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Abstract—One of the central problems of the stochastic ap-
proximation theory is the proper adjustment of the smoothing
algorithm to the unknown, and possibly time-varying, rate and
mode of variation of the estimated signals/parameters. In this
paper we propose a novel locally adaptive parallel estimation
scheme which can be used to solve the problem of fixed-
interval Kalman smoothing in the presence of model uncertainty.
The proposed solution is based on the idea of cooperative
smoothing – the Bayesian extension of the leave-one-out cross-
validation approach to model selection. Within this approach the
smoothed estimates are evaluated as a convex combination of the
estimates provided by several competing smoothers. We derive
computationally attractive algorithms allowing for cooperative
Kalman smoothing and show how the proposed approach can be
applied to identification of nonstationary stochastic systems.

Index Terms—Parallel estimation schemes, system identifica-
tion, Kalman smoothing.

I. I NTRODUCTION

I N this paper we will consider the problem of noncausal
estimation (smoothing) of ann-dimensional signals(t) =

[s1(t), . . . , sn(t)]T, based on noisy measurements

y(t) = s(t) + v(t), t = . . . ,−1, 0, 1, . . . (1)

wheret denotes normalized discrete time and{v(t)} denotes
n-dimensional white Gaussian noise. We will assume that the
entire measurement historyY(N) = {y(1), . . . ,y(N)} is
available, so at any instantt ∈ [1, N ] estimation ofs(t) can
be based on “past” (i < t), “present” (i= t) and “future”
(i > t) measurements. We will also assume that the signal
s(t) is generated by a state space model

x(t + 1) = F(t,θ)x(t) + G(t,θ)w(t)
s(t) = H(t,θ)x(t) (2)

wherex(t) is ar-dimensional state vector, and{w(t)} denotes
the l-dimensional driving noise – a white Gaussian sequence
independent of{v(t)}.

Finally, we will assume that the matricesF(t, θ)r×r,
G(t,θ)r×l, H(t,θ)n×r that appear in the state space de-
scription (2), as well as the covariance matrices of the noise
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sourcescov[v(t)] = V(t,θ)n×n, cov[w(t)] = W(t,θ)l×l are
functions of a vector of unknown design parametersθ.

The structured information about the estimated signal, en-
capsulated in the state space model (2), is available in many
passive (e.g. GPS - Global Positioning System) and active
(e.g. radar-based) localization and navigation applications –
see detailed studies in [1] and [2], among many others.

The time-varying nature of the matricesF, G, H, V and
W is often a consequence of the fact that the model (1) -
(2) is a result of discretization, change of spatial coordinates
and linearization around a time-dependent “setpoint”, of a
nonlinear continuous-time signal description

ẋc = f [xc] + wc

yc = h[xc] + vc. (3)

The model uncertainty, represented by the vectorθ, usually
originates from an incomplete knowledge of the signal source
or unknown/changing environmental conditions.

When the vectorθ is known, the optimal, in the mean-
squared sense, smoothed estimate ofs(t) is given in the form
[3]

ŝ(t|N) = E[s(t)|Y(N)]

and can be evaluated using the algorithm known as a fixed-
interval Kalman smoother. Using the intuitively appealing
framework proposed by Mayne [4] and Fraser [5], smoothing
can be viewed as a result of combining the estimates yielded
by two Kalman filters/predictors: the causal one, running for-
ward in time, and the anticausal one [based on the backwards
Markovian representation ofs(t)], running backward in time.
When design parametersθ are not known, the problem can be
solved in two different ways. The first approach is based on
sequential estimation ofθ and results in algorithms known as
adaptive Kalman filters/smoothers [6]. In the second approach,
several Kalman filters/smoothers, designed for different hy-
pothetical values ofθ, are run in parallel and the obtained
results are merged in a statistically meaningful way. Such
parallel estimation, or multiple-model, schemes, which can be
traced back to Magill [7], are increasingly popular in modern
navigation and tracking applications – see e.g. [8] and [9].

The approach that proved particularly useful in target
tracking applications is called interactive multiple models
(IMM). The IMM algorithm, originally proposed in [10], was
designed for systems that can switch between different modes
of behavior, characterized by different state space descriptions.
The mode switching process is modelled as a Markov chain.
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The algorithm consists of a bank of Kalman filters (corre-
sponding to different maneuvering hypotheses) and a linear
combiner which computes the final state estimate as a convex
combination of the component estimates. The term “interacting
models” refers to the fact that, at the beginning of each cycle of
model-conditioned Kalman filtering, the state vectors and error
covariance matrices of component filters are mixed appropri-
ately. The mixing step is equivalent to “hypothesis merging”,
and makes the filter bank behave more consistently compared
to the no-mixing case. Over the past two decades the IMM
approach has been perfected and extended in many important
directions, such as handling the data origin uncertainty [the
probabilistic data association (PDA) technique], for example.
See e.g. [11] for a recent survey of the available solutions.
The fixed-interval IMM smoothing algorithms can be found
in [12] and [13].

In this paper we propose a novel locally adaptive parallel
estimation scheme which can be used to solve the problem
of Kalman smoothing in the presence of model uncertainty.
The proposed solution is based on the idea of cooperative
smoothing presented in [14]. Cooperative smoothing is a
general framework which shows how credibility of constituent
smoothers can be evaluated based on the errors (“match-
ing errors”) yielded by the appropriately modified (“holey”)
smoothers. Since this approach is based on the local statistics,
it can deal with different forms of signal/system nonstationar-
ity.

The structure of the cooperative smoother is the same as
the structure of the IMM smoother, except that the hypothesis
merging step is not employed. The main advantage of the
new approach, besides very low computational complexity,
is its universal character – unlike IMM schemes, cooperative
smoothers can be used to combine, in a statistically mean-
ingful way, results yielded byany smoothing algorithms, not
necessarily those based on the Kalman theory. Hence, from the
qualitative viewpoint, the cooperative approach complements
the IMM approach, rather than competes with it.

Cooperative smoothing can be particularly useful in all
applications, such as identification of nonstationary stochastic
systems, where our prior knowledge about different modes of
system variation is rather vague (if any), i.e., the incorporated
state space models are to a greater extent instrumental than
factual (physically motivated) [15]. In cases like this, one
may be interested in combining results provided by smooth-
ing algorithms based on different smoothing principles, e.g.
combining Kalman smoothers with kernel smoothers, such as
the algorithms proposed recently in [16]. Using the results
presented in [16] and in this paper, one can easily design such
“mixed” parallel estimation schemes.

It should be stressed that the general rules presented in [14]
are usually not cost effective, i.e., for a particular class of com-
bined smoothing algorithms they may be rather cumbersome
to apply. Further work is usually needed to turn a general idea
into an efficient computational algorithm. Such is the case with
Kalman smoothers.

The contribution of this paper is threefold. First, we show
how the idea of cooperative smoothing, originally proposed
for univariate signals, can be extended to multivariate signals

corrupted by Gaussian noise. Second, we show that matching
errors, needed to compute credibility coefficients, can be
expressed in terms of (easily computable) residual errors, i.e.,
that they can be evaluated without actually implementing the
corresponding holey smoothers. This significantly simplifies
the cooperative Kalman scheme, making it computationally
attractive. Finally, we show how cooperative Kalman smooth-
ing can be applied to identification of nonstationary stochastic
systems.

II. COOPERATIVE SMOOTHING OF MULTIVARIATE SIGNALS

Similar to [14], we will start from considering a simplified
smoothing scheme referred to as Bayesian pattern matching.
The obtained results will be next applied, in an appropriately
modified form, to solve more realistic smoothing problems.

A. Bayesian pattern matching

Denote byTa(t) = [t−m, t+m] the local analysis window1

of width M = 2m+1, M ≥ n, and let{s1(i), . . . , sK(i), i ∈
Ta(t)} be a set of fixed (data-independent) signal patterns or
waveforms. We will considerK equiprobable hypothesesHk,
π(Hk) = 1/K, k = 1, . . . , K, of the form

Hk : s(i) = sk(i), v(i) ∼ N (0,V), V > O, i ∈ Ta(t)

where0 denotes then-dimensional vector of zeros andO is
the n× n null matrix.

According to the hypothesisHk, the signal coincides, within
the analysis windowTa(t), with thek-th pattern. The unknown
covariance matrixV of the measurement noise, assumed
constant overTa(t), will be regarded as a nuisance parameter
with an assigned noninformative prior distribution. Using the
Jeffreys formula [17], the noninformative distribution forV
can be obtained in the following improper form [18]

π(V|Hk) = π(V) ∝ [det(V)]−(n+1)/2 (4)

where∝ denotes proportionality.
Assuming that one and only one of the hypotheses is true,

the optimal, in the mean-squared sense, estimate ofs(t) can
be obtained in the form [3]

ŝ(t) =
K∑

k=1

µk(t)sk(t) (5)

whereµk(t), k = 1, . . . , K, denote credibility coefficients –
the posterior probabilities of different signal patterns given the
set of local observationsYT (t) = {y(t−m), . . . ,y(t + m)}:

µk(t) = P (Hk|YT (t))

∝
∫

V>O

p(YT (t)|V,Hk)π(V|Hk)π(Hk)dV. (6)

Note that

p(YT (t)|V,Hk) = [det(2πV)]−M/2

× exp
{
− 1

2
tr

[
V−1Dk(t)

]}
(7)

1We will assume, for simplicity, thatm < t ≤ N −m.
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where
Dk(t) =

∑

i∈Ta(t)

ek(i)eT
k (i)

and ek(i) = y(i) − sk(i) denotes residual error. Therefore,
under noninformative priors, one obtains

µk(t) ∝
∫

V>O

[det(V)]−(M+n+1)/2

× exp
{
− 1

2
tr

[
V−1Dk(t)

]}
dV

= 2
nM
2 Γn (M

2 ) {det[Dk(t)] }−M
2 (8)

where Γn(·) denotes the multivariate gamma function. This
result follows immediately from the well-known properties of
the inverse Wishart distribution – see Appendix 1.

Using (8), credibility coefficients can be expressed in the
following form

µk(t) =
ηk(t)∑K

k=1 ηk(t)
(9)

where
ηk(t) = {det[Dk(t)] }−M/2

. (10)

B. Cooperative smoothing

Consider now the situation where, instead of fixed patterns,
one uses data-dependent patterns locally adapted to the signal
and given by

ŝk(t) = fk[Y(N)] (11)

where fk[·] is an arbitrary smoothing procedure. Depending
on the smoothing approach, the functionfk[·] may take
many different forms, both linear (Kalman smoother, kernel
smoother [19], local polynomial approximation smoother [20])
and nonlinear (order statistical smoothers [21]).

Following [14], the cooperative smoother based on
ŝ1(t), . . . , ŝK(t) will be defined in the following form

ŝ(t) =
K∑

k=1

µ◦k(t)ŝk(t) (12)

where

µ◦k(t) =
η◦k(t)∑K

k=1 η◦k(t)

η◦k(t) = {det[D◦
k(t)] }−M/2

D◦
k(t) =

∑

i∈Ta(t)

e◦k(i)[e◦k(i)]T (13)

and
e◦k(t) = y(t)− ŝ◦k(t)

denotes the quantity which will be further referred to as
matching error2 – residual error yielded by the holey smoother
ŝ◦k(t) associated witĥsk(t)

ŝ◦k(t) = fk[Y◦(t,N)], Y◦(t, N) = Y(N)− {y(t)}. (14)

2In the classical regression analysisnormalizedmatching errors are called
deleted residuals.

According to (14), holey smoother̂s◦k(t) is based on the
same smoothing principle aŝsk(t), except that it excludes
y(t) from the set of measurements used for estimation of
s(t). Since matching errorse◦k(t) are pointwise independent
of the measurement noisev(t), they allow for approximately
unbiased evaluation of the local performance ofŝk(t). In par-
ticular, the modified Bayesian-like combination rule, obtained
when credibility coefficients are evaluated for matching errors,
will not favor smoothers that “underestimate” the influence of
measurement noise on the observed data.

Cooperative smoothing can be regarded as a Bayesian
extension of the leave-one-out cross-validation approach to
model selection [22].

On the qualitative level, cooperative smoothing closely
resembles the prediction technique, known as Bayesian model
averaging (BMA) – for more details see e.g. [23]. BMA is
an intuitively attractive solution to the problem of accounting
for model uncertainty – the final prediction is obtained by
averaging predictions based on many competing models. It
can be shown that averaging over all the models provides
better average predictive ability, as measured by a logarithmic
scoring rule, than using any single model [24]. The multiple-
model approach to prediction, which can be traced back to
the paper of Bates and Granger [25], has been successfully
utilized in many fields, such as econometrics, environmental
science and biology.

C. Computational hints

Some of the quantities involved in computation of cred-
ibility coefficients may take very large or very small values.
The following modified expression, mathematically equivalent
to (13), allows one to avoid numerical problems (such as
numerical overflow) caused by improper scaling

µ◦k(t) =
exp{χk(t)}∑K

k=1 exp{χk(t)}
where

χk(t) = ζk(t)− ζmax(t)
ζk(t) = log η◦k(t) = − (M/2) log {det[D◦

k(t)] }
ζmax(t) = max

1≤k≤K
ζk(t) .

III. C OOPERATIVEKALMAN SMOOTHING

Suppose that the vectorθ in (2) can takeK different values
θ1, . . . , θK , leading toK hypothetical models of the analyzed
signal

Mk : x(t + 1) = Fk(t)x(t) + Gk(t)wk(t)
s(t) = Hk(t)x(t)
y(t) = s(t) + vk(t) (15)

wk(t) ∼ N (0,Wk(t)), vk(t) ∼ N (0,Vk(t))

whereFk(t) = F(t,θk), Gk(t) = G(t,θk), etc.
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A. Two-filter smoothing formula

For a given signal modelMk, the optimal noncausal
estimate ofx(t) is given by

x̂k(t|N) = E[x(t)|Y(N),Mk]

and can be written down as a linear combination of the
estimates provided by two Kalman filters/predictors operated
forward in time and backward in time, respectively. The
forward Kalman filter/predictor has the form

εk(t) = y(t)−Hk(t)x̂k(t|t− 1)

Qk(t) = Hk(t)Pk(t|t− 1)HT
k (t) + Vk(t)

Kk(t) = Pk(t|t− 1)HT
k (t)Q−1

k (t)
x̂k(t|t) = x̂k(t|t− 1) + Kk(t)εk(t) (16)

Pk(t|t) = Pk(t|t− 1)−Kk(t)Qk(t)KT
k (t)

x̂k(t + 1|t) = Fk(t)x̂k(t|t)
Pk(t + 1|t) = Fk(t)Pk(t|t)FT

k (t) + Gk(t)Wk(t)GT
k (t)

t = 1, . . . , N

where

x̂k(t|t) = E[x(t)|Y(t),Mk]
x̂k(t + 1|t) = E[x(t + 1)|Y(t),Mk]

and Pk(t|t) = cov[x̂k(t|t)], Pk(t + 1|t) = cov[x̂k(t + 1|t)]
denote the corresponding covariance matrices.

The backward Kalman filter/predictor, which evaluates
estimates based on the “future” data samplesYB(t) =
{y(t), . . . ,y(N)}

x̂B
k (t|t) = E[x(t)|YB(t),MB

k ]

x̂B
k (t− 1|t) = E[x(t− 1)|YB(t),MB

k ]

has the same form as the forward algorithm (16), except that
it is based on the backwards Markovian signal model

MB
k : x(t) = FB

k (t)x(t + 1) + GB
k (t)wB

k (t + 1)
y(t) = Hk(t)x(t) + vk(t)

and is run backward in time.
WhenP−1

k (1|0) = O (noninformative prior) and when the
state transition matrixFk(t) is invertible for all t, parame-
ters of the backwards Markovian model can be specified as
follows:

FB
k (t) = F−1

k (t), GB
k (t) = −F−1

k (t)Gk(t)

wB
k (t + 1) = wk(t).

When P−1
k (1|0) 6= O, i.e., some prior knowledge about the

initial value of the state vector is available, construction of
the backwards Markovian model is less straightforward – see
[26] for more details. This complication, however, will have
no impact on the analysis carried out in this paper.

The Mayne-Fraser (MF) two-filter formula can be summa-
rized as follows

x̂k(t|N) = Pk(t|N)
{
[Pk(t|t)]−1x̂(t|t)

+ [PB
k (t|t + 1)]−1x̂B

k (t|t + 1)
}

(17)

Pk(t|N) = cov[x̂k(t|N)]

=
{
[Pk(t|t)]−1 + [PB

k (t|t + 1)]−1
}−1

(18)

where PB
k (t|t + 1) denotes the covariance matrix of the

backward Kalman “predictor”̂xB
k (t|t + 1). The initial con-

ditions for the backward algorithm arêxB
k (N |N + 1) = 0

and [PB
k (N |N + 1)]−1 = O. Such an improper covariance

initialization can be easily handled when the backward Kalman
algorithm is realized as aninformation filter (inverse covari-
ance filter) – for more details see [3].

Based on (17), one obtains the following smoothed estimate
of s(t)

ŝk(t|N) = E[s(t)|Y(N),Mk] = Hk(t)x̂k(t|N)

Sk(t|N) = cov[̂sk(t|N)] = Hk(t)Pk(t|N)HT
k (t). (19)

B. Evaluation of matching errors

Local performance of the smoothed estimateŝk(t|N) can
be evaluated in terms of the associated matching errors

e◦k(t) = y(t)− ŝ◦k(t|N)

where

ŝ◦k(t|N) = E[s(t)|Y◦(t, N),Mk] = Hk(t)x̂◦k(t|N)

andx̂◦k(t|N) denotes the estimate yielded by the holey Kalman
smoother

x̂◦k(t|N) = E[x(t)|Y◦(t, N),Mk].

Using the generalized Millman’s theorem on optimal com-
bination of two independent estimates [3], one can express
x̂◦k(t|N) as a linear combination of forward and backward
Kalman predictors [note similarity to (17) - (18)]

x̂◦k(t|N) = P◦k(t|N)
{
[Pk(t|t− 1)]−1x̂(t|t− 1)

+ [PB
k (t|t + 1)]−1x̂B

k (t|t + 1)
}

(20)

P◦k(t|N) = cov[x̂◦k(t|N)]

=
{
[Pk(t|t− 1)]−1 + [PB

k (t|t + 1)]−1
}−1

(21)

Now we are ready to state the main result of this section –
we will show that matching errorse◦k(t) can be expressed in
terms of residual errorsek(t).

Theorem

It holds that
e◦k(t) = Σ−1

k (t)ek(t) (22)

where

Σk(t) = I− Sk(t|N)V−1
k (t)

ek(t) = y(t)− ŝk(t|N). (23)

Proof – see Appendix 2.

Note that, according to (22), matching errors can be eval-
uated without actually implementing the corresponding holey
smoother.
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C. Cooperative smoothing formula

The cooperative smoothing formula, merging results yielded
by K Kalman smoothers, can be summarized as follows

ŝ(t|N) =
K∑

k=1

µ◦k(t)ŝk(t|N) (24)

where µ◦k(t), k = 1, . . . ,K, denote credibility coefficients
given by (13). Matching errorse◦k(t), needed to compute
µ◦k(t), can be obtained from (22).

When all state space models share the some output matrix,
i.e.,

H1(t) = . . . = HK(t) = H(t), ∀t
the formula (24) can be rewritten in the form

ŝ(t|N) = H(t)x̂(t|N) (25)

where

x̂(t|N) =
K∑

k=1

µ◦k(t)x̂k(t|N) (26)

denotes the cooperative state estimate.
Since the modelsMk, k = 1, . . . , K are regarded as

mutually exclusive hypothetical signal descriptions, the co-
variance matrices of smoothed estimates (24) and (26) can
be approximately3 expressed in the form

S(t|N) ∼=
K∑

k=1

µ◦k(t)Sk(t|N)

P(t|N) ∼=
K∑

k=1

µ◦k(t)Pk(t|N). (27)

Remark

All results presented above remain valid if the state equation
in (15) includes the deterministic input signalu(t)

x(t + 1) = Fk(t)x(t) + Dk(t)u(t) + Gk(t)wk(t)

that is, ifMk is thesystemmodel rather than the signal model.
The only change that needs to be introduced comes in the state
prediction equation, which in such a more general case should
read

x̂k(t + 1|t) = Fk(t)x̂k(t|t) + Dk(t)u(t).

D. Efficient computational procedures

Even though the two-filter formula (17)-(18) proved to
be very useful for derivation of the relationship (22), from
the computational viewpoint it is not the most efficient way
of evaluating the smoothed estimates. Below we summarize
the two other procedures, known as the Rauch-Tung-Striebel
(RTS) algorithm [27] and Bryson-Frazier (BF) algorithm [28].
In both cases the smoothed estimates are obtained by means of
backward-time processing of the results yielded by the forward
Kalman filter (16). Both algorithms update the covariance ma-
trix Pk(t|N) needed to computeSk(t|N) [cf. (19)], and both
are free of technical subtleties associated with determination
of the backwards Markovian model, used in the two-filter
approach.

3Credibility coefficient are approximate, not exact, posterior probabilities.

1) Rauch-Tung-Striebel smoothing formula:Let

Ak(t) = Pk(t|t)FT
k P−1

k (t + 1|t).
The RTS formula can be summarized as follows

x̂k(t|N) = x̂k(t|t) + Ak(t) [x̂k(t + 1|N)− x̂k(t + 1|t)]
Pk(t|N) = Pk(t|t)

+ Ak(t)[Pk(t + 1|N)−Pk(t + 1|t)]AT
k (t) (28)

t = N − 1, . . . , 1

The initial conditionsx̂k(N |N) and Pk(N |N) are provided
by the forward Kalman filter.

2) Bryson-Frazier smoothing formula:Let

Bk(t) = Fk(t)[I−K(t)HT
k (t)].

The BF formula is given in the form

rk(t− 1) = BT
k (t)rk(t) + HT

k (t)Q−1
k (t)εk(t)

Rk(t− 1) = BT
k (t)Rk(t)Bk(t) + HT

k (t)Q−1
k (t)Hk(t)

x̂k(t|N) = x̂k(t|t− 1) + Pk(t|t− 1)rk(t− 1)
Pk(t|N) = Pk(t|t− 1)

−Pk(t|t− 1)Rk(t− 1)Pk(t|t− 1) (29)

t = N − 1, . . . , 1

with initial conditions set tork(N) = 0 andRk(N) = O.
The formula similar to the BF algorithm (even though

originally derived from the RTS algorithm), known as modified
Bryson-Frazier (MBF) smoother, was proposed by Bierman
[29], [30].

Remark

To improve numerical conditioning and stability of computa-
tions, the equation-based MF, RTS, BF and MBF algorithms
can be replaced with their fast square-root versions [31], [32],
[33]. Such factorized algorithms, which update the square-root
P1/2

k (t|N) of the matrixPk(t|N) [P1/2
k (t|N)PT/2

k (t|N) =
Pk(t|N)], are also amenable to parallel and systolic imple-
mentation.

IV. A PPLICATION – IDENTIFICATION OF NONSTATIONARY

STOCHASTIC SYSTEMS

Consider the problem of identification, based on prerecorded
input-output data, of a discrete-time stochastic system gov-
erned by

y(t) = ϕT(t)θ(t) + v(t) (30)

whereϕ(t) = [ϕ1(t), . . . , ϕr(t)]T denotes the vector of input
(regression) variables andθ(t) = [θ1(t), . . . , θr(t)]T is the
vector of unknown, time-varying system coefficients.

The locally-adaptive identification algorithm, developed be-
low, is based on the concept of cooperative Kalman smoothing.
In the context of system identification, similar solutions (con-
vex combination of competing estimates) were proposed for
parameter trackers, see e.g. [34] and [35]. However, to the best
of our knowledge, no such results are yet available for non-
causal estimation schemes combining parameter smoothers.
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A. Nonprobabilistic problem formulation

The smoothed estimatêθ(t|N) of θ(t) can be obtained by
solving the following minimization problem

θ̂(·|N) = arg min
θ(·)

{
N∑

t=1

[
y(t)−ϕT(t)θ(t)

]2

+ ξ

N∑
t=1

‖ ∇pθ(t) ‖2
}

(31)

where∇pθ(t) denotes thep-th order difference ofθ(t)

∇pθ(t) = (1− q−1)pθ(t) =
p∑

i=0

fiθ(t− i)

fi = (−1)i

(
p
i

)
, i = 0, . . . , p

q−1 is the backward shift operator andξ > 0 denotes the
user-dependent smoothness tradeoff parameter.

Such a problem formulation can be traced back to Whittaker
[36], who used it to work out a procedure for signal smoothing.
In the context of system identification (estimation of an
impulse response of a dynamic system), the same approach
was later pursued by Shiller [37]. As Whittaker stated it, the
estimates (31) balance a tradeoff between infidelity to the
data, represented by the first sum on the right side of (31),
and infidelity to ap-th order difference equation constraint,
represented by the second sum in (31).

B. Stochastic embedding

The deterministic (as far as description ofθ(t) is con-
cerned), regularized least squares problem formulated by
Whittaker was given a probabilistic reinterpretation by Akaike
[38]. Suppose that the following stochastic integrated random-
walk (IRW) parameter model is adopted

∇pθ(t) = w(t), cov[w(t)] = W = σ2
wI (32)

where{w(t)} denotes a zero-mean i.i.d. sequence, indepen-
dent of{v(t)} and{ϕ(t)}. Since∇pθ(t) = 0 implies

θi(t) =
p∑

j=1

aijt
j−1, i = 1, . . . , r

where aij denote arbitrary constants, the IRW model can
be regarded as a local, or “perturbed”, power series model
of parameter variation. Generally, the larger the orderp of
the IRW model, the smoother the corresponding parameter
trajectory. As noted in [38], when the sequences{v(t)} and
{w(t)} are Gaussian, and whenξ is adopted in the form

ξ =
σ2

w

σ2
v

,

evaluation of the maximum likelihood estimates of parameters
governed by (32) is equivalent to solving (31).

The final step was made by Norton [39] and Kitagawa and
Gersch [40], who embedded smoothness constraints into a
state-space system model

x(t) = Fx(t− 1) + Gw(t)

y(t) = ψT(t)x(t) + v(t) (33)

where

x(t) =




θ(t)
θ(t− 1)

...
θ(t− p + 1)


 , ψ(t) =




ϕ(t)
0
...
0




F =




−f1I −f2I . . . −fp−1I −fpI
I O . . . O O

...
O O . . . I O


,G =




I
O
...
O




Note that

θ(t) = GTx(t) (34)

which means that estimation ofθ(t) is equivalent to obtain-
ing a smoothed estimate of the state vectorx(t) based on
{y(i), ϕ(i), i = 1, . . . , N}. Under Gaussian assumptions this
can be achieved using Kalman smoother.

As argued in [15], in the context of system identification
the coefficientξ can be regarded as an instrumental variable,
a sort of a user-dependent “knob” allowing one to tune the
Kalman parameter tracker to the degree of nonstationarity of
the identified process. In particular, when system parameters
are assumed to vary according to the random-walk model (p =
1), one can show that the “estimation memory” of a Kalman
parameter tracker based on (33) is inversely proportional to√

ξ [15].

C. Whittaker scheme revisited

The optimal-global values of the smoothness hyperparam-
etersp and ξ can be obtained by minimizing some statistical
loss functionQ(p, ξ), such as the Akaike’s AIC statistics [40]
or the generalized cross-validation index [22]. This can be
achieved by a discrete search4 over the parametersp and ξ,
which is equivalent to running several algorithms correspond-
ing to different values ofp andξ, and choosing the estimates
providing the smallest value ofQ(p, ξ). By optimal-global
we mean such constant parameter values that minimize the
adopted loss function for the entire available data record. This
should be contrasted with the optimal-local approach, pursued
in this article, where the best-fitting parameters are searched
independently for each locationt, within the entire data set,
of a short analysis windowTa(t). Finally, an intermediary
approach is also possible, where the analyzed process is
segmented and optimization is carried out independently for
each data segment. Such a semi-local approach was described
in [40].

Consider the situation whereK Kalman smoothing algo-
rithms, obtained for different values of design parameters
(p, ξ)k, k = 1, . . . , K, and yielding the estimateŝθk(t|N),
are run in parallel.

4Even though a numerical search for the optimal values of smoothness
hyperparameters is possible [41], it is usually computationally prohibitive.
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The proposed locally-adaptive smoothed estimate ofθ(t)
has the form

θ̂(t|N) =
K∑

k=1

µ◦k(t)θ̂k(t|N)

θ̂k(t|N) = GT
k x̂k(t|N), k = 1, . . . ,K (35)

where x̂k(t|N) denotes the estimate yielded by thek-th
Kalman smoother.

For identification purposes it is recommended to use the
following normalized version of the forward Kalman fil-
ter/predictor

εk(t) = y(t)−ψT
k (t)x̂k(t|t− 1)

q̃k(t) = ψT
k (t)P̃k(t|t− 1)ψk(t) + 1

kk(t) = P̃k(t|t− 1)ψk(t)/q̃k(t)
x̂k(t|t) = x̂k(t|t− 1) + kk(t)εk(t) (36)

P̃k(t|t) = P̃k(t|t− 1)− kk(t)kT
k (t)q̃k(t)

x̂k(t + 1|t) = Fkx̂k(t|t)
P̃k(t + 1|t) = FkP̃k(t|t)FT

k + GkGT
k ξk

t = 1, . . . , N

where P̃k(t + 1|t) = Pk(t + 1|t)/(σ2
v)k, P̃k(t|t) =

Pk(t|t)/(σ2
v)k denote normalized covariance matrices and

q̃k(t) is the normalized version ofqk(t) – the scalar coun-
terpart of the matrixQk(t) updated in (16). The normalized
algorithm yields the same estimates as its unnormalized ver-
sion, but it is equipped with only one design parameterξk

instead of two parameters(σ2
w, σ2

v)k. This feature of the nor-
malized algorithm confirms the well-known fact that parameter
estimation properties of the Kalman-filter-based identification
algorithm depend on the assumed ratio of variances(σ2

w/σ2
v)k

rather than on each of these variances alone [15].
The corresponding MF, RTS and MBF smoothing formulas

remain unchanged – all that one has to do is replace the
quantitiesPk(t|t), Pk(t + 1|t) and qk(t) in (17)-(18), (28)
and (29) with their normalized counterparts.

In the special case considered in this section the credibility
coefficients can be obtained from

µ◦k(t) ∝




∑

i∈Ta(t)

[e◦k(i)]2





−M/2

(37)

where

e◦k(i) =
ek(i)
σ̃k(t)

=
y(i)−ψT

k (i)x̂k(i|N)

1−ψT
k (i)P̃k(i|N)ψk(i)

andP̃k(i|N) denotes the normalized covariance matrix of the
estimatex̂k(i|N) provided by Kalman smoother.

D. Non-Gaussian Extensions

In the scalar measurement case, considered in this section,
the cooperative smoothing formula (35) can be extended to
a wider class of measurement noise distributions, known as
generalized normal [42]. The generalized normal law incor-
porates such practically important distributions as Gaussian,

Laplace and uniform. For example, when noise distribution
is Laplace (heavy-tailed), credibility coefficients should be
evaluated according to [14]

µ◦k(t) ∝




∑

i∈Ta(t)

|e◦k(i)|




−M

. (38)

In the uniform (light-tailed) noise case, one should set

µ◦k(t) ∝
[

max
i∈Ta(t)

|e◦k(i)|
]−M

. (39)

The smoothing formula based on (38) is more robust (e.g.
to outliers) than the one based on (37). Unfortunately, due to
technical difficulties associated with the form of the multi-
variate Laplace distribution [43], a straightforward extension
of (38) to multivariate signals does not seem to be possible.

For white but non-Gaussian noise sources the estimates
yielded by the constituent Kalman smoothers cannot be
claimed optimal any more, but they still have a nice statistical
interpretation: they can be viewed as an orthogonal projection
of the state vectorx(t) onto a linear space spanned by the
available measurements. This means that they are minimum
mean squarelinear estimates ofx(t), optimal in the sense of
Whittaker (31).

E. Computational Complexity

In the scalar measurement case (n = 1), analyzed in this
section, the MF algorithm (17) - (18) is computationally the
least attractive one, as it requires inversion of 3 matrices of
dimensionr×r at each time step (only 2 inversions are needed
if the information filter is used for the backward sweep), and
the BF and MBF algorithms are the most attractive ones, as
they do not require matrix inversion at all. The RTS algorithm
comes in the middle since it requires 1 inversion per (reverse)
time update.

Since the computational load associated with evaluation of
credibility coefficientsµ◦k(t) is negligible compared to the
cost of evaluating the corresponding estimatesx̂k(i|N), the
computational burden of the cooperative smoother is not much
higher than the cost of runningK standard Kalman smoothing
algorithms. In contrast with this, the IMM smoother de-
scribed in [13] consists ofK2 MF-type smoothing algorithms
operating in parallel. Hence, for systems with Markovian
switching parameters, cooperative smoother can be regarded as
a computationally attractive alternative to the IMM smoother
(of course, this computational advantage comes at the cost of
decreased smoothing efficiency).

V. SIMULATION RESULTS

To check performance of the proposed parameter smoothing
algorithm, the following two-tap FIR system (inspired by
channel equalization applications) was simulated

y(t) = θ1(t)u(t− 1) + θ2(t)u(t− 2) + v(t)

whereu(t) = ±1, σ2
u = 1, denotes the pseudo-random binary

signal (PRBS) – the sequence transmitted over a telecommu-
nication channel – andv(t) denotes a zero-mean white noise.
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Fig. 1. Two variants of parameter changes used in computer simulations:
discontinuous (two upper plots) and continuous (two lower plots).

Two different scenarios of parameter changes were consid-
ered: A) discontinuous, step-like and B) continuous, chirp-
like – see Fig. 1. Due to appropriate scaling, all parameter
trajectories have the sameL2 norm.

For each of the compared algorithms the steady state
accumulated mean-squared parameter estimation errors were
computed

Ev{∑4900
t=101 ‖ θ̂(t|5000)− θ(t) ‖2}. (40)

To eliminate transient effects, the summation in (40) was
restricted to the interval[101, 4900]. Ensemble averagingEv(·)
was performed over 100 realizations of the measurement noise
{v(t)} – the same in all experiments. The procedure was
repeated for each of 6 noise intensities ranging fromσv = 0.05
(SNR=26 dB) toσv = 0.30 (SNR=10.5 dB). The width of the
evaluation frame was equal toM = 21. The distribution of
noise was either Gaussian or Laplacian.

Table 1 summarizes results obtained for 6 Kalman
smoothers (K1, . . . , K6) and 2 cooperative smoothers (K1−6,
K1−3). The first 3 Kalman algorithms (K1, K2, K3) were
based on the first-order IRW model (p = 1, ξ1 = 0.002,
ξ2 = 0.018, ξ3 = 0.16), and the remaining 3 algorithms
(K4, K5, K6) – on the second-order IRW model (p = 2,
ξ4 = 6 · 10−8, ξ5 = 5 · 10−6, ξ6 = 4 · 10−4). Cooperative
smoothersK1−6 andK1−3 combined all 6 Kalman algorithms
and the first 3 Kalman algorithms, respectively. The design
parametersξk of constituent smoothers were not optimized in
any way – the corresponding values were chosen so that within
each group of algorithms{K1,K4}, {K2, K5} and{K3, K6},
the equivalent memory spans [15] were the same and equal to
90 samples, 30 samples and 10 samples, respectively.

Note that the smootherK1−6, which combines algorithms
based on both first-order and second-order IRW models, is
uniformly better thanK1−3, i.e., it provides the smallest
estimation errors in all cases considered. Note also that it
yields either better results (for the system with step-like pa-
rameter changes) or only slightly worse results (for the system
with chirp-like parameter changes) than the best smoothers

amongK1, . . . , K6. An obvious advantage of all cooperative
smoothers is their increased robustness to unknown and pos-
sibly time-varying degree of nonstationarity of the identified
system.

To get better insight into the quality of reconstructions
provided by the cooperative smoothing scheme, look at the
plots displayed in Figs. 2 (for step-like parameter changes)
and 3 (for chirp-like parameter changes). Each figure shows
the best-fitting trajectory, the mid-score trajectory (50th score)
and the worst-fitting trajectory from among 100 estimated
parameter trajectories yielded, for different realizations of
Gaussian measurement noise (σv = 0.15), by the K1−6

smoother. Note that the main source of quality degradation,
when one moves from the best result to the worst result, is due
to sporadic short-lived switching artifacts. Switching artifact
occurs when, owing to a specific local noise pattern, one
of less efficient smoothers temporarily dominates the entire
smoother bank. Most of these artifacts can be easily eliminated
by means of median postfiltering of the sequence{θ̂(t|N)}.
For example, in the case illustrated in Figs. 2 and 3, 11-
point median smoothing allows one to reduce the average
estimation loss (40) by aproximately 10%: from 3.98 to 3.75
for step-like parameter changes, and from 0.63 to 0.57 for
chirp-like parameter changes. It also makes estimation results
more homogeneous across different realizations.

Median filter is just the simplest representative of a whole
family of nonlinear order statistical filters with noteworthy
properties: they are capable of removing outliers without
blurring step-like signal features [21]. Exploration of the
potential for nonlinear postfiltering5 seems to be an interesting
topic for future research.

VI. CONCLUSION

We have considered the problem of Kalman smoothing
in the presence of model uncertainty and we have pro-
posed a novel parallel estimation (multiple-model) scheme
which combines results yielded by several competing Kalman
smoothers. The solution was based on the recently proposed
concept of cooperative smoothing. After extending the rules
of cooperative smoothing to multivariate signals, we have
shown that credibility coefficients – which play the role of
mixing coefficients in the cooperative smoothing formula –
can be easily evaluated using quantities provided by the
constituent Kalman algorithms. Finally, we have shown how
cooperative Kalman smoothing can be applied to identification
of nonstationary stochastic systems and we have indicated
possible directions for future research (nonlinear postfiltering).

Appendix 1 [derivation of (8)]

Consider an × n random matrixX > O which obeys the
inverse Wishart distribution with ann×n inverse scale matrix
Y > O andp ≥ n degrees of freedom:X ∼ W−1(Y, p). The

5Linear postfiltering schemes were proposed earlier in [44].
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Table 1
Comparison of parameter estimation errors obtained for 3 Kalman smoothers based on the first-order IRW model (K1, K2, K3), 3 Kalman smoothers based

on the second-order IRW model (K4, K5, K6), and 2 cooperative smoothers (K1−6, K1−3). Simulations were performed for 2 variants of parameter
changes (A,B) and 6 noise intensities.

Gaussian noise:

P σv K1 K2 K3 K4 K5 K6 K1−6 K1−3

0.05 26.30 8.40 3.00 8.26 25.21 91.50 2.80 2.80
0.10 26.42 8.76 4.11 8.68 25.37 91.50 3.22 3.25

A 0.15 26.04 9.42 6.04 9.45 25.62 91.69 3.98 4.10
0.20 26.89 10.25 8.63 10.46 25.92 91.71 4.82 5.08
0.25 27.24 11.31 11.86 11.67 26.32 91.86 5.83 6.27
0.30 27.66 12.91 16.07 13.53 26.93 91.70 7.20 7.80
0.05 3.95 0.15 0.22 0.08 0.12 65.70 0.08 0.13
0.10 4.01 0.35 0.86 0.32 0.20 65.71 0.27 0.41

B 0.15 4.20 0.75 1.97 0.77 0.35 65.83 0.63 0.90
0.20 4.47 1.29 3.51 1.38 0.56 66.15 1.07 1.51
0.25 4.68 1.88 5.41 2.07 0.78 65.14 1.53 2.16
0.30 4.80 2.76 7.86 3.11 1.10 66.03 2.15 3.00

Laplacian noise:

P σv K1 K2 K3 K4 K5 K6 K1−6 K1−3

0.05 26.26 8.35 2.98 8.24 25.20 91.47 2.74 2.75
0.10 26.40 8.79 4.14 8.74 25.34 91.52 3.19 3.23

A 0.15 26.63 9.40 5.97 9.46 25.60 91.68 3.80 3.91
0.20 27.00 10.38 8.62 10.54 26.00 91.82 4.54 4.98
0.25 27.20 11.28 11.64 11.59 26.18 91.95 5.28 5.66
0.30 27.71 12.71 15.76 13.23 26.89 91.97 6.47 7.04
0.05 3.97 0.15 0.22 0.09 0.13 65.77 0.06 0.12
0.10 4.06 0.38 0.87 0.35 0.23 65.78 0.24 0.39

B 0.15 4.15 0.75 1.94 0.77 0.36 65.74 0.50 0.77
0.20 4.36 1.31 3.49 1.42 0.60 65.84 0.84 1.29
0.25 4.43 1.84 5.26 2.06 0.76 65.71 1.14 2.76
0.30 4.75 2.64 7.61 2.98 1.06 66.03 1.62 2.45

probability density function ofX takes the form [18]

p(X) =
[det(X)]−(p+n+1)/2[det(Y)]p/2

2pn/2Γn(p
2 )

× exp
{
−1

2
tr[X−1Y]

}

and since it must integrate to 1 whenX spans the entire space
of n× n positive definite matrices, one obtains the following
integral formula (with no probabilistic connotation)

∫

X>O

[ det(X) ]−(p+n+1)/2 exp
{
− 1

2
tr

[
X−1Y

]}
dX

= 2
pn
2 Γn

(p

2

)
[ det(Y) ]−

p
2 . (41)

The result (8) follows immediately from (41) after settingX =
V, Y = Dk(t) andp = M .

Appendix 2 [derivation of (22) - (23)]

The proof will exploit the well-known matrix inversion
lemma [45], given below in a slightly more general (±) form

Lemma

Provided that all inverses below exist:

[A±BCD]−1 = A−1

∓A−1B
[
C−1 ±DA−1B

]−1
DA−1.

Applying the matrix inversion lemma (+) to the fifth
recursion of (16), one arrives at

Pk(t|t) =
[
P−1

k (t|t− 1) + HT
k (t)V−1

k (t)Hk(t)
]−1

(42)

which, when combined with (18), leads to

Pk(t|N) =
{
[Pk(t|t− 1)]−1 + HT

k (t)V−1
k (t)Hk(t)

+ [PB
k (t|t− 1)]−1

}−1
. (43)

Combining the first and the fourth recursion of (16), one
obtains

x̂k(t|t) = Kk(t)y(t) + [I−Kk(t)Hk(t)]x̂k(t|t− 1) (44)

Multiplying both sides of the fifth recursion of (16) with
P−1

k (t|t−1), and incorporating the third recursion, one arrives
at

Pk(t|t)P−1
k (t|t− 1) = I−Kk(t)Qk(t)KT

k (t)P−1
k (t|t− 1)

= I−Pk(t|t− 1)HT
k (t)Q−1

k (t)HT
k (t)

= I−Kk(t)Hk(t). (45)

Therefore, (44) can be written down in the form

x̂k(t|t) = Kk(t)y(t) + Pk(t|t)P−1
k (t|t− 1)x̂k(t|t− 1) (46)

leading to

P−1
k (t|t)x̂k(t|t) = P−1

k (t|t)Kk(t)y(t)

+ P−1
k (t|t− 1)x̂k(t|t− 1). (47)
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t

Fig. 2. The best-fitting (top plot), mid-score (middle plot) and the worst-
fitting (bottom plot) parameter trajectories from among 100 trajectories gener-
ated, for different realizations of Gaussian measurement noise (σv = 0.15),
by the K1−6 smoother. In each case the plot of the estimated parameter
trajectory{θ̂1(t|5000)} is superimposed on the plot of the true (step-like)
parameter trajectory{θ1(t|5000)}.

Using (42) and the third recursion of (16), one obtains

P−1
k (t|t)Kk(t) =

[
P−1

k (t|t− 1) + HT
k (t)V−1

k (t)Hk(t)
]

×Pk(t|t− 1)HT
k (t)Q−1

k (t)

= HT
k (t)[I + V−1

k (t)Hk(t)P−1
k (t|t− 1)HT

k (t)]Q−1
k (t).

(48)

Since the second recursion of (16) can be rewritten in the form

V−1
k (t)Qk(t) = I + V−1

k (t)Hk(t)P−1
k (t|t− 1)HT

k (t) (49)

one arrives at

P−1
k (t|t)Kk(t) = HT

k (t)V−1
k (t) (50)

and [cf. (47)]

P−1
k (t|t)x̂k(t|t) = HT

k (t)V−1
k (t)y(t)

+ P−1
k (t|t− 1)x̂k(t|t− 1). (51)

t

Fig. 3. The best-fitting (top plot), mid-score (middle plot) and the worst-
fitting (bottom plot) parameter trajectories from among 100 trajectories gener-
ated, for different realizations of Gaussian measurement noise (σv = 0.15),
by the K1−6 smoother. In each case the plot of the estimated parameter
trajectory{θ̂1(t|5000)} is superimposed on the plot of the true (chirp-like)
parameter trajectory{θ1(t|5000)}.

Note that, using (17), (18), (43) and (51), one can rewrite (20)
in the form

x̂◦k(t|N) =
[
P−1

k (t|N)−HT
k (t)V−1

k (t)Hk(t)
]−1

× [
P−1

k (t|N)x̂k(t|N)−HT
k (t)V−1

k (t)y(t)
]

(52)

Using the matrix inversion lemma again (−), one obtains

[
P−1

k (t|N)−HT
k (t)V−1

k (t)Hk(t)
]−1

= Pk(t|N) + Pk(t|N)HT
k (t)Z−1

k (t)Hk(t)Pk(t|N) (53)

where

Zk(t) = Vk(t)−Hk(t)Pk(t|N)HT
k (t)

= Vk(t)− Sk(t|N). (54)
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Substituting (53) into (52), one gets

x̂◦k(t|N) = x̂k(t|N) + Pk(t|N)HT
k (t)Z−1

k (t)Hk(t)x̂k(t|N)

−Pk(t|N)HT
k (t)Z−1

k (t)Hk(t)Pk(t|N)HT
k (t)V−1

k (t)y(t)

−Pk(t|N)HT
k (t)V−1

k (t)y(t) (55)

Using (55), one arrives at

e◦k(t) = y(t)−Hk(t)x̂◦k(t|N) = y(t)−Hk(t)x̂k(t|N)

−Hk(t)Pk(t|N)HT
k (t)Z−1

k (t)Hk(t)x̂k(t|N)

+ Hk(t)Pk(t|N)HT
k (t)Z−1

k (t)Hk(t)Pk(t|N)HT
k (t)

×V−1
k (t)y(t) + Hk(t)Pk(t|N)HT

k (t)V−1
k (t)y(t)

=
[
I + Sk(t|N)V−1

k (t) + Sk(t|N)Z−1
k (t)Sk(t|N)V−1

k (t)
]

× y(t)− [
I + Sk(t|N)Z−1

k (t)
]
Hk(t)x̂k(t|N). (56)

According to (54) it holds that

Sk(t|N) = Vk(t)− Zk(t). (57)

Substituting (57) into (56), one gets (after elementary calcu-
lations)

e◦k(t) = Vk(t)Z−1
k (t)[y(t)−Hk(t)x̂k(t|N)]

= Vk(t)Z−1
k (t)ek(t) (58)

which is identical with (22) – (23).
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