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Abstract—One of the central problems of the stochastic ap- sourcescov[v(t)] = V (¢, 0)nxyn, cov[w(t)] = W(t,8)x, are
proximation theory is the proper adjustment of the smoothing functions of a vector of unknown design paramei@rs
algorithm to the unknown, and possibly time-varying, rate and g giryctured information about the estimated signal, en-

mode of variation of the estimated signals/parameters. In this lated in the stat del (2). i ilable i
paper we propose a novel locally adaptive parallel estimation capsulated in the state space model (2), is available in many

scheme which can be used to solve the problem of fixed-Passive (e.g. GPS - Global Positioning System) and active
interval Kalman smoothing in the presence of model uncertainty. (e.g. radar-based) localization and navigation applications —
The proposed solution is based on the idea of cooperative see detailed studies in [1] and [2], among many others.
smoothing — the Bayesian extension of the leave-one-out cross- The time-varying nature of the matric® G, H, V and

validation approach to model selection. Within this approach the .
smoothed estimates are evaluated as a convex combination of the V. IS often a consequence of the fact that the model (1) -

estimates provided by several competing smoothers. We derive (2) IS a result of discretization, change of spatial coordinates
computationally attractive algorithms allowing for cooperative and linearization around a time-dependent “setpoint”, of a

Kalman smoothing and show how the proposed approach can be nonlinear continuous-time signal description

applied to identification of nonstationary stochastic systems.
Index Terms—Parallel estimation schemes, system identifica- e = flxe] + we

tion, Kalman smoothing. Ve = h[x ] + ve. 3)

The model uncertainty, represented by the veé&ousually
I. INTRODUCTION originates from an incomplete knowledge of the signal source
unknown/changing environmental conditions.
When the vecto® is known, the optimal, in the mean-
squared sense, smoothed estimate(of is given in the form
3]
y(t)=s(t)+v(t), t=...,—-1,0,1,... 1) S(t|N) = E[s(¢)[Y(N)]

I N this paper we will consider the problem of noncausdl’
estimation (smoothing) of an-dimensional signaé(t) =
[51(1),...,sn(t)]T, based on noisy measurements

wheret denotes normalized discrete time ape(t)} denotes and can be evaluated using the algorithm known as a fixed-
n-dimensional white Gaussian noise. We will assume that thgerval Kalman smoother. Using the intuitively appealing
entire measurement history (N) = {y(1),...,y(N)} is framework proposed by Mayne [4] and Fraser [5], smoothing
available, so at any instamte [1, N] estimation ofs(t) can can be viewed as a result of combining the estimates yielded
be based on “past’ (i < t), “present” & t) and “future” by two Kalman filters/predictors: the causal one, running for-
(i > t) measurements. We will also assume that the sigri#@rd in time, and the anticausal one [based on the backwards

s(t) is generated by a state space model Markovian representation &f(¢)], running backward in time.
When design parametefsare not known, the problem can be
x(t+1) =F(t,0)x(t) + G(¢,0)w(t) solved in two different ways. The first approach is based on
s(t) = H(t, 0)x(t) (2) sequential estimation ¢f and results in algorithms known as

) ) . adaptive Kalman filters/smoothers [6]. In the second approach,
wherex(t) is ar-dimensional state vector, asi ()} denotes geveral Kalman filters/smoothers, designed for different hy-

the [-dimensional driving noise — a white Gaussian sequenggthetical values oB, are run in parallel and the obtained
independent of v(¢)}. results are merged in a statistically meaningful way. Such
Finally, we will assume that the matriceB(t,6),x,, parallel estimation, or multiple-model, schemes, which can be
G(t,0),x1, H(t,0)nx that appear in the state space deraced back to Magill [7], are increasingly popular in modern
scription (2), as well as the covariance matrices of the noiﬁg\,igaﬂon and tracking applications — see e.g. [8] and [9].

_ _ - _ The approach that proved particularly useful in target
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The algorithm consists of a bank of Kalman filters (correzorrupted by Gaussian noise. Second, we show that matching
sponding to different maneuvering hypotheses) and a linearors, needed to compute credibility coefficients, can be
combiner which computes the final state estimate as a conexpressed in terms of (easily computable) residual errors, i.e.,
combination of the component estimates. The term “interactitigat they can be evaluated without actually implementing the
models” refers to the fact that, at the beginning of each cycle afrresponding holey smoothers. This significantly simplifies
model-conditioned Kalman filtering, the state vectors and errtbre cooperative Kalman scheme, making it computationally
covariance matrices of component filters are mixed appropattractive. Finally, we show how cooperative Kalman smooth-
ately. The mixing step is equivalent to “hypothesis merginging can be applied to identification of nonstationary stochastic
and makes the filter bank behave more consistently compassydtems.

to the no-mixing case. Over the past two decades the IMM

approach has been perfected and extended in many imporantC ooPERATIVE SMOOTHING OF MULTIVARIATE SIGNALS
directions, such as handling the data origin uncertainty [the

probabilistic data association (PDA) technique], for example, S|m|I§r o [14], we will start from consu_jenng a S|mp||f|ed.
. ."'sioothing scheme referred to as Bayesian pattern matching.
See e.g. [11] for a recent survey of the available solutio

The fixed-interval IMM smoothing algorithms can be foun he .(f).bta|fned resultsl will be nextlgpplled, n r?n approlprlately
in [12] and [13]. modified form, to solve more realistic smoothing problems.

In this paper we propose a novel locally adaptive parallel
estimation scheme which can be used to solve the problém Bayesian pattern matching
of Kalman smoothing in the presence of model uncertainty. Denote byT,(t) = [t—m, t+m] the local analysis windotv
The proposed solution is based on the idea of cooperatiyewidth M = 2m +1, M > n, and let{s1(i),...,sx(i),i €
smoothing presented in [14]. Cooperative smoothing is 7 (¢)} be a set of fixed (data-independent) signal patterns or
general framework which shows how credibility of constituentaveforms. We will considef equiprobable hypotheség;,
smoothers can be evaluated based on the errors (“matﬁlpﬁk) =1/K,k=1,..., K, of the form
ing errors”) yielded by the appropriately modified (“holey”)
smoothers. Since this approach is based on the local statisticEr : (i) = sk(i), v(i) ~N(0,V), V>0, i€ T,(t)

it can deal with different forms of signal/system nonstationafyhere 0 denotes thei-dimensional vector of zeros ar@ is

ity. _ _ the n x n null matrix.
The structure of the cooperative smoother is the same a\ccording to the hypothesid,

the structure 01_‘ the IMM smoother, except that the hypothegjs, analysis windowl}, (1), with thek-th pattern. The unknown

merging step is not employed. The main advantage of 1§y ariance matrixV of the measurement noise, assumed

new approach, besides very low computational complexiyynsiant ovefr, (t), will be regarded as a nuisance parameter

is its universal character — unlike IMM schemes, cooperaliygih an assigned noninformative prior distribution. Using the

smoothers can be used to combine, in a statistically MeaRitreys formula [17], the noninformative distribution f&F

ingful way, results yielded byny smoothing algorithms, not .o be obtained in the following improper form [18]

necessarily those based on the Kalman theory. Hence, from the

qualitative viewpoint, the cooperative approach complements T(VIHi) = 7(V) o [det(V)]~(+1D/2 4)

the IMM approach, rather than competes with it. h denot tionalit
Cooperative smoothing can be particularly useful in alyn€recc denotes proportionatty.

S . o . . Assuming that one and only one of the hypotheses is true,
applications, such as identification of nonstationary stochastic . . i
) : the optimal, in the mean-squared sense, estimatg/gfcan
systems, where our prior knowledge about different modes 0 . .
L : . : be obtained in the form [3]
system variation is rather vague (if any), i.e., the incorporate

the signal coincides, within

state space models are to a greater extent instrumental than K

factual (physically motivated) [15]. In cases like this, one S(t) = pk(t)s(t) (5)
may be interested in combining results provided by smooth- k=1

ing algorithms based on different smoothing principles, e.gihere u(t),k = 1,..., K, denote credibility coefficients —

combining Kalman smoothers with kernel smoothers, such g posterior probabilities of different signal patterns given the
the algorithms proposed recently in [16]. Using the resultgt of local observation¥ r(t) = {y(t —m),...,y(t+m)}:
presented in [16] and in this paper, one can easily design such
“mixed” parallel estimation schemes. px(t) = P(Hi|Yr (1))

It should be stressed th_at the general ruI_es presented in [14] ~ / (Y (D) [V, Ho)m(VIH) 7 (H)dV.  (6)
are usually not cost effective, i.e., for a particular class of com- V>0
bined smoothing algorithms they may be rather cumbersomeygie that
to apply. Further work is usually needed to turn a general idea
into an efficient computational algorithm. Such is the case with p(Yr(t)|V, Hy,) = [det(27V)]~M/2
Kalman smoothers. 1 .

The contribution of this paper is threefold. First, we show X exp {_ ) tr [V Dk(t)]} )
how the idea of cooperative smoothing, originally proposed
for univariate signals, can be extended to multivariate signalswe will assume, for simplicity, thatn < t < N — m.
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where According to (14), holey smoothesy (t) is based on the
Dy(t) = Z er(i)er (i) same smoothing principle as,(t), except that it excludes
i€Ta(t) y(t) from the set of measurements used for estimation of
s(t). Since matching errore; (t) are pointwise independent
of the measurement noisgt), they allow for approximately
unbiased evaluation of the local performanc&gft). In par-

and e (i) = y(i) — sx(i) denotes residual error. Therefore
under noninformative priors, one obtains

J(t) / [det (V)] ~(M+n+1)/2 \t,ivchular, the. rr_pdified Ba_\yesian-like combination ruIe,. obtained
V>0 en credibility coefficients are evaluated for matching errors,
1 will not favor smoothers that “underestimate” the influence of
X exp {— 5 tr iV_le(t)i } dv measurement noise on the observed data.
M Y Cooperative smoothing can be regarded as a Bayesian
=22 T (3) {det[De(8)] 3 (8) extension of the leave-one-out cross-validation approach to

where T, (-) denotes the multivariate gamma function. Thi§1odel selection [22]. _ _
result follows immediately from the well-known properties of On the qualitative level, cooperative smoothing closely
the inverse Wishart distribution — see Appendix 1. resembles the prediction technigue, known as Bayesian model

Using (8), credibility coefficients can be expressed in tré/eraging (BMA) — for more details see e.g. [23]. BMA is
following form an intuitively attractive solution to the problem of accounting

i (t) for model uncertainty — the final prediction is obtained by
p(t) = SE ©) averaging predictions based on many competing models. It
k=1 Mk (?) can be shown that averaging over all the models provides
where better average predictive ability, as measured by a logarithmic
() = { det[Dg/(t)] }_M/Q. (10) scoring rule, than using any single model [24]. The multiple-

model approach to prediction, which can be traced back to
the paper of Bates and Granger [25], has been successfully

B. Cooperative smoothing o . . i :
) T ] ] utilized in many fields, such as econometrics, environmental
Consider now the situation where, instead of fixed patterngjence and biology.

one uses data-dependent patterns locally adapted to the signal
and given by
sk(t) = fr[Y(IV)] (11) C. Computational hints

where fk[] is an arbitrary Smoothing procedure_ Depending Some of the quantities involved in Computation of cred-
on the smoothing approach, the functigfg[-] may take ibility coefficients may take very large or very small values.
many different forms, both linear (Kalman smoother, kerndine following modified expression, mathematically equivalent
smoother [19], local polynomial approximation smoother [20fP (13), allows one to avoid numerical problems (such as

and nonlinear (order statistical smoothers [21]). numerical overflow) caused by improper scaling
Following [14], the cooperative smoother based on explxr(t)}
81(t),...,8k(¢) will be defined in the following form pn(t) = =% b
p > et exp{xe(t)}
S(t) = pR(t)sk(t) (12) where
k=1
where Xk (f) = Ck (t) - Cmax(t)
0 Ck(t) = logmi(t) = — (M/2)log { det[Di (t)] }
pt) = — i __ Gooxt) = max (1)
’ Yohea (1) max(\t) = 5 SR
ni(t) = {det[DR ()]}~
D(t) = Z €2 (i)[e2 @iT (13) I1l. COOPERATIVEKALMAN SMOOTHING
k\") — k k\Y
i€Ta(t) Suppose that the vectérin (2) can takeK different values
and 0,,...,0k, leading toK hypothetical models of the analyzed
eq(t) = y(t) — (1) signal
denotes the quantity which will be further referred to as My x(t+1) = Fe(t)x(t) + Gi(t)wi(t)
matching errof — residual error yielded by the holey smoother s(t) = Hg(¢)x(t)
S5 (t) associated witfsy, (¢) y(t) = s(t) + vi(t) (15)

sp(t) = ful YO (£, N)], YO(8, N) = Y(N) — {y()}. (14)

wi(t) ~ N(0, Wi (1)), vi(t) ~N(0, Vi(t))
2In the classical regression analysisrmalizedmatching errors are called

deleted residuals. whereFy(t) = F(t,0x), Gi(t) = G(t,0y), etc.
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A. Two-filter smoothing formula P (t|N) = cov[%x(t|N)]
For a given signal modelM,, the optimal noncausal _ {[Pk(t|t)]*1+[PE(t|t+1)r1}_1 (18)

estimate ofx(t) is given by
N where PB(t|t + 1) denotes the covariance matrix of the
X, (tN) = Ex(t)[Y (N), M] backward Kalman “predictork} (¢t + 1). The initial con-
and can be written down as a linear combination of ttféitions for the backward algorithm are}(N|N + 1) = 0

estimates provided by two Kalman filters/predictors operat@®d [P2(N|N + 1)]7' = O. Such an improper covariance
forward in time and backward in time, respective|y_ Th@itializa’[ion can be easily handled when the backward Kalman

forward Kalman filter/predictor has the form algorithm is realized as aimformation filter (inverse covari-
R ance filter) — for more details see [3].
ex(t) = y(t) — He(t)xx(t[t — 1) Based on (17), one obtains the following smoothed estimate
Qu(t) = He (P (t]t — DHF (1) + V(1) of s(1)
Ki(t) = Pr(t|t — 1)H ()Q; ' (¢
)

E ; 8K(tN) = E[s(t)[Y (N), My] = Hy(£)%(t|N)

Xi(t]t) = R (tlt — 1) + Kp(t)er(t (16)  S,(t|N) = cov[E(t|N)] = Hy()Pr({/N)HE ().  (19)
Py (t]t) = Py(t|t — 1) — K (1) Qi (DK, (1)
Xi(t +1]t) = Fr(t)xk(t]t) B. Evaluation of matching errors
Py.(t + 1[t) = Fi()Pr(t|t)Fy () + Gi(H) Wi (t) Gy (1) Local performance of the smoothed estimatét|N) can
t=1,...,N be evaluated in terms of the associated matching errors
where ep(t) =y(t) —Sp(tIN)
Xk (tt) = E[x()|Y (t), My] where

X (t +1]t) = E[x(t + 1)[Y(£), My]

and Py([t) = cov[X(t]1)], Pi(t + 11t) = coviX(t+ 1] 5p450 (4 V) denotes the estimate yielded by the holey Kalman
denote the corresponding covariance matrices. smoother

The backward Kalman filter/predictor, which evaluates
estimates based on the “future” data samp¥8(t) = X3 (tN) = E[x()|Y°(t, N), My].

{y(@®),...,y(N)} . . . , .
Using the generalized Millman’s theorem on optimal com-
X5 (t[t) = Ex(t)[YP (1), M} bination of two independent estimates [3], one can express
KBt —1]t) = E[x(t — D)[YB(t), ME] Xy (t|N) as a linear compingtiqn of forward and backward
_ Kalman predictors [note similarity to (17) - (18)]
has the same form as the forward algorithm (16), except that

sp(tIN) = E[s(t)[Y°(t, N), Mi] = Hy(8)X (¢ N)

it is based on the backwards Markovian signal model XL (HIN) = PR(tIN) {[Pr(t]t — 1)) '%(t]t — 1)
ME: x(t) = FE(t)x(t + 1) + GE(t)wB(t + 1) + [PR(E + DTSRl + 1)} (20)
y(t) = He(t)x(t) + vi(?) Py (t|N) = cov[x} (t|N)]

and is run backward in time.

WhenP; !(1|0) = O (noninformative prior) and when the
state transition matrid';(¢) is invertible for all ¢, parame-
ters of the backwards Markovian model can be specified

([Pltlt — 1]+ PR+ 1)) (1)

Now we are ready to state the main result of this section —
\gg will show that matching errors;,(t) can be expressed in
terms of residual errorey(t).

follows:
FR(t) = F (), GE(t) = —F ' ()G(1) Theorem
B It holds that
wi(t+1 t).

P =widd ep(t) = ;! (tex(t) (22)
When P, *(1]0) # O, i.e., some prior knowledge about the
initial value of the state vector is available, construction d¥here
the backwards Markowan model !s Iqss stra|ghtforwa}rd — see Sh(t) = 1— Sp(tIN)VL ()
[26] for more details. This complication, however, will have B S (N 23
no impact on the analysis carried out in this paper. ex(t) =y (t) —S(t|N). (23)

The Mayne-Fraser (MF) two-filter formula can be SUMM3s o o

rized as follows — see Appendix 2.

Ru(t|N) = Py (t|N) {[ O R (H]) Note t_hat, accordlng. to (22), r’r_watchlng errors can be eval-
B \~B uated without actually implementing the corresponding holey
+ PR+ D))=y (e + 1)} (17)  smoother.
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C. Cooperative smoothing formula 1) Rauch-Tung-Striebel smoothing formulaet

The cooperative smoothing formula, merging results yielded Ayt) = Pk(tlt)FEP,Zl(t +118).
by K Kalman smoothers, can be summarized as follows
The RTS formula can be summarized as follows

K
S(IN) = 3 (OB() @ R (tIV) = Rultl) + Arlt) Rt + 1N) — Kt + 1]0)

where 19 (t),k = 1,...,K, denote credibility coefficients Pi(tIN) = P(t]t)

given by (13). Matching error:(t), needed to compute + AR(O)[Pr(t+ 1IN) = Pyt + 1[1)] AL (1) (28)
1y (t), can be obtained from (22). P N -1 1
When all state space models share the some output matrix, Ty
ie., The initial conditionsx(N|N) and P, (N|N) are provided
H,(t)=...=Hg(t) = H(), Vt by the forward Kalman filter.
the formula (24) can be rewritten in the form 2) Bryson-Frazier smoothing formuld:et
S(t{N) = H()X(¢|N) (25) By (t) = Fp(t)[I — K(t)H] ()]
where

The BF formula is given in the form

K
KUN) = 2 ORI (@8 1) = BE(Or() + BE()Q; (ex(t)

denotes the cooperative state estimate. Ri(t — 1) = B (R4 (1B (1) + Hy ()Q, " () Hi (1)
Since the modelsM;,k = 1,...,K are regarded as Xk(tIN) = X ([t — 1) + Pr(tlt — Drp(t — 1)
mutually exclusive hypothetical signal descriptions, the co- Py (t|N) = Py(t|t — 1)
variance matrices of smoothed estimates (24) and (26) can — Pu(t|t — DRy (t — 1)Py(t[t — 1) (29)
be approximatefy expressed in the form
K t - N - 1, ey 1
S(t|N) = Z“Z(t)sk(tw) with initial conditions set tar;,(N) = 0 andRy(N) = O.

E
I

! The formula similar to the BF algorithm (even though

originally derived from the RTS algorithm), known as modified
Bryson-Frazier (MBF) smoother, was proposed by Bierman
[29], [30].

Remark

% improve numerical conditioning and stability of computa-

tions, the equation-based MF, RTS, BF and MBF algorithms
x(t+1) = Fi(t)x(t) + Di(t)u(t) + Gr(t)wi(t) can be replaced with their fast square-root versions [31], [32],
that is, if My, is thesystenmodel rather than the signal model.[sf’)é Slﬁh fa;ctﬁnzed a!g;nthm;, ngf/g “pﬁaET%e sgfuar_e-root
The only change that needs to be introduced comes in the siate (t[IV) of the matrix P (t|N) [P,/"({|N)P,"“(t|N) =

prediction equation, which in such a more general case shoﬁ(ﬂ(ﬂN_)]’ are also amenable to parallel and systolic imple-
read mentation.

M=

P(t[N) = )  pp(t)Pr(t[N). (27)

~
Il

1

Remark

All results presented above remain valid if the state equati
in (15) includes the deterministic input signa(t)

X (t 4 1]t) = Fr(t)Xp(t[t) + Di(t)u(t).
IV. APPLICATION — IDENTIFICATION OF NONSTATIONARY

D. Efficient computational procedures STOCHASTIC SYSTEMS

Even though the two-filter formula (17)-(18) proved to Consider the problem of identification, based on prerecorded
be very useful for derivation of the relationship (22), froninput-output data, of a discrete-time stochastic system gov-
the computational viewpoint it is not the most efficient wagrned by
of evaluating the smoothed estimates. Below we summarize y(t) = T (1)0(t) + v(t) (30)

the two other procedures, known as the Rauch-Tung-StrieI\clJv(?’!ere(p(t) 0 ()]T denotes the vector of input

i . ) i = [P1t), .- Pr

(RTS) algorithm [27] and Bryson-Frazier (BF) algorithm [28]. eé;[ression) variables and(t) — [6x(),...,0,(£)]T is the
C

In both cases the smoothed estimates are obtained by mea . . ¥
backward-time processing of the results yielded by the forwa¥d r? ' IO f unkn%wn, _t|m%-var>/f|ng _systelzm g(;]eﬁu:C;entsl. db
Kalman filter (16). Both algorithms update the covariance m]’:l-T € boca g/-a ;ptlve ' en? |:c:at|on a gt(_)rlt |£n1| evelope th'e-
trix Py (¢|N) needed to computs; (£|N) [cf. (19)], and both ow, is based on the concept of cooperative Kalman smoothing.

are free of technical subtleties associated with determinatilfhthe con_text. of system |de.nt|f|cat|.on, similar solutions (con-
of the backwards Markovian model, used in the two—filteYex combination of competing estimates) were proposed for
approach ' parameter trackers, see e.g. [34] and [35]. However, to the best

of our knowledge, no such results are yet available for non-
3credibility coefficient are approximate, not exact, posterior probabiliiecausal estimation schemes combining parameter smoothers.
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A. Nonprobabilistic problem formulation where
The smoothed estimat(t| ) of 6(t) can be obtained by

solving the following minimization problem 9(?(?1) (p(()t)
6(/N) S bl - 7 00(0)]° - 2N R
. = arg mi y(t) — e ()0(t : .
o) | = Ot —p+1) 0
N
+63 | vre) |2} (31) AT —fl o —f T £ I
=1 I o ... o (0] (0]
whereVPO(t) denotes the-th order difference oB(t) F = : ,G =
» : :
VPO(t) = (1 - ¢ )"0(t) = > Bt ~ ) °© 9. o ©
o =0 Note that
fi=(=1) < i > ,1=0,...,p 0(t) = GTx(t) (34)

¢~ is the backward shift operator ar@d> 0 denotes the \ nich means that estimation of(t) is equivalent to obtain-

user-dependent smoothness tradeoff parameter. . .
. . ing a smoothed estimate of the state vectdt) based on
Such a problem formulation can be traced back to Wh|ttak€rg . )

) X : ,o(1),7=1,...,N}. Under Gaussian assumptions this
[36], who used it to work out a procedure for signal smoothin gg)bépgghzieved using %(alman smoother P
!n the context of system ide_ntification (estimation of an ﬁ\s argued in [15], in the context of system identification
impulse response of & d_ynamlc system)_, the same approgel coefficientt can be regarded as an instrumental variable,
was later pursued by Shiller [37]. As Whittaker stated it, the

estimates (31) balance a tradeoff between infidelity to t%sort of a user-dependent “knob" allowing one to tune the

data, represented by the first sum on the right side of (3 alman parameter tracker to the degree of nonstationarity of

P . ; ~ The identified process. In particular, when system parameters
and infidelity to ap-th order difference equation constraint ;
: are assumed to vary according to the random-walk madel (
represented by the second sum in (31).

1), one can show that the “estimation memory” of a Kalman
B. Stochastic embedding parameter tracker based on (33) is inversely proportional to

o - : V& [15].
The deterministic (as far as description 6ft) is con-
cerned), regularized least squares problem formulated by
Whittaker was given a probabilistic reinterpretation by Akaik%. Whittaker scheme revisited
[38]. Suppose that the following stochastic integrated random-
walk (IRW) parameter model is adopted The optimal-global values of the smoothness hyperparam-
9 etersp and ¢ can be obtained by minimizing some statistical
VEO(t) = w(t), covlw(t)] =W =01 (32) oss functionQ(p, £), such as the Akaike’s AIC statistics [40]
where {w(t)} denotes a zero-mean i.i.d. sequence, indepesr the generalized cross-validation index [22]. This can be

dent of {v(t)} and{e(t)}. SinceV?rO(t) = 0 implies achieved by a discrete seafchver the parameters and ¢,
p which is equivalent to running several algorithms correspond-
0;(t) = Zaijtjfl, i=1,...,r ing to different values op and¢, and choosing the estimates
j=1 providing the smallest value of)(p,£). By optimal-global

where a;; denote arbitrary constants, the IRW model caf® mean such constant parameter values that minimize the
be regarded as a local, or “perturbed”, power series modilopted loss function for the entire available data record. This
of parameter variation. Generally, the larger the orgenf should be contrasted with the optimal-local approach, pursued
the IRW model, the smoother the corresponding parame{@rthis article, where the best-fitting parameters are searched
trajectory. As noted in [38], when the sequendest)} and independently for each location within the entire data set,

5 approach is also possible, where the analyzed process is

£ = CLL; , segmented and optimization is carried out independently for
0% each data segment. Such a semi-local approach was described
evaluation of the maximum likelihood estimates of parameteirs [40].
governed by (32) is equivalent to solving (31). Consider the situation wher& Kalman smoothing algo-

The final step was made by Norton [39] and Kitagawa angthms, obtained for different values of design parameters
Gersch [40], who embedded smoothness constraints intqug)k,k = 1,..., K, and yielding the estimate8 (t|N)

state-space system model are run in parallel.
x(t) =Fx(t — 1) + Gw(t)
4 . .
T Even though a numerical search for the optimal values of smoothness
y(t) = (1)x(t) +o(t) (33) hyperparameters is possible [41], it is usually computationally prohibitive.
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The proposed locally-adaptive smoothed estimat&@) Laplace and uniform. For example, when noise distribution

has the form is Laplace (heavy-tailed), credibility coefficients should be
K evaluated according to [14]
O(tIN) = i3 (t)0k(t|N) -M
k=1
~ ~ g (t) o ep(i . (38)
0.(t|N) = GIRL(t|N), k=1,....K (35) k() ie%@)' k@)l

where X, (t|N) denotes the estimate yielded by tieth |n the uniform (light-tailed) noise case, one should set
Kalman smoother.

—M
For' |dent|f|cat|9n purposes it is recommended to use the 18(t) o { ‘max |e;(i)|} . (39)
following normalized version of the forward Kalman fil- i€Ta(t)
ter/predictor The smoothing formula based on (38) is more robust (e.g.
ex(t) = y(t) — YL ORR(tt — 1) to outliers) than the one based on (37). Unfortunately, due to
N T technical difficulties associated with the form of the multi-
i (t) = i, (OPr(Ht — 1)epr(t) +1 variate Laplace distribution [43], a straightforward extension
ki (t) = Pr(t|t — 1)y (t) /G (t) of (38) to multivariate signals does not seem to be possible.
R (tt) = Ru(t]t — 1) + ky (t)ex (1) (36) For white but non-Gaussian noise sources the estimates
~ ~ T/ yielded by the constituent Kalman smoothers cannot be
Pr(tl) = Pr(tlt — 1) — kn(t)k (1) (t) claimed optimal any more, but they still have a nice statistical
Xk(t+ 1[t) = FipXp(t[?) interpretation: they can be viewed as an orthogonal projection
Pi(t+ 1]t) = FPL(t|)FF + GLGL ¢, of the state vectox(t) onto a linear space spanned by the
P N available measurements. This means that they are minimum
Y mean squaréinear estimates of(¢), optimal in the sense of
where Py(t + 1[t) = Pi(t + 1[t)/(0?)r, Pi(tlt) = Whittaker (31).

Py (t|t)/(0?), denote normalized covariance matrices and
qr(t) is the normalized version ofx(t) — the scalar coun- E. Computational Complexity
terpart of the matrixQy(¢) updated in (16). The normalized | ihe scalar measurement case£ 1), analyzed in this

a_lgorithm _yi_elds th_e same_estimates as its _unnormalized VEEction, the MF algorithm (17) - (18) is computationally the
sion, but it is equipped with only one design parameler |4t attractive one, as it requires inversion of 3 matrices of

H 2 2 i - . . . . .
instead of two parametefs,, o;,)x. This feature of the nor dimensionr x r at each time step (only 2 inversions are needed

w? v

malized algorithm confirms the well-known fact that parameter . o information filter is used for the backward sweep), and

estimation properties of the Kalman-filter-based identificatio[ﬂe BF and MBF algorithms are the most attractive ones, as
. . ) 9 ,

algorithm depend on the assumed ratio of variariegs/ o7 they do not require matrix inversion at all. The RTS algorithm

rather than on each of these variances alone [15]. comes in the middle since it requires 1 inversion per (reverse)
The corresponding MF, RTS and MBF smoothing formulaﬁme update

remain unchanged - all that one has _to do is replace th'E'Since the computational load associated with evaluation of
quantltlest(t\t),_Pk(t + ,1“) and gx(t) in (17)-(18), (28) credibility coefficients i (t) is negligible compared to the
and (29) W'th_the'r normah;ed counterparts. ..cost of evaluating the corresponding estimakgsi|N), the

In the special case considered in this section the credibility . tational burden of the cooperative smoother is not much
coefficients can be obtained from higher than the cost of runninfj standard Kalman smoothing

—M/2 algorithms. In contrast with this, the IMM smoother de-
15 (t) o Z [e2 (1)) (37) scribed in [13] consists ok MF-type smoothing algorithms

iETu(t) operating in parallel. Hence, for systems with Markovian
switching parameters, cooperative smoother can be regarded as

where a computationally attractive alternative to the IMM smoother
€8 (i) = er(t) _ y()— wg(i)ﬁk(ilN) (of course, this computational advantage comes at the cost of

op(t) 1-— T ()P (i|N)t (i) decreased smoothing efficiency).
andP,(i|N) denotes the normalized covariance matrix of the V. SIMULATION RESULTS

estimatex,;(i| ') provided by Kalman smoother. To check performance of the proposed parameter smoothing

algorithm, the following two-tap FIR system (inspired by
D. Non-Gaussian Extensions channel equalization applications) was simulated
In the scalar measurement case, considered in this section,
the cooperative smoothing formula (35) can be extended to y(t) = u(t)ult = 1) + O2(Hult - 2) + v(t)
a wider class of measurement noise distributions, known abereu(t) = +1, o2 = 1, denotes the pseudo-random binary
generalized normal [42]. The generalized normal law incosignal (PRBS) — the sequence transmitted over a telecommu-
porates such practically important distributions as Gaussiamication channel — and(t) denotes a zero-mean white noise.


http://mostwiedzy.pl

A\ MOST

' 8, A ' 8,(t) A amongKj, ..., Kg. An obvious advantage of all cooperative

05 05 smoothers is their increased robustness to unknown and pos-
sibly time-varying degree of nonstationarity of the identified
0 0 system.

To get better insight into the quality of reconstructions
provided by the cooperative smoothing scheme, look at the
plots displayed in Figs. 2 (for step-like parameter changes)
) ) and 3 (for chirp-like parameter changes). Each figure shows

8,(t) B 8,(t) B the best-fitting trajectory, the mid-score trajectory (50th score)
05 05 and the worst-fitting trajectory from among 100 estimated
parameter trajectories yielded, for different realizations of

O/V\/\/\/\/\/VV\ O/V\N\/\/\N\/\ Gaussian measurement noise, (= 0.15), by the K;_g
smoother. Note that the main source of quality degradation,

710 1000 2000 3000 4000 5000 710 1000 2000 3000 4000 5000

e o when one moves from the best result to the worst result, is due
o 0 to sporadic short-lived switching artifacts. Switching artifact
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 . . .
occurs when, owing to a specific local noise pattern, one
t t of less efficient smoothers temporarily dominates the entire

Fig. 1. Two variants of parameter changes used in computer simulatio

discontinuous (two upper plots) and continuous (two lower plots). Sthoother bank. Most of these artifacts can be easily eliminated

by means of median postfiltering of the sequerﬁéét|N)}.

Two different scenarios of parameter changes were consid®” €xample, in the case illustrated in Figs. 2 and 3, 11-
ered: A) discontinuous, step-like and B) continuous, chir©int median smoothing allows one to reduce the average

like — see Fig. 1. Due to appropriate scaling, all parametgftimation loss (40) by aproximately 0 from 3.98 to 3.75
trajectories have the sanie norm. for step-like parameter changes, and from 0.63 to 0.57 for

For each of the compared algorithms the steady st&irp-like parameter changes. It also makes estimation results

accumulated mean-squared parameter estimation errors WBR{® homogeneous across different realizations.
computed Median filter is just the simplest representative of a whole

R family of nonlinear order statistical filters with noteworthy
E, {x 9%, || 6(¢[5000) — 6(t) [|*}. (40) properties: they are capable of removing outliers without
Wapéurring step-like signal features [21]. Exploration of the
potential for nonlinear postfilterifgseems to be an interesting
eic for future research.

To eliminate transient effects, the summation in (40)
restricted to the intervdl 01, 4900]. Ensemble averagirig, (-)
was performed over 100 realizations of the measurement notlg
{v(t)} — the same in all experiments. The procedure was
repeated for each of 6 noise intensities ranging fegm= 0.05 VI. CONCLUSION
(SNR=26 dB) too,, = 0.30 (SNR=10.5 dB). The width of the

ﬁ\(;?slza\fxllzrs] ;ri?:; gsssgg%a:):ﬂ{a;aﬁé;he distribution of . We have considered the problem of Kalman smoothing
in the presence of model uncertainty and we have pro-
Table 1 summarizes results obtained for 6 Kalmagosed a novel parallel estimation (multiple-model) scheme
smoothers iy, ..., Keg) and 2 cooperative smoother&y(_, which combines results yielded by several competing Kalman
Ki-3). The first 3 Kalman algorithmsK(;, K2, K3) were smoothers. The solution was based on the recently proposed
based on the first-order IRW modep (= 1, & = 0.002, concept of cooperative smoothing. After extending the rules
& = 0.018, & = 0.16), and the remaining 3 algorithmsof cooperative smoothing to multivariate signals, we have
(K4, K5, Kg) — on the second-order IRW modeb & 2, shown that credibility coefficients — which play the role of
€1=6-107% & = 5-107% & = 4 -10~*). Cooperative mixing coefficients in the cooperative smoothing formula —
smoothers; ¢ andK;_3 combined all 6 Kalman algorithms can pe easily evaluated using quantities provided by the
and the first 3 Kalman algorithms, respectively. The desigipnstituent Kalman algorithms. Finally, we have shown how
parameterg, of constituent smoothers were not optimized igooperative Kalman smoothing can be applied to identification
any way — the corresponding values were chosen so that witgin nonstationary stochastic systems and we have indicated

each group of algorithm$K, K4}, {K2, K5} and{K3,Ks}, possible directions for future research (nonlinear postfiltering).
the equivalent memory spans [15] were the same and equal to

90 samples, 30 samples and 10 samples, respectively. Appendix 1 [derivation of (8)]
Note that the smootheK;_¢, which combines algorithms

baged on both first-order an_d se_cond-o_rder IRW models, 'SConsider an x n random matrixX > O which obeys the
uniformly better thanK,_3, i.e., it provides the smallest.

. . . ' |n¥erse Wishart distribution with an x n inverse scale matrix
estimation errors in all cases considered. Note also tha

. ) . : > ~ WYY, p).
yields either better results (for the system with step-like pa- > O andp > n degrees of freedonX ~ W™ (Y, p). The
rameter changes) or only slightly worse results (for the system
with chirp-like parameter changes) than the best smoother&inear postfiltering schemes were proposed earlier in [44].
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Table 1
Comparison of parameter estimation errors obtained for 3 Kalman smoothers based on the first-order IRVKmdsle| K3), 3 Kalman smoothers based
on the second-order IRW modeK(, K5, Kg), and 2 cooperative smoothe®& (_g, K;_3). Simulations were performed for 2 variants of parameter
changes (A,B) and 6 noise intensities.

Gaussian noise:

Pl oy K1 Ko Ks K4 Ks Ke || Ki—6 | Ki_3
0.05 || 26.30 8.40 3.00 8.26 | 25.21 | 91.50 2.80 2.80
0.10 || 26.42 8.76 4.11 8.68 | 25.37 | 91.50 3.22 3.25
A | 0.15 | 26.04 9.42 6.04 9.45 | 25.62 | 91.69 3.98 4.10
0.20 || 26.89 | 10.25 8.63 | 10.46 | 25.92 | 91.71 4.82 5.08
0.25 || 27.24 | 11.31 | 11.86 | 11.67 | 26.32 | 91.86 5.83 6.27
0.30 || 27.66 | 12.91 | 16.07 | 13.53 | 26.93 | 91.70 7.20 7.80
0.05 3.95 0.15 0.22 0.08 0.12 | 65.70 0.08 0.13
0.10 4.01 0.35 0.86 0.32 0.20 | 65.71 0.27 0.41
B | 0.15 4.20 0.75 1.97 0.77 0.35 | 65.83 0.63 0.90
0.20 4.47 1.29 3.51 1.38 0.56 | 66.15 1.07 1.51
0.25 4.68 1.88 5.41 2.07 0.78 | 65.14 1.53 2.16
0.30 4.80 2.76 7.86 3.11 1.10 | 66.03 2.15 3.00

Laplacian noise:

Pl oy Ki Ko K3 Ky Ks Ke || Ki—g | Ki_3
0.05 || 26.26 8.35 2.98 8.24 | 25.20 | 91.47 2.74 2.75
0.10 || 26.40 8.79 4.14 8.74 | 25.34 | 91.52 3.19 3.23
A | 0.15 | 26.63 9.40 5.97 9.46 | 25.60 | 91.68 3.80 3.91
0.20 || 27.00 | 10.38 8.62 | 10.54 | 26.00 | 91.82 4.54 4.98
0.25 || 27.20 | 11.28 | 11.64 | 11.59 | 26.18 | 91.95 5.28 5.66
0.30 || 27.71| 12.71 | 15.76 | 13.23 | 26.89 | 91.97 6.47 7.04
0.05 3.97 0.15 0.22 0.09 0.13 | 65.77 0.06 0.12
0.10 4.06 0.38 0.87 0.35 0.23 | 65.78 0.24 0.39
B | 0.15 4.15 0.75 1.94 0.77 0.36 | 65.74 0.50 0.77
0.20 4.36 1.31 3.49 1.42 0.60 | 65.84 0.84 1.29
0.25 4.43 1.84 5.26 2.06 0.76 | 65.71 1.14 2.76
0.30 4.75 2.64 7.61 2.98 1.06 | 66.03 1.62 2.45

probability density function oiX takes the form [18] Applying the matrix inversion lemma-+) to the fifth
x) [det(X)]~P++1D/2[det(Y)]P/2 recursion of (16), one arrives at
p = —
2vn/2T,,(B) Pi(tlt) = [Py (tt — 1)+ HE OV (OHLB)] T (42)
1
X exp {—2 tr[X_lY]} which, when combined with (18), leads to

and since it must integrate to 1 wh&hspans the entire space ~ Pr(t|N) = {[Py(t|t — 1)]7" + H (t) V. () Hy ()

" S X X ) S
pf n x n positive dgﬁmte matrlce_g one obtamg the following + [PB(tt — 1)] 1} . (43)
integral formula (with no probabilistic connotation)

1 Combining the first and the fourth recursion of (16), one
/ [ det(X) |~ +D/2 exp {— 5 tr [X Y] } dX obtains
X>0

@1)  Xe(tlt) = Kp()y(t) + [T — Kp(0)Hy(8) X (8]t — 1) (44)

(NS}

— 24T, (g) [det(Y) ] 5.

The result (8) follows immediately from (41) after settiXg= Multiplying both sides of the fifth recursion of (16) with
V,Y =Dy(t) andp = M. P, !(t|t—1), and incorporating the third recursion, one arrives

at
Pi(tl)P ' (tt — 1) =1 - K () Q)KL ()P, (¢t — 1)
=1—Py(tlt — DH (1)Q; ' (H)H} (1)

The proof will exploit the well-known matrix inversion =1 - K (t)H (1) (45)
lemma [45], given below in a slightly more generaf)(form

Appendix 2 [derivation of (22) - (23)]

Therefore, (44) can be written down in the form
Lemma

Provided that all inverses below exist:
[A+BCD] '=A"!

+A'B[C'+DA'B] 'DA". Ptk (t]t) = P () Kk (t)y ()
- + Pt — DR (tt—1).  (47)

X5 (t]t) = Ki(t)y (t) + Pr(t|t)P (¢t — D)Xy ([t — 1) (46)

leading to
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Fig. 2. The best-fitting (top plot), mid-score (middle plot) and the worstrig. 3. The best-fitting (top plot), mid-score (middle plot) and the worst-

fitting (bottom plot) parameter trajectories from among 100 trajectories genétting (bottom plot) parameter trajectories from among 100 trajectories gener-
ated, for different realizations of Gaussian measurement neise=(0.15), ated, for different realizations of Gaussian measurement neise=(0.15),

by the K1_g smoother. In each case the plot of the estimated parametsr the Ki_g smoother. In each case the plot of the estimated parameter
trajectory {61 (¢|5000)} is superimposed on the plot of the true (step-like}rajectory{6;(¢|5000)} is superimposed on the plot of the true (chirp-like)
parameter trajectory6; (¢/5000)}. parameter trajectory6; (¢/5000)}.

Using (42) and the third recursion of (16), one obtains Note that, using (17), (18), (43) and (51), one can rewrite (20)

0K = [P e — 1) + B )V (OH(0)] i the form
x P (t[t — 1)HE(t)Q,:1(t) So -1 T -1 -1
" _ " T _ XL (tN) = [P (N) — Hy () V() H(t)]
= H O+ Vi (OHk (0P (¢l — DH (0]Qy l(t)'( s8) % [PLL(N)Z(LN) — HE VL (0y ()] (52)

Since the second recursion of (16) can be rewritten in the folgsing the matrix inversion lemma agair ), one obtains
Vo 6)Qu(t) =T+ Vi ' (OH )P, (¢t — DHE (1) (49) P

-1

—H )V, (HH (t)}

_ At
one arrives at P ( |N) + P (t|N)HL (1) Z; ' (O)He ()P ({|N)  (53)

Pl (K (t) = HE () V(1) (50)
and [cf. (47)] where
P, (tt)xe(t]t) = HE ()V (D)y(t) Zi(t) = Vi(t) — Hy ()P (¢|N)H] (¢)
+ Pt - DR (tt — 1), (51) = Vi(t) — Sk(t|N). (54)
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Substituting (53) into (52), one gets
Xi (tIN) = Xk (t{N) + Py (t|N)H;, (1) Z;
— Py (t{N)H (t)Z;
— Pi(tIN)HE () Vi (1)y (1)
Using (55), one arrives at
ep(t) =
- H, ()P« (t|N)H
+ Hk(t)Pk(tI JH
(t

= [ +Sk(t|N) P
xy(t) -
According to (54) it holds that

[19]
"OHR(ORR(EN)  [20]
YOHL PR (EHN)HE () V ()y (1)

(55)

[21]
[22]

y(t) = Hp(0)xg (HIN) = y (1) — Hi )Xk (¢|N)
r(OZ (OHL (X (HN)
K (DZ (OHL (P (| N)H (1)
Pyt + Hk(t)Pk(th)HE(t)V;ZI(t)Y(t)
) + Sk(tIN)Z ' (1)Sk(tIN) Vi ()]
)] Hy

H(1)] Hy (6) %k (HN).- (56)

[23]

[24]

[I—i—Sk(t\N [25]

[26]

[27]

Sk(t|N) = Vi(t) — Zg(2). (57)

lations)

[29]
— Vi(OZ; (Ol (1) -
— Vi(OZ; (Der(t)

e (t) H,(4)%5 (1|N)]

[30]
(58)
311

which is identical with (22) — (23).

(1]
(2]
(3]
(4]

(5]

(6]
(7]
(8]
(9]
[20]
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[12]

[13]
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