Theoretical Computer Science 450 (2012) 10-21

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Smaller representation of finite state automata

Jan Daciuk**, Dawid WeissP

2 Department of Intelligent Interactive Systems, Gdarisk University of Technology, Poland
b Institute of Computing Science, Poznan University of Technology, Poland

ABSTRACT

This paper is a follow-up to Jan Daciuk’s experiments on space-efficient finite state
automata representation that can be used directly for traversals in main memory
(Daciuk, 2000) [4]. We investigate several techniques for reducing the memory footprint of
minimal automata, mainly exploiting the fact that transition labels and transition pointer
offset values are not evenly distributed and so are suitable for compression. We achieve
a size gain of around 20%-30% compared to the original representation given in [4]. This
result is comparable to the state-of-the-art dictionary compression techniques like the
LZ-trie (Ristov and Laporte, 1999) [15] method, but remains memory and CPU efficient
during construction.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Minimal, deterministic, finite-state automata are a good data structure for representing natural language dictionaries [7].
They are fast while maintaining a small memory footprint. Small memory requirements are achieved through careful design
of the contents of dictionaries, through minimization of automata, and through their compression.

Wirth’s law states that software gets slower faster than hardware gets faster. A similar law should hold for memory
capacity. Memory for computers becomes exponentially bigger and cheaper with time. However, data stored in dictionaries
grows even faster. This creates a need for more effective storage structures for dictionaries.

The remaining part of the paper is organized as follows. Section 2 describes natural language dictionaries. Section 3
introduces formal definitions. Section 4 serves as a survey of compression techniques that are used for finite automata.
Our motivation and goals are given in Section 5. Section 6 introduces the data sets used in evaluating various methods
described later in the paper. Section 7 describes our attempts to reduce the size of automata representation in memory.
Section 8 provides an overview of computational experiments and their results, comparing them to the known state of the
art. Section 9 concludes the paper.

2. Natural language dictionaries

Natural language dictionaries fall into three categories:

1. word lists,
2. dictionaries where words are associated with information that depends on suffixes or prefixes of words,
3. dictionaries where words are associated with information that does not depend on suffixes or prefixes of words.

* Corresponding author. Tel.: +48 58 347 26 89; fax: +48 58 347 22 22.
E-mail address: jandac@eti.pg.gda.pl (J. Daciuk).

0304-3975/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2012.04.023

http://dx.doi.org/10.1016/j.tcs.2012.04.023
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:jandac@eti.pg.gda.pl
http://dx.doi.org/10.1016/j.tcs.2012.04.023

A\ MOST

J. Daciuk, D. Weiss / Theoretical Computer Science 450 (2012) 10-21 11

. main storage
pointers

index

H
/

7

Fig. 1. Minimal perfect hashing used for indexing additional information associated with words. The dictionary contains words cat, chat, fat, feat, sea, seat,
swat, and sweat.

Simple words lists are useful in, for example, spelling correction. They require no additional coding of information.
Morphological dictionaries of inflectional languages represent the second category. Inflected forms of words can be
associated with information such as their syntactic categories and their canonical forms (lemmas). That information can
be appended to inflected forms separated with an out-of-language separator symbol. A fragment of such a layout is shown
below (Polish morphological dictionary, the first entry is the inflected form, the second contains the lemma, the third carries
grammatical annotations; separator character is set to tabulation):

jajka jajko subst:pl:acc.nom.voc:n+subst:sg:gen:n
jajkach jajko subst:pl:loc:n
jajkami jajko subst:pl:inst:n

Since syntactic categories imply a set of possible suffixes and that set is usually limited for a given language, suffixes form
just afew different strings, so the dictionary automaton after minimization has a small number of states. The canonical forms
depend also on the stem of inflected words. However, as the stems of the inflected form and the canonical form are usually
identical, or they differ slightly, it is possible to code how many characters to delete from the end of the inflected form to
get the common part (or entire) stem, and then add the suffix of the canonical form. Both the code and the suffix of the
canonical form do not depend on the stem, so minimization brings an even smaller automaton.! The above example in such
coding could look as shown below (encoding after [3]):

jajkatBo+subst:pl:acc.nom.voc:n+subst:sg:gen:n
jajkach+Do+subst:pl:loc:n
jajkami+Do+subst:pl:inst:n

The third category contains semantic dictionaries, translation dictionaries, frequency lists, etc. The information they
associate with words is arbitrary — it does not depend on morphology of those words. Therefore, appending it to words
would create unique suffixes. Minimization of an automaton that contains strings with mostly unique suffixes would not
reduce its size significantly. A solution can be achieved by placing that additional information outside the automaton. The
role of the automaton is then limited to providing a function that maps all words recognized by the automaton to that
additional information and this mapping can be done by uniquely numbering all words in the automaton — a technique
called minimal perfect hashing.

When the number of pieces of additional information we want to associate with the words is relatively small, i.e. if
the number of possible indexes is relatively small, a pseudo-minimal automaton may be the best solution, as each word
recognized by it has at least one unique transition that is not shared with any other word, provided that words ends with
a special end-of-word symbol. That proper transition can be used to hold arbitrary information. There may be more than
one transition for a word. In such cases, additional information is stored on the first one, as later transitions may then share
space with other transitions. Pseudo-minimal automata may also be good devices for indexing information of variable size,
as there is no need to maintain a vector of pointers. Construction of pseudo-minimal automata can be done using only
slightly modified incremental construction algorithm for sorted data—with the equivalence relation replaced by pseudo-
equivalence (details in [5]).

3. Formal definitions

A deterministic finite-state automaton (a DFA) is a tuple A = (Q, X, 6, qo, F), where Q is a finite set of states, X is a finite
set of symbols called the alphabet, § : Q x X — Q is a transition function, go € Q is the initial state (also called the start

1 Alternative implementations use transducers.

http://mostwiedzy.pl

A\ MOST

12 J. Daciuk, D. Weiss / Theoretical Computer Science 450 (2012) 10-21

state), and F C Q is the set of final (accepting) states. The transition function § can be extended so that its second argument
is a string of symbols (a word),i.e.§ : Q x ¥* — Q andforg € Q,a € X, w € X*:

8(q.¢) = q (1)
8(q, aw) = 8(8(q, @), w).

The language recognized by a DFA is the set of all words that lead from the initial state to any of the final states:
LA) ={w e X*:8(qp, w) € F}. (2)

Among all automata that recognize the same language there is one (up to isomorphism) that has the minimal number of
states. It is called the minimal automaton:

VA : £(A) = °C(Amin)|A| = |Amin|- (3)
A right language of a state q is the set of words that lead from the state to any of the final states:

L@ ={we X" :8(q,w)eF}. (4)
It is easy to note that the language of an automaton is the right language of its initial state:

L(A) =L (qo)- (5)
Two states p and q are equivalent if and only if they have the same right language:

Pr=a < £L£p=L(©Q. (6)
A minimal automaton has no pair of states that are equivalent. The right language can be defined recursively:

—

{e} ifqeF

L@ = U o L@ o)V {QJ otherwise)
cex:8(q,0)€Q ’
Therefore, cardinality of the right language of a state can be computed as:
- - 1 ifgeF
| £ (@ = Z | £ (8(q. o)l + {0 ot(lJlerwise (®)
0eX:8(q.0)€Q ’
Let us define a function fin as:
_J1 ifqeF
fin(q) = {O otherwise. 9)

Ifw = w;...wpy € L(A), then we can compute the ordinal number of w among words recognized by the automaton
as:

lw]—1

Jw N
h(w) =Y (> | £ (8(qo, w1...,-1o>>|) +) fin(3(qo. wr._i). (10)

i=1 \o:8(qo,w1. j—10)EQAC <wj i=0

Two states p and q are pseudo-equivalent if they are equivalent and the cardinality of their right languages is 1:

p=q e (Lm=L@AILEI=1), (1)

In a pseudo-minimal automaton, p = g means p = q.

4. Compression of automata

Automata are not only fast in construction and traversals, but also take little space. Small memory footprint stems from
minimality, but it is possible to reduce it even further using various compression and bit-packing schemes. It is also possible
to change the definition of an automaton so that transitions, and not the states, can become final [3]. Ciura and Deorowicz [2]
call such an automaton a Mealy’s acceptor to underline the parallel with Moore’s transducers and Mealy’s transducers.
Moore’s transducers store their output in their states, Mealy’s transducers—in their transitions. (See Fig. 2.)

One compression technique is universal in all implementations. Fields like a transition’s label, target state’s address
(a pointer), or various flags can be packed into a minimal bit field required for their representation. Packing the fields so that
they occupy as few bytes or bits as possible greatly reduces memory requirements. Decoding bit-aligned representation on
modern hardware does not impose a large overhead on processing time and compact memory representation contributes
nicely to reuse of CPU cache lines.

http://mostwiedzy.pl

A\ MOST

J. Daciuk, D. Weiss / Theoretical Computer Science 450 (2012) 10-21 13

main storage

index

Fig. 2. A pseudo-minimal automaton implementing the same mapping as the automaton and a vector of pointers in Fig. 1.

Packing fields bit- and byte-wise may be done in two ways: the fields can maintain fixed length, or their length may
become variable, that is different instances of the field may have different lengths. The latter can be implemented using
Huffman coding or other variable-bit representation schemes. While it can lead to greater savings, such compression
requires additional memory lookups for decoding and can even lead to increased overall size if addresses need to be bit- or
byte-aligned instead of being multiplications of a node’s fixed size.

In most efficient implementations, an automaton is a vector of transitions and states are represented implicitly. There are
two major methods of representing states. In the first one, a state is a list of outgoing transitions. In the other one, a state is
a vector of possible outgoing transitions with an allocated place for a transition for every transition label from the alphabet.
The vector for each state is put into a larger vector of transitions so that states overlap whenever possible without conflicts
between transitions. The latter method is called superimposed coding [11], and it is based on a sparse matrix representation
technique[8,9,16]. It is faster for recognition, as each time we traverse a transition, we go to it directly without looking at any
other transition going out from the same state (a transition is indexed directly by its label), and it is slower for exploration,
as we need to check which transitions exist. That method allows for fewer compression techniques, so we will focus on the
state-as-a-list representation.

In the state-as-a-list representation, it is possible to link subsequent transitions with pointers, but using a vector is more
economical. The next transition in the vector is the next transition on the list. The problem of knowing what the last transition
is can be solved by either storing an outgoing transition counter in an incoming transition, or by using a flag [10] (we call it
L for LAST) to mark the last transition on the list. The latter approach saves more space.

A transition connects two states. Since we group transitions going out from a state, we need to specify the target of a
transition, that is the address of the target state, which in state-as-a-list representation is the address of its first outgoing
transition. There are several methods of reducing the size of that field. When the target state is placed directly after the
current transition, it is possible to omit the field altogether at the cost of adding a new flag that we call N for NEXT. When
this flag is set, the transition has no target address field, and the target state begins right after the current transition. It is
also possible to vary the size of the address field so that there are local (short) and global (long) pointers as in [12] at the
cost of an additional flag. In a US patent 5551027 granted on August 7th, 1996 to Xerox, frequently used addresses are put
into a vector of full length pointers, and the addresses are replaced with shorter indexes to the pointers in the vector.

Since a state is stored as a list of outgoing transitions, it is possible to share transitions between states. When all transitions
of one state are also present as transitions of another state (that has more transitions), then the “smaller” state can be stored
inside the “bigger” one. When we use the L flag, the transitions of the smaller state have to be the last transitions of the
bigger state. If it is not the case, the transitions need to be rearranged to conform to this condition. There may be many
combinations of smaller states fitting into some larger ones, so heuristics have to be used. Note that once a state is stored
inside another one, there is no speed or memory penalty for using this type of compression, it just reuses the same memory
regions.

Another technique of reusing states’ transitions is based on the fact that two states may share a subset of their transitions,
but are not subsets of each other (each of the states has transitions that the other one does not have). In such case, one state
is stored intact, the unique transitions of the second state are stored as usual, but the last transition has a flag we call T for
TAIL, followed by the address of the common set of transitions stored in the first state. Reordering of transitions inside
individual states may lead to greater savings.

A generalization of transition sharing is presented in the LZ-trie method by Ristov and Laporte [15]. The LZ-trie method
treats an automaton as a sequence of transitions and applies compression to this sequence. A suffix tree (or array) is used for
finding all subsequences of transitions, storing them once, and replacing redundant instances with pointers to their previous
occurrences. This gives state-of-the-art compression ratios [1]. Note that combining LZ-trie with other methods described
above gives much poorer results [6].

Some research has been devoted to finding substructures in an automaton - subautomata [18,17]. Although conceptually
different from the LZ-trie method, these methods can be seen as a variant of the LZ-trie method with some restrictions
that limit compression efficiency. On the other hand, subautomata can have applications other than mere reduction of
representation size.

http://mostwiedzy.pl

A\ MOST

14 J. Daciuk, D. Weiss / Theoretical Computer Science 450 (2012) 10-21

Table 1
File size (bytes), number of terms (lines) and an average
number of bits per term for all the files used in

experiments.
Name Size (bytes) Terms BPT
pl 165767 147 3672200 361
streets 706 187 59174 95
streets?2 203590 17 144 95

wikipedia 105316228 9803311 86
wikipedia2 504322111 38092045 106

deutsch 2945114 219862 107
dimacs 7303884 309360 189
enable 1749989 173528 81
english 778 340 74317 84
eo 12432197 957965 104
esp 8001052 642014 100
files 212761171 2744641 620
fr 2697825 221376 97
ifiles 212761171 2744641 620
polish 18412441 1365467 108
random 1151303 100000 92
russian 9933320 808310 98
scrable 1916 186 172823 89
unix 235236 25481 74
unix_m 191786 20497 75
webster 985786 92342 85

5. Motivation and goals

Many of the compression techniques described in the Introduction are implemented in Jan Daciuk’s fsa package [4]:
transition-based representation, accepting transitions (Mealy’s recognizers), optimizations of pointers in the form of the N
bit or bit-packing of the target address with the rest of the flags. These tricks allow for direct, incremental construction in
the compressed format, suitable for immediate serialization to disk or storage in memory, and implementation of traversals
over the packed format with very little overhead. The goals of this work were to investigate the following open problems:

1. Is it possible to construct a more space-efficient automaton representation that would retain the features present in the
fsa package?

2. There is a trade-off between compressing representation and traversal efficiency. Is there a representation that would
balance small size with an efficient (read: simple) automaton traversals?

6. Test data

The research presented in this paper was mostly trial-and-error driven, where the baseline was acquired by comparing
the output to the equivalent automata compiled using the fsa_build command from the fsa package. The choice of test data
was thus important. The test files, their size and number of terms, are given in Table 1. The first five files on that list were
collected by the authors of this work and the remaining files come from [2]. The p1 data set is a morphological dictionary
of inflected forms and their encoded lexemes and morphological annotations. It has highly repeatable suffixes (a limited set
of inflection frames and morphological tags). The two data sets named wikipedia and wikipedia2 contain terms from
an inverted index of English Wikipedia (wikipedia is a sample, wikipedia?2 is an index of full content). Data sets called
streets and streets2 carry street and city names covering Poland and have been acquired from a proprietary industrial
application. The first five files in Table 1 contained UTF-8 encoded text. We did not alter the original character encoding
used to represent the remaining data sets - they all used single-byte encodings of their respective languages (1S08859-2 for
Polish, for example). Our automata implementation was byte-based, so input character encoding was simply preserved in
the automaton structure.

7. Size reduction techniques

Fig. 3 shows a binary data layout of fields in a single transition in Jan Daciuk’s fsa package. Recall this was the baseline
representation we started from. A single transition is composed of the initial label, then a byte with three flags—(F for FINAL,
acceptor transition), N (no address, the target state follows this states last transition) and L (this is the last transition of the
current state). If the N bit is not set, the partial address is bit-packed into the remaining five bits of the flags byte and as
many bytes as are needed to encode the largest integer offset in this automaton.

http://mostwiedzy.pl

A\ MOST

J. Daciuk, D. Weiss / Theoretical Computer Science 450 (2012) 10-21 15

bit
[71elsl4f3]2]1]0]
-0 label
© ——
S 1 address [NJLTF
I 2 address (contd)

Fig. 3. Binary layout of data fields in a single transition. fsa package compiled with N and L options. N, F and L are bit flags, address field’s length is as large,
as the largest state offset in the automaton (but constant for every transition).

60000

50000

40000 .

30000

Occurrences

20000 .
".o..

10000

%,
e,
%000,

.
Cecenne

0
0 10 20 30 40 50 60 70 80

Rank

Fig. 4. Number of occurrences of 75 most frequent labels in the p1 data set.

Table 2

Integer ranges encoded in a given number of bytes in
v-coding. In general, the largest integer encoded in n
bytes is 27" — 1.

Value range Largest integer ~ Bytes
(Hexadecimal) (Decimal)

0 — 0x7f 127 1byte
0x80 — Ox3fff 16383 2 bytes
0x4000 — Ox 1fffff 2097 151 3 bytes

0x200000 — Oxfffffff 268435455 4 bytes

Starting with the baseline above, we tried numerous variations to decrease the representation size of each transition
(and the transition graph as a whole). We describe these that yielded maximum gains in the paragraphs below.

V-coding of target addresses and of numbers implementing hashing. The fsa package uses fixed-length address encoding
integrated with the flags byte. This has an effect of abrupt increases of automaton size once 1, 2, 3 or more bytes are needed
to encode the largest state’s offset. The same holds for numbers that are used in implementing hashing. In case of perfect
hashing, they represent the cardinality of the right language stored at the beginning of a state, in case of pseudo-minimal
automata - numbers stored in proper transitions. We used a simple form of variable length encoding for non-negative
integers (v-coding), where the most significant bit of each byte is an indicator whether this is the last byte of the encoded
integer and the remaining bits carry the integer’s data in 7-bit chunks, lowest bits first. For example, 0 is encoded as (binary
representation) 0000 0000, 127 as 0111 1111, 128 using two bytes: 1000 0000 and 0000 0001, and so on. Encoding
and decoding of v-coded integers can be implemented efficiently if we have them in consecutive bytes, so we moved the
transition’s target address to separate bytes, which left us with 5 unused bits in the flags byte. Table 2 shows the minimum
number of bytes required to encode a given integer.

Transitions with index-coded label. We assumed each transition’s label is a single byte. Each transition’s label can be
therefore an integer between 0 and 255 and this is a challenge for multi-byte or variable-byte character encoding schemes,
such as UTF-8. We opted for the automaton to store raw binary text representation in whatever input encoding is given
on input. When performing traversals or lookups, the automaton’s encoding must be respected—the input text must be
converted to the automaton’s code page, for example. A side effect of this is that certain transitions can lead to incomplete
character codes, but we never had a problem with this in real applications (even with multi-byte Unicode).

In reality, for automata created on non-degenerate input, and in particular on text, the distribution of label values is often
heavily skewed. Fig. 4 illustrates the distribution of labels in the p1 data set, for example—there are many transitions with
a small subset of the label range and a few transitions outside this range.

The observation that labels have uneven distribution leads to an optimization that has a profound effect on automaton
size: we can integrate the 31 most frequent labels (2°> — 1) into the flags byte as an index to a static lookup table. Zeros on
all these bits would indicate the label is not indexed and is stored separately. Note that we tried to avoid any complex form
of encoding (like Huffman trees); a fixed-length table with 31 most frequent labels is a balanced tradeoff between auxiliary
lookup structures and label decoding overhead at runtime.

http://mostwiedzy.pl

A\ MOST

16 J. Daciuk, D. Weiss / Theoretical Computer Science 450 (2012) 10-21

a

bit bit
[716fs]4]3]2]1]o] [71efs]4]s]2]1]o]

0 [NTLTF] rabelindex>0 "0 [NJLJF] Tabelindex =0
v-coded address label

v-coded address (contd) v-coded address

v-coded address (contd)

— byte
— byte

Fig. 5. Binary layout of data fields in a single transition with v-coding of target address and indexed labels. Two variants of each transition are possible:
(a) with the index to the label, (b) with the label directly embedded in the transition structure.

1980000 1920000 .
1960000 1915000 %
1940000 — 1910000 %
___=>| 1905000
1920000 1900000 s
7
2 1900000 - 1895000
3 \
= 1890000
3 1880000 \ 0 20 40 60 80 100
1860000

1840000

1820000

1800000

0 1000 2000 3000 4000 5000
Reordered states

Fig. 6. Automaton size in relation to the number of moved states, p1 data set (first 5000 state reorderings shown). The zoomed-in section of the chart
shows the relation is not monotonic, even at the very beginning.

Combining v-coding of the target address and table lookup for the most frequent labels yields two alternative transition
formats, as shown in Fig. 5. With such encoding most transitions take 1 + length(address) bytes. In an extreme case when
the N bit is also set (target follows the current state’s last transition), the entire transition is encoded in a single byte.

Rearranging states to minimize the total length of address fields. By default states (actually a list of transitions of each
state) in an automaton are serialized in a depth-first order to maximize the number of occurrences of the N flag and hence
the gain from not having to emit the target address for such transitions. For these transitions where N is not set, the target
address must be emitted and the amount of space taken by such an address depends on its absolute offset value (recall
Table 2 on page 15). If we move certain states (those to which there are a lot of incoming transitions) to the beginning of
the automaton, the global amount of space for address encoding should be smaller than if we leave these states somewhere
farther in the serialized automaton structure. The question is which states we should move and in what order they should
appear in the automaton structure.

The problem of rearranging states to minimize the global sum of bytes required for encoding target addresses is
complicated. There are several things to consider:

e States located at offsets 0-127 require only one byte for target address code, states located at offsets 128-16 383 two
bytes, and so on. But then, a single state may have many transitions, so it occupies a variable number of bytes. We can
move to the front a single large state with many incoming transitions or, alternatively, many smaller states with fewer
incoming transitions but all fitting in the “one-byte” offset range.

e By moving a state from its original location we also shift the offset of other states, possibly rearranging the fields across
the entire automaton.

e We may lose the gain from applying the N flag optimization if we move a state (or its predecessor) to which the N flag
applies.

The question of whether there is an “optimal” arrangement of states to minimize the global serialized automaton length
remains open. The problem itself seems to be equivalent to bin-packing (in terms of computational complexity) and thus
does not have a solution working in a reasonable (polynomial) time.

Our first attempt to solve this issue was a simple heuristic: in the first step, we determine the serialization order for all
states as to maximize the number of N bits (depth-first traversal). Then, we create a priority queue of states in the decreasing
number of their incoming transitions and keep moving states from the top of the queue to the start of the automaton as long
as the serialized automaton is smaller than before.

This heuristic has a serious flaw because serialized automaton size does not decrease monotonically with the number of
moved states. For example, Fig. 6 depicts automaton size in relation to the number of moved states for the pl data set. The
minimum size is reached at around 2 900 reordered states with the largest number of incoming transitions, but a closer look
at the beginning of this chart shows that the function is not monotonic - see the zoomed rectangle inside Fig. 6. At around
29 reordered states the size goes up from 1911758 to 1912027, only to drop further down after more states are reordered.

The second take at the state reordering heuristic was a simulated-annealing like process that worked similar to the first
approach (initial states order to maximize the use of the N bit, then a queue of states with most inlinks), and then probed at
various subsets of the states’ queue, decaying over time and focusing on ranges that promised the smallest output.

http://mostwiedzy.pl

A\ MOST

J. Daciuk, D. Weiss / Theoretical Computer Science 450 (2012) 10-21 17

Table 3

The size of on-disk automaton representation and bits per byte and term ratios for the input files compressed with
fsa_build (fsa), cfsa2 and LZ-trie (LZ). The %' column shows size drop from fsa to cfsa2, % from cfsa2 to LZ-trie. The
smallest compressed size of each data set is marked with a « symbol.

Name Output size (KB) % Bits per byte Bits per term

fsa cfsa2 Lz %! %2 fsa cfsa2 Lz fsa cfsa2 LZ
pl 2655 1764 2245 34 =27 0.13 0.09 0.11 5.9 3.9 5.0
streets 334 244 217« 27 1 387 283 252 462 338 301
streets2 128 93 86 28 7 5.16 373 346 613 443 411
wikipedia - 40362 36413« - 10 - 314 283 337 304
wikipedia2 - 168683 157126 - 7 - 274 255 36.3 338
deutsch 285 215 188« 24 13 079 060 0.52 106 8.0 7.0
dimacs 2436 1487 1299. 39 13 273 167 146 645 394 344
enable 401 290 264. 28 9 1.88 136 123 189 137 124
english 243 173 145« 29 16 2.56 182 153 268 19.1 16.0
eo 211 147 109. 31 26 0.14 0.10 0.07 1.8 13 0.9
esp 385 268 187« 30 30 0.39 0.27 0.19 49 34 24
files 12425 9205 7120 26 23 048 035 027 371 275 213
fr 220 153 120. 30 22 067 047 0.36 8.2 5.7 44
ifiles 12770 9748 8147. 24 16 049 038 031 38.1 29.1 243
polish 676 477 352. 29 26 030 021 0.16 4.1 2.9 2.1
random 1162 832 798 28 4 827 592 568 952 68.2 654
russian 505 354 262. 30 26 0.42 029 0.22 5.1 3.6 2.7
scrable 435 310 263. 29 15 186 133 112 206 147 124
unix 132 95 83. 28 13 461 330 2.88 426 305 26.6
unix_m 104 72 63« 30 12 442 3.09 270 414 289 253
webster 417 298 248 . 28 17 3.46 2.48 2.06 37.0 26.4 22.0

To compute the resulting automaton size after each state reordering, both heuristics performed its full serialization. This
was the key factor slowing down automaton compression and took vastly more time than automaton construction itself.
Nonetheless, if size is of major importance, even these simple heuristics provide significant gain: as shown in Fig. 6, for the
pl data set the serialized size decreases from 1966 038 bytes achieved by depth-first order traversal of states to 1806621
bytes (8% gain) with around 2900 states moved to the front.

8. Experiments and results

8.1. Compression ratios

Table 3 shows the results of compressing the test data sets into finite state automata using fsa_build (version 0.50, with
patches), LZ-trie and a binary format utilizing optimizations presented in this paper, called cfsa2, implemented as part of
the Morfologik project. The data sets and software used to compress them are available at: https:/github.com/dweiss/paper-
fsa-compression.

Automata packed using cfsa2 were on average 29% smaller compared to the result of fsa_build, regardless of the nature
of the input file (o = 3.31%). LZ-trie produced files smaller by 13.7% on average (compared to cfsa2), but here the standard
deviation is ¢ = 11.86 and there is a notable exception of the pl data set, smaller by 27% when packed using cfsa2. We
strongly suspect that this difference is caused by the fact that the pl data set has a huge number of repetitive suffixes
(morphological tags); it is very likely that the transitions to these repetitive suffixes ended up being moved to the front
of the automaton and thus resulted in small sizes of target address pointers of many arcs, whereas in LZ-trie each such
pointer is represented as a constant-size link node (with the link node’s size determined by the global number of all nodes
in the trie).

Yet, smaller files produced by LZ-trie come at a much longer compression time — for example, building LZ-trie for
wikipedia?2 took 16 h, while the (Java-based) cfsa2 compressed it in 25 min (of which 42 s were spent in constructing
the FSA and the rest seeking for the optimum number of states to reorder, which yet again proves the point of improving
this heuristic somehow). Table 4 shows a complete list of compression times for the three methods used. Note that these
comparisons and times should be considered anecdotal evidence only because LZ-trie compression was performed on
a different hardware (in both cases the computational power of machines used for experimenting was nearly identical
though). Judging from how LZ-trie is built we believe the order-of-magnitude difference in compression time should hold
for other implementations and architectures as well.

The largest size reduction is achieved by integrating transition labels with the flags byte (see Table 5)—most data sets
did not even use transitions with separate label byte. Note that even a truly random byte sequence would still benefit from
integrated labels at around 12% (even if label distribution is uniform, 31 labels would still be integrated in the flags field).
Table 5 also shows the benefit of using the N bit (34% of transitions on average) and v-coding of transition pointers (an average
of 45% of transitions used one or two bytes for the address).

http://mostwiedzy.pl

A\ MOST

18 J. Daciuk, D. Weiss / Theoretical Computer Science 450 (2012) 10-21

Table 4

Automata compression times (in seconds). Experiments were performed on
the following hardware: cfsa2 and fsa5 - Intel Core i7 CPU 860 @ 2.80 GHz,
8 GB RAM, Ubuntu Linux; LZ-trie - Intel Xeon W3550 @ 3.07 GHz, 12 GB
RAM, CentOS. Ratios are shown only for compression times greater than a
few seconds (cfsa2 is written in Java and the timings include HotSpot warm-
up time, so times for really short input data are not directly comparable).

Name Compression time (s) Ratio (%)
fsa cfsa2 LZ cfsa2/fsa cfsa2/LZ
pl 40.01 20.15 6000.00 50 0.34
streets 0.16 1.15 0.84
streets2 0.13 3.57 0.21
wikipedia 226.90 1860.00 12
wikipedia2 1556.84 57600.00 3
deutsch 0.22 1.10 1.00
dimacs 1.66 8.38 100.00
enable 0.21 1.20 0.89
english 0.12 0.90 0.50
eo 0.84 1.10 5.00
esp 0.57 1.14 3.00
files 645.17 99.77 7200.00 15 1
fr 0.21 0.85 1.00
ifiles 453.53 102.10 25200.00 23 0.41
polish 133 2.46 9.00
random 0.61 4,12 3.00
russian 0.66 1.50 4.00
scrable 0.25 1.16 0.84
unix 0.06 0.50 0.11
unix_m 0.04 0.50 0.72
webster 0.20 1.21 0.68
Table 5

Ratios of integrated and separate labels and lengths of v-coded
target state addresses. V-code zero is equivalent to the presence

of the N flag.

Name Labels (%) V-code length (%)

int. sep. 0 1 2 3 4
pl 94 6 30 9 32 29
streets 98 2 39 17 23 20
streets2 98 2 46 13 20 21
wikipedia 79 21 38 18 14 13 16
wikipedia2 85 15 45 13 11 14 17
deutsch 100 0 31 15 35 19
dimacs 98 2 48 12 19 21
enable 100 0 25 27 30 19
english 100 0 26 29 27 17
eo 100 0 19 34 33 14
esp 100 0 17 34 35 14
files 86 14 64 3 6 12 15
fr 99 1 25 33 26 16
ifiles 88 12 65 1 4 1 18
polish 99 1 20 33 29 18
random 100 0 60 5 13 23
russian 100 0 20 33 30 16
scrable 100 0 23 30 29 17
unix 99 1 26 31 21 22
unix_m 100 0 26 33 23 18
webster 100 0 24 30 28 18
n= 96 4 34 22 23 18 3

8.2. Automata for perfect hashing

Automata for perfect hashing provide unique numbering for all accepted sequences. Like we mentioned in the
Introduction, this allows one to move some of the auxiliary information about a given entry to external storage and store
only an integer identifier to that information.

http://mostwiedzy.pl

A\ MOST

J. Daciuk, D. Weiss / Theoretical Computer Science 450 (2012) 10-21 19

Table 6

Output automaton size for cfsa2 without numbers (state reordering phase not exhaustive so results
slightly bigger than in Table 3), cfsa2 with numbers stored using fsa5 scheme (fixed byte count),
cfsa2 with v-coded numbers, and a pseudo-minimal automaton encoded as cfsa2 with v-coded
output numbers. The %! column shows cfsa2/fixed to cfsa2 size ratio, %> column shows cfsa2/vint to
cfsa2 size ratio, %> column shows cfsa2/vint to cfsa2/fixed size ratio, and %* column shows p-min to
cfsa2/vint size ratio.

Name Output size (KB) %

cfsa2 cfsa2/fixed cfsa2/vint p-min %! S %4
pl 1845 2783 2179 31582 151 118 78 1449
streets 246 376 312 450 153 127 83 1.44
streets2 93 151 122 140 162 131 81 1.15
wikipedia 44290 68462 52325 86236 155 118 76 1.65
wikipedia2 184700 340569 223436 362040 184 121 66 1.62
deutsch 221 361 269 1420 163 122 75 5.28
dimacs 1556 2905 1999 2686 187 128 69 1.34
enable 296 464 353 886 157 119 76 251
english 175 278 210 502 159 120 76 2.39
eo 147 213 176 5890 145 119 83 3347
esp 273 379 311 4143 139 114 82 1332
files 9451 18927 12691 29966 200 134 67 2.36
fr 154 240 185 1415 156 120 77 7.65
ifiles 9977 20026 13401 61323 201 134 67 458
polish 492 699 568 8725 142 115 81 1536
random 844 1820 1171 1301 216 139 64 1.11
russian 362 523 421 5055 144 116 80 12.01
scrable 316 485 374 1218 153 118 77 3.26
unix 95 133 114 172 140 120 86 1.51
unix_m 72 102 87 132 141 121 86 1.52
webster 304 473 361 643 156 119 76 1.78

w= 162 123 76

Perfect hashing can be implemented in various ways (in automata and also in transducers). In automata, and in particular
in the fsa package, perfect hashing is implemented by adding numbers on each state that store cardinality of their right
language — see Eqgs. (8) and (10). While traversing the automaton a counter of skipped final nodes is maintained and entire
skipped subtrees are added simply by taking a number stored in their root state. In fsab format, the above numbers are
stored in the minimal number of bytes required to hold the largest integer representing a state’s right language cardinality
(in effect equal to the number of input sequences accepted by the automaton on the root state). We performed an experiment
in which the cfsa2 algorithm was extended with numbers on each state. Table 6 shows the sizes of output automata for cases
when numbers were not included at all were encoded using the fsab scheme and finally were v-coded.

The results show that v-coding of numbers on states yields an average 23% growth in size compared to an automaton
without encoded numbers. This result is quite good compared to fixed-size encoding scheme from fsa5 (62% larger than the
baseline automaton on average, with steadily higher savings for larger automata).

In Table 6, the p-min column shows the size of a pseudo-minimal automaton, and the %* shows the ratio of the size of
the pseudo-minimal automaton to the size of the minimal automaton with v-coded output numbers. The pseudo-minimal
automata were built with term ordinal numbers in the input as the output values for terms (so this implements perfect
hashing). Those results are on average close to expectations, but there is much variation. Pseudo-minimal automata for
random and less regular data are almost as small as the minimal ones. However, the ratio for eo (Estonian word list) reaches
33.47, and for polish, pl (also Polish), esp (Spanish), and russian, it is equal to 15.36, 14.49, 13.32, and 12.01, respectively. The
data that gives such high ratios exhibits high regularity at the end of terms. Suffixes of the terms can be segmented into short
units that can take a fixed set of values. In a minimal automaton, this results in a multitude of paths going out from one state,
and converging at another one farther on, repeated for each of those units. In a minimal automaton, a state with more than
one outgoing transition cannot follow a state with more than one incoming transition on any path, so cloning such states
leads to explosion of the number of states on such data. Estonian is agglutinative language, where each morpheme carries
information about one morphosyntactic category, which makes endings of terms particularly regular. Polish and Russian
are Slavic languages with very rich flection, Spanish has rich flection (at least in comparison with e.g. English) as well.

A decision whether to use pseudo-minimal or minimal automata depends on the application and the language. For
example, if we were to store a frequency word list for English, we could store the counts in a vector. For minimal automata,
it would be a vector indexed by a word number, so we would have to add the size of that vector equal to a product of the size
in bytes of the counts (probably 3 here), and the number of entries in the word list (74 317 in our case). For pseudominimal
automata, the vector could be much shorter, as we would store only unique counts. As the proper transitions permit storage
of any numbers, we can implement any mapping from terms to numbers. In this case, it could be indexes of counts. As there
are much fewer indexes than words, we need less memory for their v-coded values, especially when we sort the vector of

http://mostwiedzy.pl

A\ MOST

20 J. Daciuk, D. Weiss / Theoretical Computer Science 450 (2012) 10-21

counts so that smaller counts have smaller indexes. Since most words on a word list occur only a few times in a corpus, most
indexes stored in proper transitions would take 1 byte. Since decreasing the size of proper transitions can decrease the size
of some pointers, the pseudo-minimal automaton would shrink by about 150 KB. As the vector of counts would be at least
an order of magnitude shorter, we would economize some other 150 KB, arriving at roughly the same size as with minimal
perfect hashing automata. The decision which type of automaton to use would depend on experiments on real data.

8.3. Applying cfsa2 optimizations to LZ-trie

We have spent a significant amount of time trying to port the optimizations described in this paper to LZ-trie.
Unfortunately the code for that algorithm is not publicly available (at the time of writing LZ-trie authors had been working
on improvements promising prompt code release). We implemented LZ-trie independently based on its description from
the paper and we present the conclusions here.

The first conclusion is that LZ-trie’s public description allows for many interpretations of how double-linked references
work (and whether outlinks from inside are allowed or not). Depending on how one implements these references and
depending on the order of recursive compaction of trie nodes the output size (the number of unique nodes that need to
be kept) varies even up to 30% compared to the best case found in multiple runs. It is also not at all clear to us if there exists
an “optimal” layout of references that results in minimal number of nodes. As far as we could tell from our experiments
the problem is too complex to be tackled with accurate methods and requires greedy heuristics. Our implemented variation
of the algorithm differed from Strahil Ristov’s version because we could not achieve his reported results (even though we
know they were correct and differed from ours only in how and which nodes were compacted first).

We then tried to apply the optimizations described in this paper to our version of LZ-trie. LZ-trie heavily relies on the
assumption that node representation (blocks) are of fixed length. This assumption is used to:

o simplify encoding of relative block offsets (forward jumps),

e to make the representation more repetitive when there are many common “suffix subtrees”, and finally

e to make everything smaller when in the last step all distinct blocks are uniquely numbered and the trie is stored as a
bit-packed sequence of such identifiers along with a lookup table of single copies of expanded blocks.

Any size reduction gained from these techniques vanishes once we allow variable size blocks — both relative and absolute
offsets quickly diversify individual blocks and their distinct number explodes. Note that nearly everything covered in this
paper (v-coding, index-coded labels) requires that each individual state’s representation is of variable length. It does not
come as a surprise then that our implementation of “variable block length” LZ-trie was never even close in size to the “fixed
block length” version. We omit the details here because they are of no practical relevance in the light of what has been said.

To summarize, contrary to our initial feeling, we now think the applicability of methods introduced in this paper is very
limited (if it exists at all) in the context of LZ-tries. There is definitely a lot of room for improvement there in how repeated
subsequence selection progresses, but this is another topic.

9. Conclusions

We have shown that three basic techniques:

e table-lookup encoded labels, exploiting their uneven distribution,
e variable-length coding of transition target addresses as well as perfect hashing indexes, and
e state ordering to minimize the global size of encoded target addresses

make it possible to compress (already compact) dictionaries considerably, in some cases even better than the LZ-trie method,
whose results were so far considered the best in the field. Not of less importance is the fact that the representation presented
in this paper retains a simple automaton structure and allows very efficient, non-recursive traversals. There is a considerable
space for further research in how to efficiently determine an optimal or nearly-optimal arrangement of states to minimize
their global representation length, but even the presented naive heuristic implemented in Java turns out to be much faster
than fsa_build or LZ-trie, especially on large data sets.

Comparing our method to the LZ-trie method, the main difference is that we do not search for repeatable substructures.
By finding subautomata, we might possibly boost the compression ratio at the cost of slightly increased traversal time and
moderately increased construction time. LZ-trie takes a different angle at minimizing representation size and the techniques
used there seem incompatible with what we have presented in this paper.

Another interesting aspect that requires attention is automaton traversal speeds. All methods exercised in this paper
represent a state’s transitions in a form that requires a linear lookup scan to find a matching label. This is highly ineffective
when traversing highly fanning-out states, which unfortunately usually happen to be close to (and including) the automaton
root. We created a simple benchmark where the same traversal routine was executing a simple hit/miss test using a mix of
random and matching sequences. The traversal speed (same hardware as in Table 4) on an automaton in fsa5 format averaged
around 1.9 million checks per second, on cfsa2—around 800 thousand checks per second (variable transition length requires

http://mostwiedzy.pl

A\ MOST

J. Daciuk, D. Weiss / Theoretical Computer Science 450 (2012) 10-21 21

partial decoding hence the slowdown). These figures compare favorably to the speed achieved by LZ-trie, which, as reported
by the author, achieves around 1 million checks per second.

A few simple improvements can be made to make the traversal much, much faster at a slight size penalty. The most
obvious improvement is to expand states with a larger fan-out into a form allowing direct table-lookup (or binary search)
of a given label. This has been implemented in Apache Lucene recently and yields nearly 4 million terms/second check
speed. Another optimization hint is related to utilizing CPU caches better - we can clump together the representation of
states reachable from the root state so that they fit in as few cache lines as possible - see [19,13] for similar cache-aware
automata layouts. This can be easily done by breadth-first traversal to a given depth and even combined with state reordering
mentioned earlier. We plan to tackle these ideas in our future work on the subject.

Pseudo-minimal automata are larger than the minimal ones. In Dominique Revuz’s [14] experiments, they had up to
eight times more states. However, when used to implement hashing, they need to store numbers only in their proper
transitions, and not in every state, as it is the case with minimal automata implementing perfect hashing. Additionally, they
can implement arbitrary hashing, so in case of variable size information, or when the number of pieces of (long) information
associated with words is smaller than the number of words, there is no longer need for a vector of pointers; the numbers
stored in proper transitions can serve as those pointers directly. Another possibility is to store only unique pointers (or any
other fixed size data), sort them on decreasing numbers of terms in the dictionary they should be associated with, and store
indexes (most of them would be small values taking one bytes when v-coded) as values stored in proper transitions. In such
cases, a comparison with minimal perfect hashing automata should take into account also the size of the vector of pointers.

As a concluding remark, let us note that morphological dictionaries compressed very well in our experiments, achieving
incredible compression ratios (1.3 bits per entry for eo or 3.9 bits per entry for the pl data set). Knowing that finite state
automata can be used for calculating perfect hashes (or with minor modifications as transducers) it is somewhat surprising
to learn that quite a few tools for natural language processing still opt for using traditional databases to store and search for
linguistic data.

Acknowledgments

Strahil Ristov and Damir Korencic kindly responded to our request to run LZ-trie on the provided data sets and passed
back valuable comments and suggestions. Michael McCandless provided a list of terms extracted from Wikipedia and was
always ready for long (and fruitful) discussions on the subject of automata compression and traversal speeds. Finally, we
really appreciate all the corrections, comments and remarks given by anonymous reviewers of this work. Thank you.

References

[1] 1. Budiscak, J. Piskorski, S. Ristov, Compressing gazetteers revisited, in: 8th International Workshop on Finite-State Methods and Natural Language
Processing, FSMNLP 2009, Pretoria, South Africa, 2009.
[2] M. Ciura, S. Deorowicz, How to squeeze a lexicon, Software-Practice and Experience 31 (11) (2001) 1077-1090.
[3] J. Daciuk, Incremental construction of finite-state automata and transducers, and their use in the natural language processing. Ph.D. Thesis, Technical
University of Gdarisk, 1998.
[4]]. Daciuk, Experiments with automata compression, in: Conference on Implementation and Application of Automata CIAA’2000. University of Western
Ontario, London, Ontario, Canada, July 2000, pp. 113-119.
[5] J. Daciuk, D. Maurel, A. Savary, Incremental and semi-incremental construction of pseudo-minimal automata, in: J. Farre, L. Litovsky, S. Schmitz (Eds.),
Implementation and Application of Automata: 10th International Conference, CIAA 2005, in: LNCS, vol. 3845, Springer, 2006, pp. 341-342.
[6] J. Daciuk, J. Piskorski, Gazetteer compression technique based on substructure recognition, in: Proceedings of the International Conference on
Intelligent Information Systems, Ustrori, Poland, 2006, pp. 87-95.
[7] J. Daciuk, J. Piskorski, S. Ristov, Scientific applications of language methods, in: Mathematics, Computing, Language, and Life: Frontiers in Mathematical
Linguistics and Language Theory, World Scientific Publishing, 2010, pp. 133-204. Ch. Natural Language Dictionaries Implemented as Finite Automata.
[8] P. Dencker, K. Diirre,]. Heuft, Optimization of parser tables for portable compilers, ACM Transactions on Programming Languages and Systems 6 (4)
(1984) 546-572.
[9] M.L. Fredman, J. Komlds, E. Szemerédi, Storing a sparse table with 0(1) worst case access time, Journal of the ACM 31 (3) (1984) 538-544.
[10] T.Kowaltowski, C.L. Lucchesi,]. Stolfi, Minimization of binary automata, in: Proceedings of the First South American String Processing Workshop. Belo
Horizonte, Brazil, 1993, pp. 105-116.
[11] F.M. Liang, Word hy-phen-a-tion by com-put-er. Ph.D. Thesis, Stanford University, 1983.
[12] C. Lucchiesi, T. Kowaltowski, Applications of finite automata representing large vocabularies, Software Practice and Experience 23 (1) (1993) 15-30.
[13] E.K. Ngassam, Towards cache optimization in finite automata implementations, Ph.D. Thesis, University of Pretoria, 2007.
[14] D.Revuz, Dictionnaires et lexiques: méthodes et algorithmes, Ph.D. Thesis, Institut Blaise Pascal, Paris, France, lITP 91.44, 1991.
[15] S. Ristov, E. Laporte, Ziv-Lempel compression of huge natural language data tries using suffix arrays, in: Proceedings of Combinatorial Pattern
Matching, CPM 1999, in: LNCS, vol. 1645, 1999, pp. 196-211.
[16] R.E.Tarjan, A.C.-C. Yao, Storing a sparse table, Communications of the ACM, ACM 22 (11) (1979) 606-611.
[17] L.Tounsi, Sous-automates a nombre fini d’états. Application a la compression de dictionnaires électroniques, Ph.D. Thesis, Université Frangois Rabelais
Tours, 2008.
[18] L. Tounsi, B. Bouchou, D. Maurel, A compression method for natural language automata, in: Proceedings of the 7th International Workshop on Finite-
State Methods and Natural Language Processing, Ispra, Italy, 2008, pp. 146-157.
[19] B.W. Watson, Practical optimizations for automata, in: D. Wood, S. Yu (Eds.), Proceedings of the second Workshop on Implementing Automata,
in: LNCS, vol. 1436, Springer, London, Canada, 1997, pp. 232-240.

http://mostwiedzy.pl

	Smaller representation of finite state automata
	Introduction
	Natural language dictionaries
	Formal definitions
	Compression of automata
	Motivation and goals
	Test data
	Size reduction techniques
	Experiments and results
	Compression ratios
	Automata for perfect hashing
	Applying cfsa2 optimizations to LZ-trie

	Conclusions
	Acknowledgments
	References

