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Abstract: This paper presents a mathematical model for the 

hysteresis phenomenon in ferromagnetic tape wound core. 

The classical scalar Preisach model of hysteresis is used to 

simulate magnetic behavior of the grain oriented silicon 

strip of ET114-27 type. Determination of B-H hysteretic 

curve is based on measurement of the downward and 

upward trajectories of the limiting loop. The Everett 

function and the Preisach distribution function of ET114 

material are presented. The model has been validated by 

comparing measured and calculated results obtained from 

tests. Experiments and simulations confirm the accuracy of 

worked out model. 

 
Keywards: Magnetic hysteresis, scalar Preisach model, Everett 

function, Preisach distribution function. 

 

1. INTRODUCTION 
 

In all ferromagnetic material there is nonlinear relation 

between magnetic flux density B and magnetic field 

intensity H defined as magnetization curve B(H). This type 

of curve is always a hysteresis curve. When a ferromagnetic 

substance is under the influence of a time dependent field 

intensity there is a lag between B and H. The material passes 

through the loop of hysteresis curve and the shape of this 

loop depends on the type of material used in magnetic core 

and range of exciting field intensity. The hysteretic B(H) 

curve is very important in certain phenomena associated 

with power systems, such as the inrush of magnetizing 

current, ferro-resonance, and residual flux in transformer 

cores [1-3]. Ferroresonant state can produce much large 

currents and voltages than normal and hysteresis can 

noticeable influence on switching currents and voltages. A 

cyclic variation of magnetic flux generates also dissipation 

of an amount of energy proportional to the area of hysteresis 

loop. This is in most cases detrimental to the operation of 

the device due to heating of the material. 

Several efforts to model magnetic hysteresis have been 

until now reported. Among many models proposed so far, 

the model based on the Preisach’s theory [4] seems to be a 

good method for accurate modeling and prediction of the 

magnetic characteristic. The Preisach model (PM) had been 

initially utilized in the area of magnetics but its 

mathematical generality suggested implementation of this 

model in many areas of science. A pure mathematical form 

of the PM separated from its physical meaning was 

proposed by Krasnosel’skii [5]. This approach was further 

developed by Mayergoyz [6-8] for determining the 

conditions for the representations of the hysteresis 

nonlinearities and generalization of the PM. Nowadays there 

are several generalizations of the original PM (generalized 

PM, moving PM, dynamic PM, vector PM) in other to 

improve its ability to represent complex experimental 

results. These modifications of PM are characterized and 

summarized in [9]. 

In this paper, only scalar Preisach model is introduced 

for representation of magnetic hysteresis in tape wound 

core. The numerical aspects and implementation of used 

model are thoroughly discussed. The Preisach distribution 

and the Everett functions are derived in analytical form. 

Parameter identification procedure requires only the limiting 

ascending and descending B-H curves. The results predicted 

by the model have been successfully verified by 

experiments. 

 

 

2.  THE SCALAR PREISACH MODEL 

 

2.1. Summary of Preisach’s theory 

In the classical Preisach model a ferromagnetic 

material is made up of infinite set of magnetic dipoles, each 

having magnetic characteristics with two separate, randomly 

distributed properties α, β as shown in Fig.1. 
 

 
Fig.1. Rectangular hysteresis loop of elementary dipole 

 

Each dipole has rectangular hysteresis loop and is 

defined as mathematical operator γαβ(H) that can assume 

only two values, +1 (positively switched) and -1 (negatively 
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switched). The relationship between magnetic field intensity 

H(t) and flux density B(t) is expressed in the integral form as 
 







  ddtHtB ))((),()(                 (1) 

 

where μ(α,β) is a finite weight function having nonzero 

values within the limits of major hysteresis loop. The term 

μ(α,β) is also called the Preisach distribution function and 

can be regarded as a material constant. 

The equation (1) can be geometrically interpreted on the 

Preisach diagram as shown in Fig.2. On this diagram an 

isosceles right-angled triangle indicates range of coordinates 

-Hs ≤ β ≤ α ≤ Hs where weight function μ(α,β) is nonzero 

and where Hs is the saturation magnetic field intensity.  
 

 
Fig.2. A geometric interpretation of the hysteresis model on 

Preisach diagram: S
+
 – region positively switched dipoles, 

S
-
 – region negatively switched dipoles 

 

Axis α corresponds to increments of field intensity H 

whereas axis β to decrements of H. At each instant of time t 

the α-β plane is divided into two areas S
+
(t) and S

-
(t)

 
by the 

boundary line Γ(t). Coordinates (α,β) in S
+
(t) area 

correspond to an operator γαβ(H)=1, and coordinates in S
-
(t) 

area correspond to an operator γαβ(H)=-1. Taking into 

account the geometrical interpretation, the equation (1) can 

be equivalently expressed as 
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)()(
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tStS

ddddtB          (2) 

 

The interface Γ(t) between S+ and S
-
 results from local 

maxima and minima of H at previous states 

)},();,();,();,{( 3322110  sH (see Fig.2) and the 

present state of magnetization. The interface Γ(t) is usually a 

staircase line attached to the α=β line and moves along the 

α=β line when the H(t) changes. 

 

2.2.  The states of magnetization and the corresponding 

Preisach’s diagrams 

For an unmagnetised material there are as many 

dipoles in the γαβ(H)=1 state as in the γαβ(H)=-1 state. This 

also means that there are as many dipoles in the region S
+
 as 

there are in the region S
-
 and formula (2) performs condition 

 

0),(),(  
 SS

ddddB             (3) 

 

The corresponding interface Γ(t) at H=0 and B=0 on the 

Preisach diagram is shown in Fig.3. 
 

 
Fig.3. Preisach diagram for an unmagnetised material 

 

A typical magnetic characteristic which consist of 

initial curve, limiting downward, and limiting upward 

curves is shown in Fig.4. When a positive magnetic field is 

now applied to the material, then those negative dipoles 

satisfying the condition α<H will change state. B-H curve 

follows from P0 to P1 point and next to P2 on the initial 

magnetization curve. The corresponding interface Γ(t) on 

the Preisach diagram for P1 point is shown in Fig.5. 
 

 
Fig.4. A typical B(H) characteristic for a major loop 
 

 
 

Fig.5. Preisach diagram for the initial magnetization curve 

 

From the Preisach diagram shown in Fig.5 the flux density 

Bi given by initial curve (subscript i) can be expressed as 
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where region ABC is the triangular area of integration. The 

term T(α,β) is called the Everett function [10] and is the 

integral of the Preisach function over the right-angled 

triangle formed by the line α=β and vertex (α,β); therefore 
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In equation (5) the primes are used to denote the variables 

involved in the integration. The unprimed variables are the 

limits of the integral. If the applied field H>Hs, the material 

is magnetically saturated to positive state and magnetic flux 

density is single-valued function of H. 

When the applied field is now reduced, then, because 

of the hysteresis property of each dipole, those positive 

dipoles that satisfy the condition H<β will change state. The 

B-H curve follows from P2 point to P3 point and next to P4 

on the descending trajectory of the limiting loop. The 

corresponding interface Γ(t) on the Preisach diagram for P3 

point is shown in Fig.6. 
 

 
Fig.6. Preisach diagram on the limiting downward trajectory 

 

From the corresponding Preisach diagram (Fig.6) the flux 

density Bd given by limiting downward trajectory (subscript 

d) can be expressed as 
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If the applied field H<–Hs, the material is magnetically 

saturated to negative state and magnetic flux density is 

single-valued function of H. 

When the applied field is subsequently increased, then, 

those negative dipoles that satisfy the condition H>α will 

change state. The B-H curve follows from P4 point to P5 

point on the ascending trajectory of the limiting loop. The 

corresponding interface Γ(t) on the Preisach diagram for P5 

point is shown in Fig.7. From the corresponding Preisach 

diagram (Fig.7) the flux density Bu given by limiting upward 

trajectory (subscript u) can be expressed as 
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Fig.7. Preisach diagram on the limiting upward trajectory 

 

2.3. General trajectories from reversal points 
In general, every upward trajectory and every 

downward trajectory has local maximum and local 

minimum in reversal points. The flux density induced from 

the nth (last) reversal (maximum) point on the downward 

trajectory can be given by 
 

),(2)()( HHTHBHB nn                        (8) 

 

Similarly, the flux density induced from the nth (last) 

reversal (minimum) point on the upward trajectory can be 

calculated as 

),(2)()( nn HHTHBHB                        (9) 

 

The downward and upward trajectories can be involved 

to calculate T(α,β) by means of the following formula [11] 
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where the last term is integral of the μ(α,β) function over the 

rectangular formed by two points: (α,β) and (Hs,-Hs) for the 

diagonal corners. 

If the μ(α,β) function for real magnetic material is 

known, it is then possible to determine its complete 

magnetic characteristic – major and minor loops.  

Conversely, for any given (measured) magnetic 

characteristic with hysteresis, the corresponding μ(α,β) 

function can be determined. Using the latter approach the 

weight function can be obtained from the differentiation of 

equation (5) 
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Numerical implementation of (11) gives two main 

difficulties. First, differentiation of (5) can generate 

additional errors especially if significant errors are presented 

in T(α,β) measurements. Second, numerical evaluation of 

double integrals is usually time consuming procedure. 

To model the hysteresis behavior the Preisach 

distribution function or the Everett function are needed. 

Several methods have developed to identify these functions. 

Some of the representative methods are described in [11-

23]. 
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Determination of the T(α,β) is generally based on 

measurement of a set of first order transition (reversal) 

curves [12], but for hard magnetic materials a set of minor 

symmetric loops is rather proposed [22]. These methods 

operate on the set of minor loops hence the relatively large 

amount of data are utilized. The μ(α,β) can then be 

calculated by differentiating twice the T(α,β) according to 

(11). In order to avoid significant errors generated by 

numerical differentiating process a correction of the 

measured data is proposed [18].  

Assuming the symmetry of the Preisach diagram about 

the α=-β line the factorisation property μ(α,β)=φ(α)φ(-β) can 

be used to identify the Preisach model as described in 

[11,13,14,20,21]. In this approach a φ(α) function is 

obtained from the major (usually limiting) hysteresis loop. 

Single valued φ(α) function is next approximated by 

analytical functions. Analytical solutions give relatively fast 

computation of the Preisach distribution function. To reduce 

calculation time the two dimensional wavelet average-

interpolation technique is also proposed [23]. 

For some of the magnetic materials the μ(α,β) can be 

analytically described by the Gauss distribution function 

[16,17] and a combination of Gauss and Lorentz distribution 

functions [19]. Representation of μ(α,β) as a partial sum of 

functional series is also proposed [15]. 

In this paper the numerical implementation of the 

Preisach method is based on the limiting downward and 

upward loops.  

 
 

3. THE IDENTIFICATION METHOD 

 

3.1. Numerical implementation of the Preisach model  
According to the chosen method, the weight function 

can be represented as the product of two single variable 

functions 

)()(),(  ba                          (12) 

 

Assuming the symmetry conditions about the α=-β line the 

following equation must be performed 
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From the (12) and (13) the following relations can be 

written: 
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Substituting the above in (10) yields 
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are functions which can be determined from measurements. 

Applying equations (15) and (16) into (4), (6), and (7) 

the flux densities: Bi(H), Bu(H), and Bd(H) can be expressed 

in terms of F(H) and F(-H) as follows: 
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From the above equations the F(H) function can be 

evaluated as 
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3.2. Analytical interpolation of the Preisach model  
  

The Bd and Bu values are measured at the nodes 

 NNNi HHHHHHH ,...,,,...,, 1011  . From this 2N+1 

samples of F(Hi) are calculated.  Next in each interval [Hi, 

Hi+1] the F(Hi) is interpolated by the cubic polynomial. 

Assuming continuity of the polynomial and of its first and 

second derivatives, at the node points the cubic spline 

piecewise interpolation of F(Hi) is obtained. Thus the 

Everett function (15) is given as analytical formula. Finally, 

the Preisach distribution function (12) can be easily 

calculated. 

 

 

4. EXPERIMENTAL VERIFICATION 

 

4.1. Experimental setup 

Measurements were carried out on grain oriented 

silicon steel strip of ET114-27 type. An iron core was 

prepared as tape wound torus. Its internal diameter is 506 

mm and the cross section dimensions are 35 x 100 mm. The 

experimental setup is illustrated in Fig.8. 
 

 
 

Fig.8. Experimental setup for measurement of hysteresis loops 

 

The magnetizing winding is uniformly distributed on 

most of the core whereas the measurement winding is 

lumped on a small part of the torus. The magnetizing 

winding is energized by laboratory power supply PS 8000 

DT type (Elektro-Automatik GmbH) controlled by function 

generator AFG3011 type (Tektronix, Inc.). The magnetic 

field is calculated from the current in the magnetizing coil, 

which is measured by means of TCP312 type current probe. 

The flux density is obtained by numerical integration of the 

voltage induced in the measurement coil. The core was 
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demagnetized before measurements. Measurements have 

been done under slow time varying excitation current. The 

current frequency equal to 0.020 Hz for the major loop was 

applied in other to reduce the dynamic effects in magnetic 

material. 

 

4.1. Experimental results 

 

The measured major hysteresis loop of tested core is 

shown in Fig.9. This is not a strict limited loop because 

material is not yet magnetically saturated. The relative 

magnetic permeability is μr=25 at H=2000 A/m. 

Nevertheless this loop is assumed as limited and used for 

further calculations of the F(H) function which is shown in 

Fig.10 for the limiting range of field intensity. 
 

 
Fig.9. Measured B-H major hysteresis loop of tested material 

 

 
Fig.10. Calculated F(H) function from major hysteresis loop 

 

4.2. Representation of magnetic material 

 

In this section the ability of the model to predict 

symmetric minor loops is examined. Some simulated and 

measured results of minor loops at different amplitudes of 

the field intensity H are shown in Fig.11 (Hmax=44.4 A/m) 

and Fig.12 (Hmax=110 A/m). It can be seen that the general 

agreement between both calculated and experimental results 

is satisfactory but there are small differences especially for 

relatively low values of H. The more accurate prediction 

needs to use modified Preisach models which will be 

presented in future work. 
 

 
Fig.11. Simulated and measured symmetrical minor hysteresis 

loops – verification of applied model 

 

 
Fig.12. Simulated and measured symmetrical minor hysteresis 

loops – verification of applied model 

 

The Everettt function of tested material is shown in 

Fig.13. The corresponding Preisach distribution function for 

the limiting range of the H is shown in Fig.14. 

 
Fig.13. Everett function of grain oriented steel ET114-27 type 

 
Fig.14. Preisach distribution function of the tested material 
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5. CONCLUSIONS  
 

In this section the ability of the classical scalar 

Preisach model to predict magnetic behavior of the grain 

oriented silicon steel ET114-27 type was examined. The 

numerical implementation of the applied model is based on 

the factorisation property μ(α,β)=μa(α)μb(-β) of the Preisach 

distribution function. From this assumption the Everett 

function involves only the major hysteresis loop and product 

of F(α) and F(-β) functions which are obtained from 

measurements and interpolated by the cubic polynomial 

splines. 

The measured characteristic parameters of the major 

loop are: the saturation induction Bs=1.815 T, the saturation 

field Hs=2100 A/m, the remanence induction Br=0.55 T, and 

the coercive field Hc=9 A/m. A good agreement is observed 

between the measured and simulated hysteresis loops. To 

increase the accuracy the modified Preisach models are 

needed. 
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WYKORZYSTANIE TEORII PREISACHA DO MODELOWANIE HISTEREZY 

MAGNETYCZNEJ RDZENIA ZWIJANEGO Z TAŚMY 
 

 

Słowa kluczowe: Histereza magnetyczna, Teoria Preisacha, Funkcja Everetta, Funkcja dystrybucji Preisacha. 
 

W referacie przedstawiono model matematyczny histerezy magnetycznej w ujęciu klasycznej teorii Preisacha. 

Dokonano implementacji skalarnego modelu Preisacha w odniesieniu do rdzenia zwijanego z taśmy typu ET114-27. Do 

symulacji różnych stanów magnetycznych rdzenia wykorzystano jedynie dane z pomiarów głównej pętli histerezy. 

Wyznaczono funkcję Everetta i funkcję dystrybucji Preisacha badanego rdzenia. Uzyskano ogólnie dobrą zgodność wyników 

symulacji z wynikami pomiarów. 
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