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AN UPPER BOUND ON THE TOTAL
OUTER-INDEPENDENT DOMINATION NUMBER

OF A TREE

Marcin Krzywkowski

Abstract. A total outer-independent dominating set of a graph G = (V (G), E(G)) is a set
D of vertices of G such that every vertex of G has a neighbor in D, and the set V (G) \D
is independent. The total outer-independent domination number of a graph G, denoted by
γoi

t (G), is the minimum cardinality of a total outer-independent dominating set of G. We
prove that for every tree T of order n ≥ 4, with l leaves and s support vertices we have
γoi

t (T ) ≤ (2n+ s− l)/3, and we characterize the trees attaining this upper bound.
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1. INTRODUCTION

Let G = (V (G), E(G)) be a graph. By the neighborhood of a vertex v of G we mean
the set NG(v) = {u ∈ V (G) : uv ∈ E(G)}. The degree of a vertex v, denoted by
dG(v), is the cardinality of its neighborhood. By a leaf we mean a vertex of degree
one, while a support vertex is a vertex adjacent to a leaf. We say that a support vertex
is strong (weak, respectively) if it is adjacent to at least two leaves (exactly one leaf,
respectively). The path on n vertices we denote by Pn. Let T be a tree, and let v be a
vertex of T. We say that v is adjacent to a path Pn if there is a neighbor of v, say x,
such that the subtree resulting from T by removing the edge vx and which contains
the vertex x as a leaf, is a path Pn. By a star we mean a connected graph in which
exactly one vertex has degree greater than one. By a double star we mean a graph
obtained from a star by joining a positive number of vertices to one of its leaves.

We say that a subset of V (G) is independent if there is no edge between every
two its vertices. A subset D ⊆ V (G) is a dominating set of G if every vertex of
V (G) \D has a neighbor in D, while it is a total dominating set if every vertex of G
has a neighbor in D. The domination (total domination, respectively) number of G,
denoted by γ(G) (γt(G), respectively), is the minimum cardinality of a dominating
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(total dominating, respectively) set of G. Total domination in graphs was introduced
by Cockayne, Dawes, and Hedetniemi [2], and further studied for example in [1]. For
a comprehensive survey of domination in graphs, see [3, 4].

A subset D ⊆ V (G) is a total outer-independent dominating set, abbreviated
TOIDS, of G if every vertex of G has a neighbor in D, and the set V (G) \D is inde-
pendent. The total outer-independent domination number of G, denoted by γoi

t (G),
is the minimum cardinality of a total outer-independent dominating set of G. A total
outer-independent dominating set of G of minimum cardinality is called a γoi

t (G)-set.
The study of total outer-independent domination in graphs was initiated in [5].

Chellali and Haynes [1] established the following upper bound on the total domi-
nation number of a tree. For every nontrivial tree T of order n with s support vertices
we have γt(T ) ≤ (n+ s)/2.

We prove the following upper bound on the total outer-independent domination
number of a tree. For every tree T of order n ≥ 4, with l leaves and s support vertices
we have γoi

t (T ) ≤ (2n + s − l)/3. Moreover, we characterize the trees attaining this
upper bound.

2. RESULTS

Since the one-vertex graph does not have a total outer-independent dominating set,
in this paper, by a tree we mean only a connected graph with no cycle, and which
has at least two vertices.

We begin with the following two straightforward observations.

Observation 2.1. Every support vertex of a graph G is in every γoi
t (G)-set.

Observation 2.2. For every connected graph G of diameter at least three there exists
a γoi

t (G)-set that contains no leaf.

We show that if T is a tree of order n ≥ 4, with l leaves and s support vertices,
then γoi

t (T ) is bounded above by (2n + s − l)/3. For the purpose of characterizing
the trees attaining this bound we introduce a family T of trees T = Tk that can be
obtained as follows. Let T1 be a path P6, and let A(T1) be a set containing all vertices
of P6 which are not leaves. Let H be a path P3 with one of the leaves labeled u, and
the support vertex labeled v. If k is a positive integer, then Tk+1 can be obtained
recursively from Tk by one of the following operations.

– OperationO1: Attach a copy ofH by joining the vertex u to a vertex of Tk adjacent
to a path P3. Let A(T ) = A(T ′) ∪ {u, v}.

– Operation O2: Attach a copy of H by joining the vertex u to a vertex of Tk which
is not a leaf and is adjacent to a support vertex. Let A(T ) = A(T ′) ∪ {u, v}.

– Operation O3: Attach a copy of H by joining the vertex u to a leaf of Tk adjacent
to a weak support vertex. Let A(T ) = A(T ′) ∪ {u, v}.

Now we prove that for every tree T of the family T , the set A(T ) defined above
is a TOIDS of minimum cardinality equal to (2n+ s− l)/3.
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Lemma 2.3. If T ∈ T , then the set A(T ) defined above is a γoi
t (T )-set of size

(2n+ s− l)/3.

Proof. We use the terminology of the construction of the trees T = Tk, the set A(T ),
and the graph H defined above. To show that A(T ) is a γoi

t (T )-set of cardinality
(2n+ s− l)/3 we use induction on the number k of operations performed to construct
the tree T . If T = T1 = P6, then (2n+s−l)/3 = (12+2−2)/3 = 4 = |A(T )| = γoi

t (T ).
Let k ≥ 2 be an integer. Assume that the result is true for every tree T ′ = Tk of the
family T constructed by k− 1 operations. Let n′ mean the order of the tree T ′, l′ the
number of its leaves, and s′ the number of support vertices. Let T = Tk+1 be a tree
of the family T constructed by k operations.

First assume that T is obtained from T ′ by operation O1. We have n = n′ + 3,
s = s′ + 1, and l = l′ + 1. The vertex of T ′ to which is attached P3 we denote by x.
Let abc mean a path P3 adjacent to x, and such that a 6= u. It is easy to see that
A(T ) = A(T ′) ∪ {u, v} is a TOIDS of the tree T . Thus γoi

t (T ) ≤ γoi
t (T ′) + 2. Now let

D be a γoi
t (T )-set that contains no leaf. By Observation 2.1, we have v ∈ D. Each

one of the vertices v and b has to have a neighbor in D, thus u, a ∈ D. Let us observe
that D \ {u, v} is a TOIDS of the tree T ′ as the vertex x has a neighbor in D \ {u, v}.
Therefore γoi

t (T ′) ≤ γoi
t (T )− 2. Now we conclude that γoi

t (T ) = γoi
t (T ′) + 2. We get

γoi
t (T ) = |A(T )| = |A(T ′)|+2 = (2n′ + s′− l′)/3+2 = (2n−6+ s−1− l+1)/3+2 =

(2n+ s− l)/3.
Now assume that T is obtained from T ′ by operation O2. We have n = n′ + 3,

s = s′ +1, and l = l′ +1. The vertex of T ′ to which is attached P3 we denote by x. Let
y mean a support vertex adjacent to x. It is easy to see that A(T ) = A(T ′) ∪ {u, v}
is a TOIDS of the tree T . Thus γoi

t (T ) ≤ γoi
t (T ′) + 2. Now let D be a γoi

t (T )-set that
contains no leaf. By Observation 2.1 we have v, y ∈ D. The vertex v has to have a
neighbor in D, thus u ∈ D. Let us observe that D \ {u, v} is a TOIDS of the tree T ′

as the vertex x has a neighbor in D \ {u, v}. Therefore γoi
t (T ′) ≤ γoi

t (T )− 2. Now we
conclude that γoi

t (T ) = γoi
t (T ′) + 2. In the same way as in the previous possibility we

get γoi
t (T ) = (2n+ s− l)/3.

Now assume that T is obtained from T ′ by operation O3. We have n = n′ + 3,
s = s′, and l = l′. The leaf to which is attached P3 we denote by x. Let y mean a
neighbor of x other than u. It is easy to see that A(T ) = A(T ′) ∪ {u, v} is a TOIDS
of the tree T . Thus γoi

t (T ) ≤ γoi
t (T ′) + 2. Now let us observe that there exists a

γoi
t (T )-set that does not contain the vertex x, and does not contain any leaf. Let
D be such a set. By Observation 2.1 we have v ∈ D. The vertex v has to have a
neighbor in D, thus u ∈ D. The set V (T ) \ D is independent, thus y ∈ D. Let us
observe that D \ {u, v} is a TOIDS of the tree T ′ as the vertex x has a neighbor in
D \{u, v}. Therefore γoi

t (T ′) ≤ γoi
t (T )−2. Now we conclude γoi

t (T ) = γoi
t (T ′)+2. We

get γoi
t (T ) = |A(T )| = |A(T ′)|+ 2 = (2n′ + s′ − l′)/3 + 2 = (2n− 6 + s− l)/3 + 2 =

(2n+ s− l)/3.

Now we establish the main result, an upper bound on the total outer-independent
domination number of a tree together with the characterization of the extremal trees.
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Theorem 2.4. If T is a tree of order n ≥ 4, with l leaves and s support vertices,
then γoi

t (T ) ≤ (2n+ s− l)/3 with equality if and only if T = K1,3 or T ∈ T .

Proof. First assume that diam(T ) = 2. Thus T is a star K1,m with m ≥ 3. If m = 3,
then T = K1,3. We have γoi

t (T ) = 2 = (8 + 1 − 3)/3 = (2n + s − l)/3. If m ≥ 4,
then (2n + s − l)/3 = (2m + 2 + 1 −m)/3 = (m + 3)/3 ≥ (4 + 3)/3 > 2 = γoi

t (T ).
Now let us assume that diam(T ) = 3. Thus T is a double star. We have (2n + s −
l)/3 = (2n + 2 − n + 2)/3 = (n + 4)/3 ≥ (4 + 4)/3 > 2 = γoi

t (T ). Now assume that
diam(T ) = 4. Let v1v2v3v4v5 mean a longest path in T . If v3 is adjacent to a leaf,
then all support vertices of T form a TOIDS of the tree T . Thus γoi

t (T ) ≤ s. Now we
get γoi

t (T ) ≤ s = s/3+2s/3 = s/3+2(n− l)/3 = (2n+s−2l)/3 < (2n+s− l)/3. Now
assume that T is not adjacent to any leaf. It is easy to observe that all support vertices
of T together with the vertex v3 form a TOIDS of the tree T . Thus γoi

t (T ) ≤ s+1. We
have n = l+s+1. Now we get γoi

t (T ) ≤ s+1 = s/3+2s/3+1 = s/3+2(n−l−1)/3+1 =
(2n + s − 2l − 2)/3 + 1 = (2n + s − l)/3 + (1 − l)/3 < (2n + s − l)/3. Now let us
assume that diam(T ) = 5. Let v1v2v3v4v5v6 mean a longest path in T . If both vertices
v3 and v4 are adjacent to a leaf, then all support vertices of T form a TOIDS of the
tree T . Thus γoi

t (T ) ≤ s. Now we get γoi
t (T ) ≤ s = s/3 + 2s/3 = s/3 + 2(n− l)/3 =

(2n+ s− 2l)/3 < (2n+ s− l)/3. Now assume that exactly one of the vertices v3 and
v4 is adjacent to a leaf. Without loss of generality we assume that v3 is adjacent to
a leaf. It is easy to observe that all support vertices of T together with the vertex v4
form a TOIDS of the tree T . Thus γoi

t (T ) ≤ s+1. We have n = l+ s+1. Now we get
γoi

t (T ) ≤ s+1 = s/3+2s/3+1 = s/3+2(n− l− 1)/3+1 = (2n+ s− 2l− 2)/3+1 =
(2n + s − l)/3 + (1 − l)/3 < (2n + s − l)/3. Now assume that neither v3 nor v4 is
adjacent to a leaf. It is easy to observe that all support vertices of T together with
the vertices v3 and v4 form a TOIDS of the tree T . Thus γoi

t (T ) ≤ s + 2. We have
n = l+s+2. Now we get γoi

t (T ) ≤ s+2 = s/3+2s/3+2 = s/3+2(n− l−2)/3+2 =
(2n+ s− 2l− 4)/3 + 2 = (2n+ s− l)/3 + (2− l)/3. If T has exactly two leaves, then
T = P6 = T1 ∈ T . By Lemma 2.3 we have γoi

t (T ) = (2n+s− l)/3. Now assume that T
has at least three leaves. We have γoi

t (T ) ≤ (2n+ s− l)/3+(2− l)/3 < (2n+ s− l)/3.
Now assume that diam(T ) ≥ 6. Thus the order of the tree T is an integer n ≥ 7.

The result we obtain by the induction on the number n. Assume that the theorem is
true for every tree T ′ of order n′ < n, with l′ leaves and s′ support vertices.

First assume that some support vertex of T , say x, is strong. Let y mean a leaf
adjacent to x. Let T ′ = T − y. We have n′ = n − 1, s′ = s, and l′ = l − 1. Let D′

be any γoi
t (T ′)-set. By Observation 2.1 we have x ∈ D′. Of course, D′ is a TOIDS of

the tree T . Thus γoi
t (T ) ≤ γoi

t (T ′). Now we get γoi
t (T ) ≤ γoi

t (T ′) = (2n′ + s′− l′)/3 =
(2n− 2+ s− l+1)/3 = (2n+ s− l)/3− 1/3 < (2n+ s− l)/3. Therefore every support
vertex of T is weak.

We now root T at a vertex r of maximum eccentricity diam(T ). Let t be a leaf at
maximum distance from r, v be the parent of t, u be the parent of v, w be the parent
of u, and d be the parent of w in the rooted tree. By Tx let us denote the subtree
induced by a vertex x and its descendants in the rooted tree T .

First assume that dT (u) ≥ 3. Assume that among the descendants of u there is a
support vertex, say x, different than v. Let T ′ = T−Tv. We have n′ = n−2, s′ = s−1,
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and l′ = l− 1. Let D′ be a γoi
t (T ′)-set that contains no leaf. The vertex x has to have

a neighbor in D′, thus u ∈ D′. It is easy to see that D′∪{v} is a TOIDS of the tree T .
Thus γoi

t (T ) ≤ γoi
t (T ′) + 1. Now we get γoi

t (T ) ≤ γoi
t (T ′) + 1 ≤ (2n′ + s′− l′)/3 + 1 =

(2n− 4 + s− 1− l + 1)/3 + 1 = (2n+ s− l)/3− 1/3 < (2n+ s− l)/3.
Now assume that some descendant of u, say x, is a leaf. Let T ′ = T − x. We have

n′ = n − 1, s′ = s − 1, and l′ = l − 1. Let D′ be a γoi
t (T ′)-set that contains no leaf.

The vertex v has to have a neighbor in D′, thus u ∈ D′. It is easy to see that D′

is a TOIDS of the tree T . Thus γoi
t (T ) ≤ γoi

t (T ′). Now we get γoi
t (T ) ≤ γoi

t (T ′) ≤
(2n′ + s′ − l′)/3 = (2n− 2 + s− 1− l+ 1)/3 = (2n+ s− l)/3− 2/3 < (2n+ s− l)/3.

Now assume that dT (u) = 2. First assume that there is a descendant of w, say k,
such that the distance of w to the most distant vertex of Tk is three. It suffices to
consider only the possibility when Tk is a path P3, say klm. Let T ′ = T − Tu. We
have n′ = n− 3, s′ = s− 1, and l′ = l− 1. Let D′ be any γoi

t (T ′)-set. It is easy to see
that D′ ∪ {u, v} is a TOIDS of the tree T . Thus γoi

t (T ) ≤ γoi
t (T ′) + 2. Now we get

γoi
t (T ) ≤ γoi

t (T ′)+2 ≤ (2n′+s′−l′)/3+2 = (2n−6+s−1−l+1)/3+2 = (2n+s−l)/3.
If γoi

t (T ) = (2n+ s− l)/3, then obviously γoi
t (T ′) = (2n′ + s′ − l′)/3. The tree T ′ has

at least seven vertices. By the inductive hypothesis we have T ′ ∈ T . The tree T can
be obtained from T ′ by operation O1. Thus T ∈ T .

Now assume that there is a descendant of w, say k, such that the distance of w
to the most distant vertex of Tk is two. Thus k is a support vertex. Let T ′ = T − Tu.
In the same way as in the previous possibility we get γoi

t (T ) ≤ (2n + s − l)/3. If
γoi

t (T ) = (2n+ s− l)/3, then γoi
t (T ′) = (2n′ + s′ − l′)/3. The tree T ′ has at least six

vertices. By the inductive hypothesis we have T ′ ∈ T . The tree T can be obtained
from T ′ by operation O2. Thus T ∈ T .

Now assume that some descendant of w, say k, is a leaf. Let T ′ = T − t − k. We
have n′ = n − 2, s′ = s − 1, and l′ = l − 1. Let D′ be a γoi

t (T ′)-set that contains
no leaf. By Observation 2.1 we have u ∈ D′. The vertex u has to have a neighbor in
D′, thus w ∈ D′. It is easy to observe that D′ ∪ {v} is a TOIDS of the tree T . Thus
γoi

t (T ) ≤ γoi
t (T ′) + 1. Now we get γoi

t (T ) ≤ γoi
t (T ′) + 1 ≤ (2n′ + s′ − l′)/3 + 1 =

(2n− 4 + s− 1− l + 1)/3 + 1 = (2n+ s− l)/3− 1/3 < (2n+ s− l)/3.
Now assume that dT (w) = 2. First assume that d is adjacent to a leaf. Let T ′ =

T − Tu. We have n′ = n − 3, s′ = s − 1, and l′ = l. Let D′ be any γoi
t (T ′)-set. It is

easy to see that D′∪{u, v} is a TOIDS of the tree T . Thus γoi
t (T ) ≤ γoi

t (T ′)+2. Now
we get γoi

t (T ) ≤ γoi
t (T ′) + 2 ≤ (2n′ + s′ − l′)/3 + 2 = (2n − 6 + s − 1 − l)/3 + 2 =

(2n+ s− l)/3− 1/3 < (2n+ s− l)/3.
Now assume that d is not adjacent to any leaf. Let T ′ = T−Tu. We have n′ = n−3,

s′ = s, and l′ = l. Let D′ be any γoi
t (T ′)-set. It is easy to see that D′ ∪ {u, v} is a

TOIDS of the tree T . Thus γoi
t (T ) ≤ γoi

t (T ′) + 2. Now we get γoi
t (T ) ≤ γoi

t (T ′) + 2 ≤
(2n′ +s′− l′)/3+2 = (2n−6+s− l)/3+2 = (2n+s− l)/3. If γoi

t (T ) = (2n+s− l)/3,
then γoi

t (T ′) = (2n′ + s′ − l′)/3. The tree T ′ has at least four vertices and is different
from K1,3 as T ′ has no strong support vertex. By the inductive hypothesis we have
T ′ ∈ T . The tree T can be obtained from T ′ by operation O3. Thus T ∈ T .
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