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We study subadditivity of the minimum output entropy (Hmin) of quantum multiple access channels (MACs).
We provide an example of violation of the additivity theorem for Hmin known in classical information theory.
Our result is based on a fundamental property of MACs, i.e., independence of each sender. The channels used in
the example can be constructed explicitly. On the basis of subadditivity of Hmin we also provide an example of
extremal superadditivity (superactivation) of the classical capacity region of MACs.
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Using quantum resources such as quantum entanglement
[1] in quantum information theory [2] leads to a new class of
effects, known as quantum activation, which are impossible in
classical information theory [3]. Some examples of quantum
activation are (i) superadditivity of the classical capacity C
in the fundamental case of one-to-one quantum channels
[4] where the transmission of entangled states leads to
capacities larger than using product states; (ii) nonlocality
effect for classical capacity region R of quantum multiple
access channels [5,6] where entanglement used by first sender
increases the maximal rate of another (R2) without increasing
the maximal total rate R1 + R2 (the effect can be quite strong
as shown in [7]); and (iii) superactivation, i.e., extremal
superadditivity, of the quantum capacity Q for one-to-one
channels where two quantum channels with zero quantum
capacities working together allow for transmission of qubits
[8]. Quantum activation can also be observed for other types of
resources. An important example was demonstrated in Ref. [9]
for Gaussian channels [10] where the crucial resource is power
available for senders. The effect was shown by squeezed states
transmission.

This paper addresses the subadditivity of the minimum
output entropy Hmin and quantum activation of the classical
capacity region R of the entanglement breaking [11] multiple
access channels (MACs) and it continues the research started
in Ref. [5]. The effect of the subadditivity of Hmin is manifested
when the transmission of entangled states produces lower
entropy than the transmission of any product states. The
question of subadditivity of Hmin of quantum one-to-one
channels appears to have been first considered in print in
Ref. [12]. In Ref. [13] the equivalence between the additivity
of Hmin and classical capacity χ was stated. For certain
classes of Gaussian channels, the additivity of Hmin is related
to the question of whether the transmission of Gaussian
states introduces minimum entropy to the output state [14].
Finally, an example of subadditivity of Hmin for quantum
one-to-one channels was first provided in Ref. [4] and explored
further in [15]. Hastings’ channels seem to be very hard to
explicitly construct since this task requires a search through
the set of unitary matrices. Here we study the subadditivity
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of Hmin in the realm of MACs. The setup we present is
intrinsically MAC and cannot be reduced to the setup of
one-to-one channels, i.e., to the case studied by Hastings.
The advantage of our approach is the existence of effective
algorithms allowing the explicit construction of the channels
we present. It should allow a better understanding of the
mechanism behind the subadditivity effect. The subadditivity
of Hmin leads us to the quantum activation of R. The example
provided here exhibits superadditivity of the total rate RT . We
construct two sequences of channels {�̃(δ)

A },{�̃(δ)
B } and study

its parallel setup {�̃(δ)
A } ⊗ {�̃(δ)

B }. Without using entanglement
in communication, RT → 0 as δ → 0. On the other hand,
using entangled states allows one to achieve RT = 1 for
each δ. This can be viewe as a superactivation effect, since
entanglement strongly activates channels with almost zero
capacities.

The superadditivity of C in entanglement breaking MACs
suggests qualitative differences between bipartite and multi-
partite communication since it cannot occur for entanglement
breaking one-to-one channels. It was first pointed out in
Ref. [7]. Superadditivity was shown for the entanglement
breaking MACs cooperating with an identity channel (which
is not entanglement breaking). Here we move one step further
and show that very strong superadditivity also takes place if
we use only entanglement breaking MACs.

The paper is organized as follows: First we provide
definitions and theorems used in the main part of the paper.
We stress the explanation of the idea of a randomness extractor
which is of paramount importance to further considerations.
Then we present the main results, i.e., the subadditivity of Hmin

and the superactivation of the classical capacity of the MACs.

I. BACKGROUND

A quantum channel � is a linear, completely positive and
trace preserving map from density matrices to density matrices
ρ �→ �(ρ) [2] and it models the transmission of quantum states
in the presence of noise. An entanglement breaking channel is a
quantum channel which cannot be used to create entanglement
between parts participating in communication [11]. It can be
presented in the form of a measurement followed by a state
preparation. In quantum multiple access channels there are
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at least two senders transmitting to one receiver. Each sender
sends his state independently of the other, i.e., their inputs are
uncorrelated. For the case of two senders, a MAC acts as a
map:

ρ1 ⊗ ρ2 �→ �(ρ1 ⊗ ρ2), (1)

where state ρ1 (ρ2) is sent by the sender S1 (S2).
We will denote as �A ⊗ �B a parallel setup of channels

�A,�B . It means that each sender has access to one input of
the channel �A and one input of the channel �B . They can
transmit any states through their inputs where the first part of
the transmitted states goes through �A and the second through
�B . Channels are used synchronously and the receiver has
access to the outputs of both channels.

A quantum channel can be used for the transmission of
either classical [16] or quantum information [17]. In the
transmission of classical information, senders encode classical
messages {i},{j} into code states transmitted through the
channels i �→ ρ

(i)
1 ,j �→ ρ

(j )
2 . Senders and receivers know the

ensemble of code states (i.e., the set of code states and
the probabilities the states are transmitted with) {p(i)

1 ,ρ
(i)
1 },

{p(j )
2 ,ρ

(j )
2 } but one sender does not know which state is

transmitted by the other sender at a given time. The receiver
performs a measurement on the output state and based on its
result tries to infer which message (i,j ) was transmitted.

For a given protocol, the amount of classical information
which can be transmitted through the MAC with arbitrary
small error probabilities in the limit of long code words is the
pair of rates (R1,R2). R1 and R2 denote the rates for senders S1

and S2, respectively. The rates are achievable simultaneously.
The set of all achievable pairs of rates form the Holevo-like
classical capacity region R(�). For a given ensemble of code
states one can define the state ρ = ∑

i,j p
(i)
1 p

(j )
2 e

(i)
1 ⊗ e

(j )
2 ⊗

�(ρ(i)
1 ⊗ ρ

(j )
2 ), where {e(i)

1 } {e(j )
2 } are projectors on the standard

basis of the Hilbert space of the input controlled by S1 (S2).
The capacity region R(�) is obtained as a convex closure of
all rates (R1,R2) such that there exists ρ for which the set of
inequalities is fulfilled:

R1 � I (S1 : R|S2), (2)

R2 � I (S2 : R|S1), (3)

RT = R1 + R2 � I (S1,S2 : R), (4)

where I (S1,S2 : R) = H (ρS1,S2 ) + H (ρR) − H (ρS1,S2,R) and
I (S1 : R|S1) = ∑

j pj I (S1 : R|S2 = j ). H (ρ) = −tr[ρ log
ρ] is the von Neuman entropy. RT denotes the total rate and
is defined as RT = ∑

i Ri . The shape of the capacity region
R(�) and its achievability by code words that are not entangled
over multiple channel uses was first shown in [18,19]. We
shall denote “single shot” formula R(1)(�) = R(�) and
R(n)(�) = 1

n
R(�⊗n) for the situation where code states can be

n-particle entangled states. The interesting case is that of the
regularized capacity region R(∞)(�) = limn→∞ 1

n
R(�⊗n),

which expresses the upper bound for the capacity region
which can be achieved due to quantum entanglement.

For a MAC � with n senders we define the minimum output
entropy Hmin(�) as

Hmin(�) = min
ρ1,...,ρn

H [�(ρ1 ⊗ · · · ⊗ ρn)], (5)

where ρi belongs to the input space of the sender Si .
Minimization runs over all states from the input space of
each sender. Due to the concavity of H (ρ), it is sufficient
to minimize only over pure states.

In the classical setup senders transmit only product states
from orthogonal bases of the input spaces of �A and �B . By
the properties of the von Neuman entropy, we can state for
MACs the additivity theorem

Hmin(�A) + Hmin(�B) = Hmin(�A ⊗ �B). (6)

The existence of entangled states in the input space of
the �A ⊗ �B extends the set we minimize Hmin over and
makes the additivity theorem invalid in the quantum setup.
The subadditivity of Hmin occurs if transmission of the
entanglement state through �A ⊗ �B produces lower entropy
than the sum of Hmin of each channel working separately.

The additivity theorem for MACs can be stated analogi-
cally:

R(�A) + R(�B) = R(�A ⊗ �B). (7)

Here we use the geometrical sum of the sets in Euklides
space. In the parallel setup of quantum MACs we can use
entangled states as code words. Superadditivity of the classical
capacity regions R takes place if there exists a protocol
using entangled code states with classical capacity region
Rent(�A ⊗ �B) such that for each protocol using only product
code states with Rprod(�A ⊗ �B) = R(�A) + R(�B) occurs
Rprod ⊂ Rent. Superactivation describes the situation when
Rent is huge in comparison with Rprod.

In what follows, we shall use generalized Bell states [20]
in the form

|ψα,β〉 = 1√
D

D−1∑
l=0

exp

(
2πi

D
αl

)
|l〉|l + β〉, (8)

where α,β ∈ {0,D − 1} are indices. The states belong to the
space CD ⊗ CD . For the state |µ〉 = ∑

i µi |i〉, where {|i〉} is
the standard basis, we will write |µ∗〉 = ∑

i µ
∗
i |i〉 and D = 2d .

For two random variables X,Y with equal support the
statistical distance is defined as

dist(X,Y ) = 1

2

∑
e∈sup(X)

|px(e) − py(e)|. (9)

We denote by Fm an m-bit random variable with a flat
distribution over its support.

Proposition 1. For a binary random variable X if
dist(X,F2) = ε then 1 − H (X) = (2/ ln 2)ε2 + O(ε4) and for
ε ∈ (0,0.5) we have 1 − H (X) � 4ε2.

Proof: This follows directly from a Taylor series expansion.
A classical multiple source randomness extractor is a func-

tion which distills entropy from independent “weak random
sources” into random variables with almost flat distribution.
We use the word “classical” to distinguish from situations
where randomness is obtained on the base of quantum effects.
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Usability of a random source in a randomness extraction
process is characterized by the min-entropy: H∞ [21,22]
defined as

H∞(X) = min
x∈sup X

− log p(x). (10)

Definition 1. Multiple source randomness extractor [23]: A
function fext : {0,1}n×l �→ {0,1}m which satisfies

dist(fext (X1, . . . ,Xl) ,Fm) � ε (11)

for every independent n-bit source X1, . . . ,Xl with H∞(Xi) �
k is called an l-source extractor with k min-entropy require-
ment, n-bit input, m-bit output, and ε-statistical distance.

Theorem 1. Extractor existence [23]: Let m < k < n be
integers and let ε > 0. If k > log n + 2m + 2 log(1/ε) +
1 holds, then there exists a two-source extractor fopt :
{0,1}n×2 → {0,1}m with k-entropy requirement and distance ε.
The extractor can be computed in time proportional to 25n222k

.

II. SUBADDITIVITY OF Hmin

Here we provide two families of MACs, {�(δ)
A } and {�(δ)

B },
indexed by δ, which exhibit the subadditivity of Hmin for
δ < 1/2.

The channels �
(δ)
A ,�

(δ)
B consist of four independent d-qubit

inputs XA
1 , . . . ,XA

4 (XB
1 , . . . ,XB

4 ) and one-qubit output YA

(YB). The inputs XA
i and XB

i are controlled by the sender
Si . The size of the inputs depends on δ as follows: d =

2 log(1/δ) + 12�. Both channels are based on the same
scheme (see Fig. 1) so we will describe the channel �A and
point out where the channels differ. In the first step,the channel
performs measurements MI and MII. MI is a joint measurement
on inputs X1,X2 and MII is a joint measurement on inputs
X3,X4. In the channel �A, measurements MI and MII are
performed in the basis {|
α,β〉} while in the channel �B in
the basis {|
∗

α,β〉}. The result of the measurement MI (MII)
is denoted by mI (mII). mI and mII provide the 2d-bit inputs
to the randomness extractor fopt, which produces a one-bit
output. Existence of the extractor fopt with proper features

M
I

M
II

f o
pt

X1

X4

X3

X2

Y=|fopt(mI,mII)〉m
II

m
I

FIG. 1. The general schema of the channels �A and �B . Xi are
d-qubit input lines. MI and MII are measurements. Its result is denoted
by mI and mII, respectively. fopt is a classical randomness extractor
with properties described by Theorem 1.

will be proven later. Depending on the value of fopt(mI,mII),
the channel produces the output state |0〉 or |1〉.

We will show that for any δ > 0, Hmin(�(δ)
A ) and Hmin(�(δ)

B )
cannot be lower than 1 − δ. On the other hand, we will show
that if each sender transmits |
0,0〉, the output entropy of the
�

(δ)
A ⊗ �

(δ)
B is equal to 1. Since this is the upper bound for

Hmin(�(δ)
A ⊗ �

(δ)
B ) we will prove that for δ < 1/2, Hmin(�(δ)

A ) +
Hmin(�(δ)

B ) > Hmin(�(δ)
A ⊗ �

(δ)
B ).

We start by proving that Hmin(�(δ)
A ) = Hmin(�(δ)

B ) � 1 − δ,
but first we give a proposition which will be useful in what
follows.

Proposition 2. For the random variables associated with
the outputs of the measurements performed by the channels
�

(δ)
A and �

(δ)
B , the following holds: H∞(MA

I ) = H∞(MA
II ) =

H∞(MB
I ) = H∞(MB

II ) = d. Here d denotes the input size of
the channels.

Proof: We will only prove that H∞(MA
I ) = d since the

other cases can be proved analogously. Let the projector
measurement MA

I be performed on the product state |µ〉 ⊗
|ν〉, where |µ〉 = ∑D−1

j=0 µj |j 〉, |ν〉 = ∑D−1
k=0 νk|k〉 are d-qubit

states pertaining to senders S1 and S2, respectively. We will
show that the probability p(α,β) = |〈ψα,β |µ〉|ν〉|2 of getting
the pair (α,β) as the result of the measurement MA

I satisfies
p(α,β) � 1

D
. H∞(MA

I ) � d is a simple consequence of this
fact.

Observe that

p(α,β) = |〈ψα,β |µ〉|ν〉∣∣2
(12)

= 1

D

∣∣∣∣∣
D−1∑
l=0

exp

(
2πi

D
αl

)
〈l|〈l + β|

×
D−1∑
j=0

µj |j 〉
D−1∑
k=0

νk|k〉
∣∣∣∣∣∣
2

(13)

= 1

D

∣∣∣∣∣∣
D−1∑

j=0,k=0,l=0

exp

(
2πi

D
αl

)
(14)

×µjνk〈l|j 〉〈l + β|k〉|2 (15)

= 1

D

∣∣∣∣∣
D−1∑
l=0

exp

(
2πi

D
αl

)
µlνl+β

∣∣∣∣∣
2

(16)

= 1

D

∣∣〈µ∗|Uα
β |ν〉∣∣2

, (17)

where Uα
β = ∑D−1

l=0 |l + β〉〈l| exp( 2πi
D

αl) is a unitary. Finally,
by the property of the scalar product we have p(α,β) =
1
D

|〈µ∗|Uα
β |ν〉|2 � 1. �

Taking into account Proposition 2, and noting that d/2 >

log d is true for d > 4, we find that d = 
2 log 1/δ + 12�
fulfills the requirements of Theorem 1 with ε = √

δ/2. Since
fopt exists and has statistical distance ε, by Proposition 1 for
each channel we have Hmin � 1 − ε.

Now consider the output entropy of �
(δ)
A ⊗ �

(δ)
B if all senders

transmit |ψ0,0〉. The first part of the 2d-qubit state is transmitted
through channel �

(δ)
A and the second through �

(δ)
B (see Fig. 2).

We will show that in this case the output entropy of �
(δ)
A ⊗ �

(δ)
B

cannot exceed 1.
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B

ΓA

ΓB

X1

X4

X3

X2

X1

X4

X3

X2

B

B

B

A

A

A

A

FIG. 2. The parallel setup of the channels �A and �B . Dashed
lines depict entanglement of the inputs in the case of |
0,0〉
transmission through �A ⊗ �B .

The randomness extractor fopt is a deterministic function of
the outcome of the measurements MI,MII. Its output controls
which of the pure states |0〉,|1〉 will be the output of the
channel. If the results of measurements MA

I and MB
I (MA

I
and MB

I ) are identical, then the outputs of the channels will be
too. Let us focus on the measurements MA

I and MB
I . We will

show that p(mA
I ,mB

I ) = p(αA,βA,αB,βB) ∝ δαA,αB
δβA,βB

.

p(αA,βA,αB,βB) (18)

= 1

D2

∣∣〈ψ∗
0,0|UαA

βA
⊗ U

αB†
βB

|ψ0,0〉
∣∣2

(19)

= 1

D2

∣∣∣∣ 1

D

D−1∑
k,l=0

〈k|〈k| exp

[
i
2π

D
(αA − αB)l

]
(20)

× |l + βA〉|l + βB〉|2 (21)

= 1

D4

∣∣∣∣
D−1∑

l

exp

[
i
2π

D
(αA − αB)l

]
δβA,βB

∣∣∣∣
2

(22)

= 1

D2
δαA,αB

δβA,βB
, (23)

where Eq. (19) is obtained in the same way as Eq. (17). This
result can be viewed as generalized entanglement swapping
[20,24,25]. Entanglement between uses of channels �A and
�B is swapped by the measurement MA

I into entanglement
between the inputs of channel �B belonging to senders S1 and
S2. The argument presented is also valid for measurements
MA

II and MB
II .

As we have shown, in the case of entangled state transmis-
sion, the outputs of fext for channels �A and �B are equal.

The output of channel �A ⊗ �B can be written in the form
p|00〉〈00| + (1 − p)|11〉〈11| for which the entropy is upper
bounded by 1.

We finish this part with some comments on the complexity
of channels �A and �B in a scenario where entanglement
swapping is used to break additivity of Hmin. Let us recall
how the type of input states influence the characteristics of
random variables associated with the outcomes of the joint
measurements in entanglement swapping schema. We will
denote these variables by MA,MB . Bell states transmission
makes perfect correlations of MA and MB . H∞ in this case
reaches the highest value possible for the variables with a
given size. On the other hand, in the case of product states
transmission, random variables are independent and H∞ is
lower. Now all we want to do to get the subadditivity of Hmin is
to transform MA and MB into variables MA

T ,MB
T with smaller

sizes. The transformation should preserve as much randomness
as possible and it should not destroy the correlations between
MA and MB , hence it should be deterministic. This is the
place where randomness extractors come in. However, there is
no possibility to extract randomness from the single random
source deterministically [23]. This is the main reason for four
senders participating in the communication process.

III. SUPERACTIVATION OF R

We now turn to the superactivation of the classical capacity
regions of the channels �̃A,�̃B . Namely, we will show that if
the senders can transmit only product states, classical capacity
region Rprod = R(1)(�̃(δ)

A ) + R(1)(�̃(δ)
B ) is bounded by the in-

equalities RS = ∑
i∈S Ri � 2δ for any subset of senders S. We

compare this with a protocol using entangled states. In this case
achievable classical capacity region Rent = R(1)(�̃(δ)

A ⊗ �̃
(δ)
B )

consists of all rate vectors (R1,R2,R3,R4) whose ingredients
satisfy R1 + R2 + R3 + R4 � 1 and Ri � 0.

Let us present the channel �̃A (see Fig. 3). It is a 4-to-1
channel. The input of each sender consists of a d-qubits line
and a one-bit line. The channel acts as

�̃
(δ)
A (ρ1 ⊗ e

(i)
1 ⊗ · · · ⊗ ρ4 ⊗ e

(l)
4 ) (24)

= CNOTi ◦ · · · ◦ CNOTl

[
�

(δ)
A (ρ1 ⊗ · · · ⊗ ρ4)

]
,

where ρ is transmitted through qubit inputs and e(.) through bit
inputs. CNOT0(ρ) = ρ and CNOT1(ρ) = XρX†. CNOT denotes
the controlled-NOT gote. In the same way, we construct �̃

(δ)
B .

Note that RS � I (XS : Y |XSC ) � Hmax − Hmin, where
Hmax is the maximal entropy of an output of a channel. By the

ΓA

X1

X4

X3

X2

A

A

A

A

FIG. 3. Construction of the channel �̃. The solid lines represent
the qubit lines and the dashed lines represent the bit lines. The bit
lines control CNOTs performed on the output of the channel.

042304-4

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


SUBADDITIVITY OF THE MINIMUM OUTPUT ENTROPY . . . PHYSICAL REVIEW A 83, 042304 (2011)

dimensionality of the output of the channels �̃
(δ)
A and �̃

(δ)
B , we

have in both cases Hmax � 1. Taking into account results from
the previous section, we have that Hmin � 1 − δ, which leads
to RS(�̃(δ)

A ) � δ, RS(�̃(δ)
B ) � δ, and RS(�̃(δ)

A ) + RS(�̃(δ)
B ) � 2δ.

Now consider the use of entangled states for communi-
cation. In this protocol each sender transmits the state 
0,0

through the quantum lines, the label 0 through the classical
lines of the channel �̃A, and with equal probability labels 0 or
1 through the classical lines of the channel �̃B . As noted above,
the outputs of the channels �

(δ)
A and �

(δ)
A are identical. We Pper-

form the CNOT operation controlled by the output of �̃A on the
output of �̃B . The result of CNOT pertaining to the channel �̃B

and the classical input lines of this channel can be viewed as the
output and input of the well known in the classical information
theory binary XOR channel. Its achievable classical capacity
region has a form as described above (Rent) [26].

IV. CONCLUSIONS

We have shown that very strong subadditivity of the
minimum output entropy Hmin and superadditivity of the

capacity region R(1) occurs in the domain of entanglement
breaking quantum multiple access channels. The effect is based
on the fundamental properties of MAC, i.e., independence of
the senders. It is interesting if the subadditivity of Hmin due to
the senders independency occurs also in more basic schema
with two senders.

We have shown that the superadditivity effect for RT

occurs for single shot capacity regions R(1) of two different
channels. As it was shown in [5], the superadditivity of the
regularized classical capacity regions R(∞) of two different
MACs occurs in the realm of single user rates Ri , however,
the superadditivity of the regularized classical capacity C(∞)

of one-to-one channels and the superadditivity of RT of R(∞)

of MACs still remain open questions.
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