategy S managed to continue
the search from u in Tu and the ‘border’ vertices reached in Tu by S belong to A. Clearly, A = ∅ if and only if A′

= ∅.
We argue that A = ∅. Suppose for a contradiction that A ≠ ∅. Let i ∈ {1, . . . , |S|} be the index such that no edge in

u∈A′ Eu belongs to CE(S[≼i]) and S[i + 1] clears an edge in Eu for some u ∈ A′ (recall that no edge in Eu has been cleared
by S′). By construction, S = S[≼i] ⊕ Su ⊕ S′′ for some (j, u)-minimal strategy Su for Tu, where j ≤ k − w(δ(S[≼i]) \ {u}).
By the choice of i, w(δ(S′)) ≤ w(δ(S[≼i])) and consequently w(δ(S′) \ {u}) ≤ w(δ(S[≼i]) \ {u}). Since k′

≥ k,

s(S′
⊕ Su) ≤ max{k′, w(δ(S′) \ {u}) + s(Su)}

≤ max{k′, w(δ(S[≼i]) \ {u}) + j} ≤ max{k′, k} = k′.

Also by definition, w(δ(S′
⊕ Su)) ≤ w(δ(S′)). By Lemma 4, Su ∈ Cu. Therefore, instead of returning S′, the procedure MCPS

finds in Step 3 the search strategy Su and proceeds with S′
⊕ Su — a contradiction. �

Lemma 6. Given a tree T of maximum degree ∆, the running time of the algorithm CTS is O(∆!n3 log(∆!n)), where n = |V (T )|.

Proof. By Lemma 5, for the given rooted tree Tv and a permutation π of the edges in Ev there are at most n different search
strategies that can be returned by MCPS. Thus, |Cv| ≤ ∆!n. We maintain Cv as a balanced binary search tree, where each
node corresponds to a partial search strategy and the associated key value of the node is the number of searchers the strategy
uses. This gives that inserting, removing and finding search strategies takes O(log(∆!n)) time.

The running time of MCPS is O(n log(∆!n)), because there at most O(n) strategies in


u∈V (Tv) Cu that have been used in
Step 1 and Step 2 of MCPS to construct S. The latter follows from the fact, that each such strategy in Cu ‘contributes’ to S by
clearing at least one edge of the input tree Tv .

As to the complexity of CTS, we first analyze one repetition of Step 3 of CTS (i.e. its execution for fixed k and π ). It takes
O(n log(∆!n)) time to execute MCPS, and O(|Cv| log |Cv|) = O(∆!n log(∆!n)) time to iterate over Cv to remove unnecessary
strategies from the collection Cv . Therefore, the running time of Step 3 of CTS for fixed k and π is O(∆!n log(∆!n)).

By Lemma 5 it is enough to execute Step 3 of CTS for at most n values of k, so it remains to argue that we can compute
them efficiently. To that end we modify MCPS so that each search in Cv in Step 1 and Step 2 that results in finding Sv

is followed by one additional search that finds the ‘successor’ S′
v of Sv in Cr . By construction, S′

v is (k′′, v)-minimal and

1 We define in the proof of Lemma 6 how k is increased, since in order to improve the complexity we do not try the integers consecutively.
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k′′ > k − w(δ(S) \ {v}). Thus, if we increase k by k′′
+ w(δ(S) \ {v}) − k, then we are guaranteed that MCPS returns a

partial connected search strategy that clears more edges of Tr than the strategy returned for the initial value of k. Thus, we
record the corresponding value of k′′

+ w(δ(S) \ {v}) − k each time we extend the current search strategy S during the
execution of MCPS. Then, we increase k in Step 3 of CTS by theminimum value recorded. This modification does not increase
the complexity of MCPS. Therefore, the complexity of Step 3 of CTS is O(∆!n2 log(∆!n)).

The procedure CTS is called n times in total, once for each vertex. Thus, the overall execution time of CTS is
O(∆!n3 log(∆!n)). �

Since the algorithm solves the CSFH problem, where the homebase is given, in order to solve the CS problem, a
straightforward approach is to call CTS for each vertex of T as the homebase and the solution is the best strategy found.
However, we can reduce the running time. For different roots r ∈ V (T ) for each v ∈ V (T ) there are at most degT (v) + 1
different subtrees Tv for which CTS calculates search strategies, namely each neighbor of v can be its parent and v may be
the root itself. This gives that there are in total at most

∑
v∈V (T )(degT (v) + 1) = 2|E(T )| + |V (T )| ≤ 3n different subtrees

Tv to consider. Our final remark is that CSFH has been designed to clear node-weighted trees. Thus, for clearing a tree T
with non-unit edge weights we apply first to T the transformations from Section 3, which results in a tree T ′ with unit
edge weights, cs(T ) = cs(T ′) and an optimal connected search strategy for T can be obtained on the basis of the strategy
calculated by CTS for T ′ as described in the proof of Lemma 1.

Theorem 1. Given a tree T of maximum degree ∆, an optimal connected search strategy for T can be computed in
O(∆!n3 log(∆!n)) time, where n = |V (T )|. �

Corollary 1. Given a bounded degree T , an optimal connected search strategy for T can be computed in O(n3 log n) time, where
n = |V (T )|. �

Corollary 2. The problem of connected searching of weighted trees is fixed parameter tractable with respect to the maximum
degree of the tree. �

5. Connected searching of weighted trees is hard

5.1. Scheduling time-dependent tasks

In this section we recall a problem of scheduling time-dependent (deteriorating) tasks. The execution time of a task
depends on its starting time. The set of tasks is denoted by J = {J1, . . . , Jn}. Each task Jj ∈ J is characterized by two
parameters, deadline dj and running time pj, which depends on sj, the point of time when the execution of Jj starts. Since
the execution time depends on the starting point, we will write pj(t) to refer to the execution time of Jj when it starts at
t ≥ 0. The completion time of Jj is Cj = sj + pj(sj). We are interested in the single machine scheduling. A schedule D is
feasible if the completion time Cj of each task Jj is not greater than its deadline, Cj ≤ dj, and the execution intervals of two
different tasks do not overlap. The makespan of a schedule D is ms(D) = max{Cj: Jj ∈ J}. Observe that a schedule D can be
described by a permutation πD: {1, . . . , |J|} → J, because the idle times between the execution of two consecutive tasks
are not necessary for non-decreasing (in time) execution times. In the Time-Dependent Scheduling (TDS) problem we ask
whether there exists a feasible schedule for J. A good survey and a more detailed description of this problem can be found
in [8]. For a survey on scheduling problems and terminology see [4,6].

There are several NP-completeness results for very restricted (linear) functions for execution time of a task [7,27]. How-
ever, we need for the reduction described in the next subsection the TDS problem instances, such that each task starts and
ends at integers, which are bounded by a polynomial in the number of tasks. This property does not follow directly from the
reductions in [7,27]. For this reasonwewill prove NP-hardness of the TDS problem instances having the properties we need.

We will reduce the 3-partition problem [19] to TDS. The former one can be stated as follows. Given a positive integer B,
a set of integers A = {a1, . . . , a3m} such that

∑
j=1,...,3m aj = mB and B/4 < aj < B/2 for each j = 1, . . . , 3m, find subsets

A1, . . . , Am of A such that A =


i=1,...,m Ai, Ai ∩ Ai′ = ∅ for i ≠ i′, and
∑

aj∈Ai
aj = B for each i = 1, . . . ,m.

Given B and A of cardinality 3m, we define the instance of the TDS problem. Let L = mB3
+ Bm(m+ 1)/2. To simplify the

statements we partition the interval [0, L) into intervals I1, . . . , Im as follows:

Ii =


(i − 1)B3

+
(i − 1)i

2
B, iB3

+
i(i + 1)

2
B

, i = 1, . . . ,m. (6)

We use the symbols li, ri to denote the endpoints of an interval Ii, i.e. Ii = [li, ri), i = 1, . . . ,m. Clearly,


i=1,...,m Ii = [0, L)
and ri = li+1 for each i = 1, . . . ,m − 1. Note that the length of Ii is |Ii| = B3

+ iB for each i = 1, . . . ,m.
Now we define the tasks in the TDS problem. For each aj ∈ A we introduce a task Jj ∈ J with parameters

dj = L, and pj(t) = iaj for each t ∈ Ii.

In addition, for each i = 1, . . . ,m we define a taskJi with deadlinedi and execution timepi, wheredi = li + B3, and pi(t) = B3 for each t ≥ 0,

i = 1, . . . ,m. Let J = {J1, . . . ,Jm}. Observe that in each valid schedule all tasks are executed within [0, L].
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For a given schedule D for J ∪ J, sj and Cj denote, respectively, the start and completion time of Jj ∈ J. Similarly,si andCi are start and completion times ofJi ∈ J. We say that a task J precedes J ′ in a given schedule if J starts earlier than J ′.
In the next three lemmaswe prove several properties of every schedule forJ∪J. Then, in Lemma 10we prove that there

exists a schedule for J ∪ J if and only if there exists a 3-partition for B and A of cardinality 3m.

Lemma 7. In each schedule D for J ∪ J the taskJi precedesJi+1 for each i = 1, . . . ,m − 1.

Proof. Suppose, for a contradiction, that the claim does not hold for D. Let πD be the permutation of tasks in J such that
for each pair of tasksJi,Ji′ ∈ J it holds π−1

D (Ji) < π−1
D (Ji′) if and only if π−1

D (Ji) < π−1
D (Ji′). In other words, to obtain πD we

simply restrict πD to tasks in J. Then, find the smallest index i ∈ {1, . . . ,m} such that πD(i) ≠Ji. Clearly, πD(i) =Jk, k > i,
and Ck ≥pk(sk) +

−
i′=1,...,i−1

pi′(si′) = iB3.

SinceJi is executed in D later thanJk,
Ci ≥ Ck +pi(si) ≥ (i + 1)B3 > iB3

+
i(i + 1)

2
B =di,

because B3 > m2B ≥ i(i + 1)/2B for i ≤ m < B. This gives the desired contradiction. �

Given a schedule D for J ∪ J, defineIi = [li,ri) = [Ci,si+1) for i = 1, . . . ,m − 1 and letIm = [Cm, L). By Lemma 7, this
definition is valid and all the tasks in J have to be scheduled within


i=1,...,m

Ii.
Lemma 8. If D is a schedule for J ∪ J, thenIi ⊆ Ii for each i = 1, . . . ,m.

Proof. By the definition,Ci =li, and, by Lemma 7,

Ci ≥

−
1≤i′≤i

pi′(si′) = iB3
≥ (i − 1)B3

+
(i − 1)i

2
B = li, i = 1, . . . ,m. (7)

For the right endpoint ofIi, i ∈ {1, . . . ,m − 1}, it holdsri =si+1 ≤di+1 −pi+1(si+1) = li+1 + B3
− B3

= li+1 = ri. (8)

Sincerm = L = rm, by (7) and (8),li ≥ li andri ≤ ri, which impliesI = [li,ri) ⊆ Ii for each i = 1, . . . .m. �

Lemma 9. If D is a schedule for J ∪ J, then |Ii| = iB for each i = 1, . . . ,m.

Proof. We assume, for a contradiction, that the thesis does not hold for D. We define a new set of tasks corresponding to J,
namely J1j , . . . , J

aj
j are aj tasks corresponding to Jj ∈ J. The set of all tasks J lj is denoted by J′. Note that |J′

| = mB. For each
J lj ∈ J′ we define the deadline to be the same as for Jj, while the execution time is plj(t) = i for t ∈ Ii, l = 1, . . . , aj. Consider
a schedule D0 for J′

∪ J obtained from D in such a way that each task Jj ∈ J is replaces by the sequence J1j , . . . , J
aj
j . A task

Jj executes withinIi for some i ∈ {1, . . . ,m}, and, by Lemma 8,Ii ⊆ Ii, which means that its execution time is iai. Also by
Lemma 8, the sum of execution times of J1j , . . . , J

aj
j is

∑
l=1,...,ai

i = iai. This in particular means that ms(D) = ms(D0) and
all tasks inJ are executed in the same time intervals in both schedules.

Now we will perform a sequence of modifications to the schedule D0, obtaining a sequence of schedules D1,D2, . . . ,Dq

for the set of tasks J′
∪ J. We describe the first modification leading us from D0 to D1 and the migration from Dp to Dp+1

is analogous for each p, 0 < p < q. In the remaining part of this proof we use symbolssi(Dp), Ci(Dp) to distinguish the
parameters of tasks which depend on a schedule Dp, p ≥ 0. Consequently wewriteIi(Dp) since the endpoints depend on the
execution time ofJi’s. For a task J lj ∈ J′ its start and completion time in a schedule Dp is slj(Dp) and C l

j (Dp), respectively. Find
in D0 the intervalIi(D0) such that |Ii(D0)| ≠ iB and |Ii′(D0)| = i′B for each i′ = 1, . . . , i − 1. SuchIi(D0) does exist since we
assumed for a contradiction that the thesis does not hold. Moreover, i < m.

If |Ii(D0)| > iB, thenJi+1 starts atsi+1(D0) = iB3
+ |Ii(D0)| +

−
i′=1,...,i−1

i′B

= iB3
+ |Ii(D0)| − iB +

−
i′=1,...,i

i′B = li+1 + |Ii(D0)| − iB.

This, however, means thatJi+1 does not finish before its deadline, Ci+1(D0) = si+1(D0) + B3 > li+1 + B3
= di+1. So,

|Ii(D0)| < iB. Therefore, |Ii(D0)| < iB.
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To obtain D1, let initially D1 = D0 and we apply the following modifications to D1. Find in D1 the task J lj ∈ J′ which
executes first in the interval [ri(D1), L]. Then, let slj(D1) = ri(D1). Note that only tasks in J are executed in the interval
[ri(D0), slj(D0)]. Tomake the scheduleD1 feasible, shift i units to the right all tasks in J which are executed in [ri(D0), slj(D0)].
In the new schedule D1 no two tasks overlap, because by the definition and by Lemma 8 the execution time of J lj in D0 is at
least (i + 1)B, while its execution time in D1 is iB. To prove that the schedule is feasible after shifting the tasks it is enough
to argue that the taskJi+1 succeeding J lj in D1 finishes before its deadline. To prove it observe that for each i′ < i it holds
|Ii′ | = i′B, which implies that

si(D1) =

−
i′=1,...,i−1

(B3
+ i′B) = (i − 1)B3

+
(i − 1)i

2
B = li,

which means thatCi(D1) =si(D1) + B3
= li + B3, andCi+1(D1) = Ci(D1) + |Ii(D1)| + B3
= li + |Ii(D1)| + 2B3

≤ li+1 + B3
=di+1,

because |Ii(D1)| ≤ iB. If more tasks in J have been shifted while computing D1, then they also finish before their deadlines,
because they are executed consecutively, followingJi+1. Note that there is now an idle time in D1, because sjl(D1) ∈ Ii
and sjl(D0) > ri, which by Lemma 8 means that the execution time of J lj is strictly bigger in D0 than in D1. (Assume
that the difference in execution times is x > 0.) So, each task which succeeds J lj in D0 is executed in D1 at least x time
units earlier, because the execution time of each task does not increase when the execution starts earlier. Consequently,
ms(D0) > ms(D1). Similarly, we obtain that ms(Di) > ms(Di+1) for each i = 1, . . . , q − 1.

The schedule Dq has the property that each intervalIi(Dq), i = 1, . . . ,m, is of length iB. So, the makespan of Dq is
ms(Dq) = mB3

+
∑

i=1,...,m iB = mB3
+

m(m+1)
2 B = L. Thus,

ms(D) = ms(D0) > ms(D1) > · · · > ms(Dq) = L.

In particular we obtain that the makespan of D exceeds L, while the deadline of each task in J ∪ J is at most L — a
contradiction. �

Lemma 10. There exists a schedule for J ∪ J if and only if there exists a 3-partition for A and B.

Proof. Let A1, . . . , Am be a 3-partition of A. Let Ji = {Jj ∈ J: aj ∈ Ai}. Create a schedule D in such a way that

πD = (J1, J1, . . . ,Ji, Ji, . . . ,Jm, Jm)

(the tasks in each Jj are executed in any order). We use induction on i to prove that the tasks in {Ji}∪Ji are executed in time
interval Ii. The casewhen i = 1 and i > 1 are analogous, so assume that all the tasks in


1≤i′≤i({

Ji′}∪Ji′) are executedwithin
I1∪· · ·∪Ii = [0, ri] for some1 ≤ i < m. For {Ji+1}∪Ji+1 weobtain thatJi+1 is scheduled first and its execution time isB3. Then,
the tasks in Ji+1 follow in any order. Moreover, for each t ∈ Ii+1 we obtain

∑
Jj∈Ji+1

pj(t) = (i + 1)
∑

aj∈Ai+1
aj = (i + 1)B,

because Ai+1 is a part of the solution to the 3-partition problem. Thus, by (6), the tasks in {Ji+1}∪Ji+1 can be executedwithin
[ri, ri + B3

+ (i + 1)B] = [li+1, li+1 + B3
+ (i + 1)B] = Ii.

Let D be a schedule for J ∪ J. By Lemma 9, |Ii| = iB for each i = 1, . . . ,m. Let i ∈ {1, . . . ,m}. Since, by the definition
ofIi’s the tasks executed withinIi belong to J and, by Lemma 8, executing Jj inIi takes iaj time. Thus, for the tasks Ji ⊆ J

executed withinIi the total running time is iB, i.e.
∑

Jj∈Ji
iaj = iB. So, Ai = {aj : Jj ∈ Ji}, i = 1, . . . ,m, is a solution to the

3-partition problem. �

Theorem 2. Given a set of tasks J with integer deadlines and integer non-decreasing (in time) execution times, the problem of
deciding if there exists a feasible schedule for J is strongly NP-complete. �

5.2. Reducing TDS to CS

In this subsection we prove NP-hardness of CS problem. We start by reducing TDS to CSFH, then we conclude that CS is
NP-complete as well.

The instance of TDS consists of a set of tasks J, where each task Jj ∈ J has its integer deadline dj and a non-decreasing
function pj: {0, . . . , dj − 1} → N+ describing the execution time. As argued in the previous section, the integer valued
functions pj imply that in each schedule sj and Cj are integers, Jj ∈ J, which also justifies thatwemay consider the values of pj
only at integer points. For each Jj ∈ J let fj be the latest possible integer starting point for Jj, i.e. fj = max{t ∈ N: t+pj(t) ≤ dj}.
The integer L is selected to be an upper bound for the length of each feasible schedule,

L = max{dj: Jj ∈ J}. (9)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


5710 D. Dereniowski / Theoretical Computer Science 412 (2011) 5700–5713

Fig. 3. (a) J1, J2 and J3 with execution times pj , deadlines dj and the latest possible starting times fj , j = 1, 2, 3; (b) all possible schedules for the three tasks;
(c) the corresponding weighted tree T .

Given J, we construct a node-weighted tree T = (V (T ), E(T ), w) rooted at r (the weight of each edge is 1). For each
Jj ∈ J define a path Pj with

V (Pj) = {ui
j, v

i
j: i = 0, . . . , fj},

E(Pj) = {ui
jv

i
j: i = 0, . . . , fj} ∪ {vi+1

j ui
j: i = 0, . . . , fj − 1}.

The tree T , in addition to the vertices in


Jj∈J V (Pj), contains the vertices r and yj, zj, j = 0, . . . , |J|. The root r is adjacent

to y0 and to the endpoint u
fj
j of each path Pj, j = 1, . . . , |J|. The other endpoint of Pj, namely the vertex v0

j , is adjacent to yj
for each j = 1, . . . , |J|. Finally, for each 0 = 1, . . . , |J| the vertex yj is the parent of zj.

The weight function w: V (G) → N+ is as follows
w(r) = 2L, (10)

w(yj) = 3L, w(zj) = 1 j = 0, . . . , |J|, (11)

w(ui
j) = 2L − i and w(vi

j) = pj(i) (12)
for each j = 1, . . . , |J|, i = 0, . . . , fj. Finally, let k = 4L be the number of available searchers.

Fig. 3 gives an example of this reduction for J of size 3. Fig. 3(a) shows a function pj that defines the execution times, the
deadline dj and the value of fj for each j = 1, 2, 3. (Note that fj is the latest possible starting time point for Jj ∈ J.) All possible
schedules for J are depicted in Fig. 3(b), where the schedule for the execution order (J3, J1, J2) is not complete, because the
starting time of J2 would exceed its deadline. Note that only the first schedule is valid, for in any other one at least one task
does not finish at or prior to its deadline. The weighted tree T that corresponds to the TDS problem instance is shown in
Fig. 3(c).

Informally speaking, the idea used in this reduction is as follows. In the TDS problem if we start a task ‘early’, then we
benefit from the fact that this task executes faster, i.e. its execution time interval is of smaller length. In the CS problem we
find a similar ‘structure’: if we guard the root and we start working on a particular path Pj early, then can in general ‘reach’
in Pj a border of smaller weight, and we benefit by having more free searchers for clearing other paths. Now we continue
with a formal analysis.

Note that for each ui
j and vi′

j , 0 ≤ i, i′ ≤ fj, it holds

w(ui
j) > L ≥ w(vi′

j ), (13)
because fj < L for each j = 1, . . . , |J|. Other simple facts that will be useful in the following are

w(u0
j ) > w(u1

j ) > · · · > w(u
fj
j ), j = 1, . . . , |J|, (14)

w(v
fj
j ) ≥ w(v

fj−1
j ) ≥ · · · ≥ w(v0

j ), j = 1, . . . , |J|. (15)
We start by describing a search strategy S for Tr , assuming that a schedule D for J is given (recall that πD is the order of

executing the jobs in D):
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Step 1: Initially 4L searchers occupy r .
Step 2: For each i = 1, . . . , |J| do the following: let Jj = πD(i); clear the path Pj(D) ⊆ Pj consisting of the vertices u

fj
j ,

v
fj
j , . . . , u

sj
j , v

sj
j . (After this step, by (12), w(v

sj
j ) = pj(sj) searchers occupy v

sj
j to guard it.)

Step 3: Clear the edges ry0 and y0z0.
Step 4: For each Jj ∈ J clear the path u

sj−1
j , v

sj−1
j , . . . , u0

j , v
0
j , yj, zj (after this step the subtree rooted at u

fj
j is clear).

In the example in Fig. 3 the only valid schedule executes the tasks according to the order (J1, J2, J3). We use it in Step 2 above,
which gives us that in S we ‘reach’ in the branches P1, P2 and P3 the vertices v0

1, v
1
2 and v3

3 , respectively, (distinguished in
Fig. 3(c)) of total weight at most L. The following lemma states that S is always valid and uses at most 4L searchers.

Lemma 11. S is a connected search strategy for T . Moreover, s(S) ≤ k = 4L.

Proof. It is easy to see that after each step the subtree that is clear is connected. Nowwe prove that the number of searchers
used is at most k = 4L. Initially 2L searchers guard r . We prove by induction on i = 1, . . . , |J| that k searchers suffice to
clear the path Pj(D) in Step 2, where Jj = πD(i), and the number of searchers used in S for guarding when the vertex v

sj
j

becomes guarded is

xi = 2L +

−
j′:π−1

D (Jj′ )≤i

pj′(sj′). (16)

The cases when i = 1 and i > 1 are analogous (x0 = 2L), so we prove it for i, assuming that it is true for i − 1, 1 ≤ i ≤ |J|.
Let Pj(D) ⊆ Pj be the ith path cleared, i.e. Jj = πD(i). By (13) and (14),

w(u
sj
j ) = max{w(v) : v ∈ V (Pj(D))}.

So, by (16), w(u
sj
j ) + xi−1 searchers are needed to clear Pj(D). We obtain

w(u
sj
j ) + xi−1 = (2L − sj) + 2L +

−
j′:π−1

D (Jj′ )<i

pj′(sj′) = 4L,

because, by the definition of a schedule for time-dependent tasks, the execution of a task Jj starts immediately after the
execution of the preceding task, which can be stated as

sj =

−
j′:π−1

D (Jj′ )<i

pj′(sj′).

Thus, xi = xi−1 +w(v
sj
j ) = xi−1 +pj(sj) and (16) follows. This proves that 4L searchers are used during searchmoves defined

in Steps 1 and 2 above. When the execution of all search operations constructed in Step 2 is completed, 2L searchers are
used for guarding r , while for guarding the vertices v

sj
j , j = 1, . . . , |J| we need−

j=1,...,|J|

w(v
sj
j ) =

−
j=1,...,|J|

pj(sj) ≤ L (17)

searchers. The last inequality follows from Eq. (9) and from the fact that in a valid schedule D each task is completed within
the interval [0, L]. Thus, we can use 3L searchers to clear ry0, y0z0 and then the remaining subpaths u

sj−1
j , v

sj−1
j , . . . , u0

j , v
0
j ,

yj, zj. �

Corollary 3. If there exists a valid schedule for J, then there exists a connected 4L-search strategy for the weighted tree T rooted
at r. �

Now we prove the reverse implication, i.e. that the existence of a search strategy for Tr gives a valid schedule for J. We
start with a technical lemma.

Lemma 12. In each connected 4L-search strategy S for Tr , ry0 is the edge that is cleared last among the edges in Er .

Proof. Let S[i] be the move of clearing ry0. If at least one edge in Er \ {ry0} is contaminated during clearing ry0, the vertex r
has to be guarded while clearing ry0. That would imply |S[i]| = w(r) + w(y0) = 5L — a contradiction. �

Lemma 13. If there exists a connected 4L-search strategy S for the weighted tree Tr with homebase r, then there exists a valid
schedule for J.

Proof. Given S, define a schedule D, where πD(i) = Jj if and only if ru
fj
j is the ith cleared edge among the edges in Er \ {r, y0}.

In other words, the order of clearing the edges in Er determines the order of task execution in D.
Let S[cj] be clearing of ru

fj
j , j = 1, . . . , |J|, and let S[c|J|+1] be the move of clearing ry0. By Lemma 12, ry0 is cleared last

among the edges in Ev .
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In order to prove that D is valid we show by induction on j = 1, . . . , |J| the two following facts.

Fact 1: sj ≤ fj for each j = 1, . . . , |J|.
Fact 2: The move S[cj+1 − 1] clears the edge u

sj
j v

sj
j , j = 1, . . . , |J|.

To simplify the presentation we proceed with the assumption that πD(j) = Jj for each j = 1, . . . , |J|, i.e. the order of
clearing the edges in Er is ru

f1
1 , . . . , ru

f|J|

|J|
, ry0.

Let j = 1. Clearly J1 starts at s1 = 0 in D, which implies Fact 1 for j = 1. 2L searchers guard r while clearing a subpath
of P1. Since w(v) ≤ 2L for each v ∈ V (P1), the searchers clear the whole path P1, ending at v0

1 = v
s1
1 . Then, y1 cannot be

cleared, because w(y1) = 3L, and w(r) = 2L searchers occupy r to guard it. So, the next move is S[c2] which proves Fact 2
for j = 1.

Assume now that Fact 1 and Fact 2 hold for some j − 1 ∈ {1, . . . , |J| − 1}.
For D it holds sj =

∑
i=1,...,j−1 pi(si). By the induction hypothesis (Fact 2), the number of searchers used to guard the

vertices in subtrees rooted at uf1
1 , . . . , u

fj−1
j−1 is

∑
i=1,...,j−1 w(v

si
i ). By (12), w(v

si
i ) = pi(si), which implies that 2L + w(v) +∑

i=1,...,j−1 pi(si) = 2L + w(v) + sj is the number of searchers used while reaching v ∈ V (Pj). In particular, the number of

searchers used to reach u
fj
j is 2L + 2L − fj + sj. Since S uses 4L searchers, sj ≤ fj which proves Fact 1.

The move S[cj] clears ru
fj
j and then the searchers clear partially the subtree rooted at u

fj
j , ending by clearing a vertex vx

j ,
0 ≤ x ≤ fj and then the move S[cj+1] follows. (yj cannot be cleared when r is guarded, because w(yj) = 3L). Moreover, the
search does not stop at a vertex ui

j, because by (13) it is possible to continue by clearing vi
j for each i = 0, . . . , fj.)

If x < sj, then, in particular, the vertex u
sj−1
j has been cleared, while 2L + sj searchers are used to guard r and v

si
i ,

i = 1, . . . , j − 1. By (12), w(u
sj−1
j ) = 2L − sj + 1. So, the total number of searchers used while clearing v

sj
j u

sj−1
j is

2L + sj + 2L − sj + 1 > 4L — a contradiction.
If x > sj, then we can clear vx

j u
x−1
j , because as before 2L+ sj searchers are used for guarding and w(ux−1

j ) = 2L− (x− 1)
additional searchers clear vx

j u
x−1
j , which means that the number of searchers in use is 4L + sj − x + 1 ≤ 4L. Then, by (13),

we can clear ux−1
j vx−1

j . By Lemma 2, w.l.o.g. S clears vx
j u

x−1
j and ux−1

j vx−1
j .

By Fact 1, sj ≤ fj, for each task Jj ∈ J, which means that Cj ≤ fj + pj(sj) ≤ dj, which proves that D is valid. �

Due to the monotonicity [2,3], the CSFH problem is clearly in NP, and the reduction is polynomial in n = |J|, because L
is, by Theorem 2, polynomially bounded in n, which gives us the theorem.

Theorem 3. Given a weighted tree T rooted at r and an integer k ≥ 0, deciding whether cs(T , r) ≤ k is NP-complete. �

Let Tr = (V (T ), E(T ), w) and k be an input to the CSFH problem. Define T 2
r = (V (T ), E(T ), 2w) to be the tree with the same

vertex and edge sets as Tr , while the weight of each vertex v of T 2
r is two times bigger than the weight of v in Tr . There exists

a connected k-search strategy for Tr if and only if there exists a connected (2k)-search strategy for T 2
r . Take three copies of

T 2
r , and a vertex r ′ (the weight of r ′ is 1), and let the roots of the trees T 2

r be the children of r ′. The new tree is denoted by
T ′

r ′ . We obtain that cs(T ′, r ′) = 2k + 1. Moreover, if S′ is a connected (2k + 1)-search strategy for T ′ then regardless of the
homebase in S′, the strategy is forced to clear one of the subtrees T 2

r in T ′
r by starting at r and using 2k searchers. This leads

to the following

Corollary 4. The problem of connected searching of weighted trees is strongly NP-complete. �

6. Conclusions

The main contribution of this work is establishing the complexity status of connected searching of weighted trees. It
also follows from the NP-hardness proof and from the algorithm presented that the maximum degree of a given tree is a
factor that makes a particular instance computationally tractable or intractable. A natural direction for further research is
to consider other parameters that can draw a tight line between computationally easy and hard instances. Investigating
weighted trees is also of importance as it may lead to interesting results for a more general class of chordal graphs. One of
the interesting open problems is the existence of ‘good’ approximations for finding connected search strategies for weighted
trees.
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