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Abstract

The Sturmian expansion of the generalized Dirac-Coulomb Green function
[R. Szmytkowski, J. Phys. B 30 (1997) 825; erratum 30 (1997) 2747] is exploited to
derive closed-form expressions for electric (og) and magnetic (om) dipole shielding constants
for the ground state of the relativistic hydrogen-like atom with a point-like and spinless
nucleus of charge Ze. It is found that ox = Z~' (as it should be) and

om = —(22a/27) (473 + 671 — Ty — 12)/[y1 (1 + 1) (20 — 1)],

where v1 = /1 — (Za)? (« is the fine-structure constant). This expression for om agrees with
earlier findings of several other authors, obtained with the use of other analytical techniques,
and is elementary compared to an alternative one presented recently by Cheng et al. [J.
Chem. Phys. 130 (2009) 144102], which involves an infinite series of ratios of the Euler’s
gamma functions.
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1 Introduction

In the series of papers published by our group over the period of past several years, it has been
shown that the Sturmian expansion of the generalized (or reduced) Dirac—Coulomb Green function
(GDCGF), found in Ref. [1], may be used as a convenient tool in perturbation-theory calculations
of some electromagnetic properties of relativistic one-electron atoms. In particular, closed-form
expressions, in terms of the generalized hypergeometric function g F, with the unit argument, have
been derived for the ground-state static dipole magnetizability [2], the polarizability [3] and the
Stark-induced magnetic anapole moment [4] for the system.

Recently, Cheng et al. [5] have reported the use of the GDCGF Sturmian expansion technique of
Ref. [1] for the purpose to find the magnetic dipole shielding constant oy for the Dirac one-electron
atom in its ground state. Absolutely no details of calculations have been provided in Ref. [5];
only the final expression for o) has been given therein as a sum of two contributions, one being
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elementary and the second one having a form of an infinite series of ratios of the Euler’s gamma
functions. A literature search shows that calculations of oy; for the same system were carried
out before by several research groups and published in Refs. [6-11] (none of those works has been
referenced in Ref. [5]). An expression for oy arrived at in Refs. [9-11] (a corresponding formula
given in Refs. [6-8] contains a misprint, cf. Sec. 3 below) appears to be elementary compared to the
one in Ref. [5]. This prompts one to inquire whether the GDCGF Sturmian expansion technique is
practically capable to provide the same simple representation of o as the one given in Refs. [9-11]
(and, after a due correction is made, also in Refs. [6-8]). In the present paper, we answer this
question affirmatively.

When preparing this report, we have decided not to focus only on the dipole magnetic shielding
constant oy for the Dirac one-electron atom in the ground state, but to present at first in Sec. 2
details of calculations of the electric dipole shielding constant og for the same system. The value of
the latter quantity is known exactly to be Z~1 [13], where Z is the nuclear charge in the units of e.
This fact makes the evaluation of o an ideal test of correctness and robustness of any analytical
technique, including the present one. We believe the material of Sec. 2 is highly instructive, as
it shows how certain infinite series encountered in calculations based on the GDCGF Sturmian
expansion technique may be summed to closed elementary forms. The practical knowledge gained
in that way is then successfully exploited in calculations of oy reported in Sec. 3.

A small part of the material of Sec. 3 has been presented in an unpublished comment [12] on
Ref. [5].

2 The electric dipole shielding constant

Consider a Dirac one-electron atom with an infinitely heavy, point-like and spinless nucleus of
charge Ze. In the presence of a weak, static, uniform electric field F.x, an electronic wave
function of a ground quasi-bound state is, to the first order in the perturbing field, approximated
by

U(r) ~ 0O )+ W (p), (2.1)

Here, \I/(O)(r) is the ground-state wave function of an isolated atom and is given by

0 0 0 0
O (r) = a0 (r) +a) 00 ,(r), (2.2)
where © ©
|a1/2|2 + |a71/2|2 =1 (2.3)

(otherwise the coefficients afi /2 are arbitrary),

O _1,(n
wo =1 (oo ) =t @

Lol (4
aOF(271+1)

with

Q(O)(r) = )Vl exp(—Zr/ayp), (2.6)

ag
and with Q,,(n,), (n, = r/r), being the orthonormal spherical spinors defined as in Ref. [14].
The second term on the right-hand side of Eq. (2.1), (1) (r), is the first-order perturbation-theory
correction to W) (r) given by

D (r) = —eEoy - / ' GO (5, v )" w0 (), (2.7)
R3
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with G(O) (,7’) being the generalized Dirac-Coulomb Green function associated with the ground-
state hydrogenic energy level £(©) = mc2y.
The symbol 7, appearing in Eqgs. (2.5), (2.6), and also in later considerations, is standardly
defined as
Ve = VK2 — (Za)?, (2.8)

where « is the Sommerfeld’s fine-structure constant. Moreover, as usual, ag denotes the Bohr
radius.

The electric field produced at the point r by the atomic electron, the latter being in the state
characterized by the wave function ¥(r), is given by

E(r)= 47360 /}R3 d3r’ pe(r')ﬁ, (2.9)
where
pe(r) = —eUT(r)T(r) (2.10)

is the smeared electronic charge density distribution. Hence, at the point » = 0, where the nucleus
is located, the field is

1 pe(r’)
E(0) = — R e 2.11
(0) 4deg /Rs nr '3 ( )
Now, if U(r) is approximated as in Eq. (2.1), we have
pe(r) = pi? (r) + pM (r), (2.12)
where
o0 (r) = —eW O (r)wO) () (2.13)
and
pM (1) = —2e Re[T O () WD (). (2.14)
Consequently, E(0) is approximately given by
E(0) ~ EY(0) + EY(0), (2.15)
with O () § ) (3
v \\
E©(0) = L/ oy pr LDV (2.16)
dmey Jrs r'3
and O () (D
2 v N !
EW(0) = =* Re/ g pr OV (2.17)
4eg R3 '3

It may be easily shown that, because of parity reasons, the field component at » = 0 due to the
unperturbed electronic distribution, E(® (0), vanishes.

In turn, using the expression (2.7) for ¥™(r), we find that the first-order field correction
EW(0) may be written in the form

EW(0) = —3g - Eex, (2.18)
where ¥ is the electric dipole shielding tensor given by

2¢?

E =
E 47eg

Re/ dgr/ dgr’\I!(O)T(r)%@(o)(r,r’)r’\I!(O)(r’). (2.19)
R3 R3 T

To evaluate X, we rewrite Eq. (2.19) in the form

2 2 +1 B
Yg= 4:60 Re Z ene /11&3 d3r /Rg dBT/\If(O)T(T)T72e:;'an(O) (T,r’)r’en/-n;\ﬂ(o)(r’), (2.20)
nn'=—1 .
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where e,, with n = 0,+1, are the unit vectors of the cyclic basis, related to the Cartesian unit
vectors through

1 .
etr] = :Fﬁ(em tie,). (2.21)

In the next step, we substitute ¥(9(r), as given by Egs. (2.2) and (2.4), and the multipole expansion
of the generalized Dirac—Coulomb Green function, which is

eO = ez;

4de = KL 1
GOy = 5 Y Y

e? rr!
K=—00 M=—|K|+1/2
(K£0)

x(gQHﬂmWMMMmN&an —mQHﬂmwmem»ﬁ«an>
i )

Toe iy (1) sent () (07) G5 (1) geas () e ()

(2.22)

into Eq. (2.20). After the angular integrals appearing in the resulting series representation of X
are evaluated with the aid of the following identities obeyed by the spherical spinors [14]:

1\2 2
20 (k+3)*—n
€o - Ny Qnu(nr) = - 4/%2 — 1Q—nu(nr + W n+1,u(nr)
(k= 5)? — p?
Vo 2 Q. 2.23
+ |2Ii _ 1| 17#(" ) ( )
W= (= b
€411 - Ny Qn,u(nr) = =+ \/5 41%2 1 an”u:tl(nr)
+¢miu+amiu+§ .
K Lz
\/5(2[{ i 1) +1,p£1
JEFu=-DeFu-3)
- Q. n,.), 2.24
\/5(2/{ — 1) l,uil( ) ( )

we arrive at the conclusion that for arbitrary (up to the normalization constraint (2.3)) values of
the coeflicients afi /2

the unit dyad,

the electric shielding tensor for the hydrogenic ground state is a multiple of

EE = UEl, (225)

and that the only contributions to the shielding constant og come from the terms with K = +1
and K = —2. One has

OE = 0E,1 + OE,-2, (2.26)
where
2 00 oo . P(O)(T/)
=2/ 4a ar' (PO ©) 26 (r, 7)1 2.27
OE,1 9/, r A T ( (r) Q™(r) ) r 1 () Q(O)(T’) ( )
and
4 [ oo _ P(O)(T")
== d dr' ( PO (0) =2GO) (! 2.28
OR,—2 9/, r ) r ( (r) QW(r) )7' Za(r ) Q(O)(T’) ) ( )
with C(O)(T 7‘/) _ ( Q(O)K,(-i--i-)('ra T/) g(O)K,(-i-—)(Ta T/) ) (2 29)
KA 7§k () g9k (1) '
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being the radial generalized Dirac-Coulomb Green function associated with the hydrogenic ground-
state energy level.
To evaluate the integrals in Egs. (2.27) and (2.28), we shall exploit the following separable

expansion of ng) (ryr'):
= - 1 SO (r
G(I?)(r,r’) = Z MO ( (1) ) ( ;Lglol)(SflOI)((r') Té%(r’) ) (K #-1), (2.30)

0
n=—oo MpKg — T’rs,lz(r)

which is a corollary from the theory of the Dirac-Coulomb Sturmian functions [1]. Here

SOy = (1 +7)(nl + 2vk)Inl!
2ZNnK(NnK — K)F(|7’L| =+ 2’7}{)

N
(22N 2 L) 221\ | K = Nuk pe) (227 (2.31)
ao I ag ] + 2y " a0

and

00 — (1 =) (|n| + 2vx)|n|!

N
 (B2EY T ot (o) (220) KR o (220)) g )
0 In| ao In| 4+ 2yx M ao

(with lea)(p) denoting the generalized Laguerre polynomials [15]; we define L(_al) (p) = 0) are
the radial Dirac—Coulomb Sturmian functions associated with the hydrogenic ground-state energy
level, and

© _ In]+vx + Nux
Bpg = 771

, 2.33
v +1 ( )
where

Nux = £/ (W + ) + (Za)? = £ /[P + Znlx + K2 (2.34)

is the ‘apparent principal quantum number’ (notice that it may assume positive as well as negative
values!). The following sign convention applies to the definition (2.34): the plus sign should be
chosen for n > 0 and the minus one for n < 0; for n = 0 one chooses the plus sign if K < 0 and
the minus sign if K > 0.

At first, we attack the double integral in the expression for og ;. Inserting Egs. (2.5), (2.6) and
(2.30)—(2.33) into the right-hand side of Eq. (2.27), taking the two resulting separated integrals
with the aid of the known formula [16, Eq. (7.414.11)]

o _ LB+ 1(n+a—p) LB+ 1B —a+1)
do Pe PL®(p) = = (=" R -1
| aneteen) s e () > 1]
(2.35)
and employing Eq. (2.34), we obtain og; in the form of the following finite sum:
2 2
oB1 = gy (m+1)7En+1rEn -1)

« 3 () (Nn1 = 1)(In[ + No1t + 1) (In] = 11 Na1 =11 +1)

N1 (2 = [T (Jn] + 271 + 1)(In] + Nny — 1)

(2.36)

n=—2

Using again Eq. (2.34), after some algebra, the right-hand side of Eq. (2.36) simplifies considerably,
yielding
27 + 1

= . 2.37
OR,1 o7 (2.37)
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As one of the two separated integrals evaluated above converges at its lower integration limit
provided 1 > 1/2, we have the following constraint on the nuclear charge:

3
Z < ofl\/T_ ~ 118.67. (2.38)

Evaluation of the double integral on the right-hand side of Eq. (2.28) appears to be much more
cumbersome. Proceeding initially as in the case discussed above, employing Eq. (2.34) and the
trivial but useful identity

Ve =243, (2.39)

with much labor we obtain

1 i+ D+ =Dl +7 +2)
2ZT(ye—m—Dl(v2 —m +2)0(20 +1)
y i L[ +92 =1+ DT(n[+92 =711 = 2) Np, 2 +2
Bt [n['(In| 4272 + 1) Np,—2
[+ +7+1=7No2)[(1 = D2y +5) — Cn — D(In[ + 72 + No—2)]
In| +92 =71 — 1+ Np 2 '

OE,—2 =

S

(2.40)

Collecting together those terms in the above series which correspond to the same absolute value
of n, again with the use of Egs. (2.34) and (2.39), we arrive at

4 (Dt DI (2+m +2)
9Z0(v2 = =Dl = +2)I'(27 +1)

o0

« Z F(n+v—7—-2)T(n+v—m)
nll'(n+ 2v2 + 1)

Og,—2 =

n=0
XByn—Dm+r2 -7 =20+ —7)+ (297 +271 —3)(n+72—n) —3(n —2)].
(2.41)

The series in Eq. (2.41) does not terminate. Nevertheless, we shall show that og _o may be

expressed in the form which is as elementary as the one in the case of o ;. To this end, we invoke
the relationship

= I(n+a)l(n+az)z™ T(a1)(a2) a1.a
nz:;) Tntb)  nl 1@ 2 ( b ?Z) (2 < 1), (2.42)

where o F} is the hypergeometric function. Transforming Eq. (2.41) with the aid of the above
formula results in
4 M+l (e +7— D02+ +2)

9Z (2 =1 —2)(re—7)(re—n+DI'2n + (272 + 1)

_ o _ Y2—-nm—Ly—m+1
X[3(71 D2 =71 —2)(2 71)2F1( 995 + 1 ,1>

OE,—2

2 _ _ Y2—n—2,72-—n+1
+ (271 + 271 — 3)(12 vl)zFl( 29y + 1 ,1>

Yo=Y — 2,72 "
— — 2) o F} 01 . 2.4
3(n )2 1< 295 + 1 ; ﬂ (2.43)

Now, we owe to Gauss the following identity [15]:

2 Fy ( @2 ;1> _ EE?E(Z;)—F‘E; - Zz; [Re(b — a1 — az) > 0]. (2.44)
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Applying it to the three o F} functions appearing in Eq. (2.43), we find

Y2 — V1 — 1,")/2 -7+ 1 . _ F(2’Yl + l)r(2ﬁ)/2 + 1)

R 1) = , (2.45)

27, + 1 L(y2 +71)0(v2 + 71 +2)
g 22 emnt+l )\ TCn+2T2e+1) 9 46
241 299 + 1 )T r (2.46)

V2 (v2 +71)(y2 +71 + 3)

and T'(2v; + 3)T (2, + 1
2v5 + 1 D(v2a+v +D0(v2 + 71 +3)

Plugging Eqgs. (2.45)—(2.47) into Eq. (2.43), after some further simplifications based on the use of
the relation (2.39), we arrive at the afore-announced elementary representation of the K = —2
component of the shielding constant:
2(y1 —4)
g = 2.48
OB, —2 07 (2.48)
Insertion of o1 and og, 2 as given in Eqgs. (2.37) and (2.48), respectively, into Eq. (2.26) leads
us to the conclusion that the electric dipole shielding constant for the Dirac hydrogenic atom in
its ground state is

op =271, (2.49)
as it should be.
In the nonrelativistic limit .
1~ 1 — 5(Za)2, (2.50)
so that one has ) )
O 2
UE,I ~ 3Z |:1 3(Z04) :| (251)
and
2 1 + 1(Z )2 (2.52)
OR. 9 ™~ — —(Za)?| . .
Y/ 6

3 The magnetic dipole shielding constant

We proceed to the evaluation of the magnetic dipole shielding constant. The model of the hydrogen-
like atom we shall adopt for this purpose is the same as in the preceding section.

In a weak, constant, uniform magnetic field Bey;, the atomic ground energy level £() splits
into two, their energies being given, to the first order in By, by

Eu= €O+ (u=43), (3.1)

with
271 +1

EWM = sgn(u)

where pp is the Bohr magneton. The corresponding wave functions, to the same approximation
order, are

NBBexta (32)

Uu(r) =T (r) + TV (r)  (u=+D), (3.3)

with \I/,(?) (r) given by Eq. (2.4) (the space quantization axis being chosen along the external
magnetic field direction) and with

TP (r) = _%eCBm - / &r' GO (r v (' x a) T (). (3.4)
R3
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Here, a is the Dirac 4 x 4 vector matrix given standardly by

a_<2 ‘(’)) (3.5)

where o is the vector composed of the Pauli matrices.
According to the Dirac theory, there is an electric current with density

Julr) = —ec\IJL(r)a\IJ#(r) (3.6)

associated with the electron being in the state ¥, (r). Using the Biot-Savart law, we find that at
the point r the magnetic field due to the current distribution j,,(r') is

r—7

Ho 3,/ /
B,(r)=— d’r )X ———. 3.7
o) =52 [ ) e (3.7)
In the particular case when the observation point is located at the nucleus, i.e., at » = 0, the above
expression simplifies to
! . ’
Ho 3 7 r X JM(T )
B, (0)="— dor’ ———. 3.8
J0) =2 [ @ T (38)
If, as we have assumed above, the electronic wave function ¥, (r) is known to the first order in the
perturbing field Beys, the current j ,(r) may be approximated as

Gulr) =30 (r) + 310 (r), (3.9)
with
30 (r) = —ec¥ O (r)a T (r) (3.10)
and
jﬁtl)(r) = —2ec Re[\IIELO)T(r)a\IIE})(T)]. (3.11)
Consequently, for the magnetic field at the nucleus location we have
B,(0)~ B (0)+ B("(0), (3.12)
with oF (0
\IJ ! ! \I] !
BELO)(O) = —ec@/ 3y £ (r)r />;a u () (3.13)
T JR3 T
and ()1 (1)
W / !/ \IJ /
B (0) = —2¢c L2 Re/ oy Lo (T)7' X aWy (1) (3.14)
B 4 R3 T/S
If Eq. (3.13) is rewritten in the form
1 )ty ’ (0) /.1
0)(0) — _pp M0 . 5.0 Y (r)r'en - (n, x @)W, (r')
B, (0) = eco Zlen/de r W , (3.15)
using Eqs. (2.4)—(2.6) and the spherical spinor identities [14]
1y2 2
4pk . (k+3)?—n
€eqp (nr X O') Q,{#(TLT) lmgfﬁu(n”’) + lwg,{+17#(n7«)
(v = 37— g
QI{* ™) 316
|2K/ _ 1| 17#(” ) ( )
8


http://mostwiedzy.pl

A\ MOST

K2 — (u+ 3)?
T a1 ()
Vst 5 p+3)

V2(2k + 1)

VEFa-DeFa-B -
—+1 \/5(21%_1) n—l,uil(nr)u ( : )

et (n. x o) Quuln,) = Fi2V2k

+1

/{+1,,u:|:1(n7")

with no difficulty one finds that

8

BLO) (0) = Sgn(—ﬂ)m

boMext, (3.18)

where
_ Ho kB

by =
0 47 ag

(3.19)
is the atomic unit of the magnetic field induction, while 14y is the unit vector along Beyy. The
radial integral
/ dr r=2p© (T)Q(O) (r),
0
encountered in the course of evaluation of BELO) (0), converges at its lower limit provided vy > 1/2,
which constrains the nuclear charge as in Eq. (2.38).

To evaluate the first order approximation to the magnetic field induced at the nucleus, we plug
Eq. (3.4) into Eq. (3.14). This gives

B;(}) (0) = _EM,,u : cht; (320)

where

e? 3 3 0 X o
_ t 0 0
XM = _FGORQ/W d r/Rs d?r’ \I!L) (r) = GO (e, 7' x a\IfL)(r’) (3.21)

is the magnetic dipole shielding tensor. Rewriting Eq. (3.21) in the form

62

+1
My = — Re Z ene, /3 d*r /3 d*r’ \I/LO)T(r)rﬁe;-(nr x )G (r, v )’ e, - (nl. x a)\I/LO)('r'),
R R

47e
0 n,n'=-—1

(3.22)

inserting the multipole representation (2.22) of the generalized Dirac-Coulomb Green function

into Eq. (3.22) and using the relations (3.16) and (3.17) to carry out integrations over the angles

of the vectors r and r’, after some labor we discover that, like its electric counterpart, the tensor
¥M,u is a multiple of the unit dyad:

ZM,,u = O'M|. (323)

As the notation used indicates, the factor oy, being the magnetic shielding constant for the system
under study, is independent of the angular momentum projection quantum number p; it is given
by the sum

oM = OM,—1 + OM,2; (3.24)
where
_ AL 2600 Q)
oM,—1 = —5/0 dr/o ar’ (QW(r) PO@) )r G_l(r,r’)r’( PO () (3.25)
and
_ 2 —26(0) QO ()
oM,2 = —5/0 dr‘/o dr’ ( QW) PO(r) )r G, (r,r’)'r"( POy ) (3.26)
9
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The Sturmian expansion of (_Sgg) (r,7") given in Eq. (2.30) is inapplicable in the case of K = —1
and thus it cannot be used for the purpose of evaluation of the double integral in Eq. (3.25). The

valid Sturmian representation of C(_O; (r,7") which we employ for that purpose is [1]

-0 =1 Sy (r)
Oy = > T_l(T(é)l (W2s006 T 60 )

10 (r) 0 0
+< KO(r) > ( S () Ty () )
5(5021(7”) )
+ : (JOEY KO ), (3.27)
( To(f)zl(r)
where )
+ r
10) = (= DS 0+ (S L+ 20 ) 7,0, (329
JO@) = 1O@)+ 55,
1
= (m+3s2,0) +m < J;% aio + Za> 75 (r) (3.29)
and )
— T
KO@r) = ( — - Za) Se1(r) = (= ) T4 (). (3.30)
Exploiting Eqgs. (2.5), (2.6) and (2.31)—(2.35), we find that
872
oM,-1 = — 9 (1 + 12y + 12y —1)
n —1 + 1 |TL| + 1
X
HZ_ZQ Np—1 (2= [nDT(In| + 271 + D(In] + Np,—1 = 1)
(n0)
_ 2Za? 2y, +1 _ 2Za% 2y +1  2Za?2y +1 (3.31)
9 Y1 9 2’}/1 -1 9 71 ’ '

terms on the right-hand side being ordered in correspondence with Eq. (3.27). The first of them
is readily found to be 8Za?/[971(2y1 — 1)], so that oy 1 is

2Z0% 293 + v — 4
9 mE@n-1)

oM,—-1 = — (332)

To calculate op 2 from Eq. (3.26), we use Céo) (r,7') in the form (2.30). Applying Eqs. (2.5),
(2.6), (2.31)—(2.35) and (2.39), we arrive at

220>  T(p+m -2 +mn +2)

9 Tr-—m-Dl(e2-—m+2)I'2n+1)

y Z L(ln|+v2 —v —2)T(In] +92 — 71 +2) Npa — 2
= [n|!T(|n| + 2v2 + 1) Npo
3|”| + 372+ 71+ 143N,

n|+v2 =71 —14+Npo

0M,2

(3.33)

10
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The simplification is achieved after one collects terms with the same absolute value of n. This
gives

oo

27Za? Tlya+7— DI (y2+71 +2) Z Fn+vw—-—m—-—1DI'n+v2—71+2)
9 Ile—mn-Dlle—m+2)l'2n+1) nIl'(n+ 2y + 1)(n + 72 — 1)
(3.34)
which is the final expression for om 2 provided in Ref. [5]. We shall show that, similarly to the
series in Eq. (2.41), the one in Eq. (3.34) may be also summed to a closed elementary form. To
this end, we rewrite the latter equation as

2Z0? L(y2+7 — Dy +7 +2)
9 I'(2—m—-Dl(v2—m+2)L'2n +1)

o0

3 Fn+ye—m—-DI(n+7—mn)
nIl(n + 2y + 1)

oM,2 =

n=0

0M,2

X

n=0

+i Fn+v—-—m—-—1DI'n+v—71+1)
nIl(n + 2y + 1)

(3.35)

n=0
and further, after use is made of Eq. (2.42), as

2702 Iy +m— DIy +71 +2)
9 (ve—7)02—n+DI2y+ 12y +1)

X {2F1 ( Mm =Ly em ;1)+(’72—71)2F1< oLy el ;1)]-

OM,2

279 +1 2v9 +1
(3.36)
According to Eq. (2.44), the first of the two oF; functions appearing above is
— o — — I'(2 2)I'(2 1
272 + 1 F(z+m+ D2+ +2)

while the second one has been already encountered in the course of evaluation of o, _» and is given
by Eq. (2.45). Hence, once Egs. (2.45) and (3.37) are inserted into Eq. (3.36), we eventually arrive
at the following simple representation of oy o:

2702 v +2

oM2 = .

M2 o 1

From the expressions for the components oy —1 and oy 2 of oy, displayed in Egs. (3.32) and

(3.38), we deduce that the total magnetic shielding constant for the hydrogen-like atom in its
ground state is

(3.38)

270 4y} 4+ 693 — Typ — 12
27 mn+1)@2n-1)"
in agreement with the findings of Moore [9], Pyper and Zhang [10] and also of Ivanov et al. [11]
(after one takes into account that the latter authors define oy with the opposite sign). The
expression for oy given by Zapryagaev et al. in Refs. [6-8] becomes equivalent to the one in Eq.
(3.39) after in the denominator of the former one replaces Ao by A1, the latter quantity being
identical with our ~;.
In the nonrelativistic limit one has

oM =

(3.39)

27 a2

OM,—1 = [1+4(Za)?] (3.40)
and 22 .
OM2 ¥~ {1 + E(Zaf] , (3.41)
and also Ze2 o7
oM X~ [1 + %(Za)z] . (3.42)
11


http://mostwiedzy.pl

A\ MOST

4 Conclusions

In this paper, we have proved that the analytical technique based on the Sturmian expansion of the
generalized Dirac—Coulomb Green function enables one to arrive at the same simple closed-form
representations of the electric (og) and magnetic (ou) dipole shielding constants for the Dirac
one-electron atom in its ground state as have been given previously by several other authors. We
find this encouraging in the perspective of our planned, mathematically much more challenging,
application of the same calculational technique to the evaluation of oy for an arbitrary state of
that atom. Accomplishment of this task would be undoubtly worthy of effort since although results
for some particular excited states are known (cf., e.g., Ref. [9-11]), in the most general case, to the
best of our knowledge, calculations of o)y have never been carried out.
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