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Abstract New method of the human body pose estimation based on a single camera
2D observation is presented, aimed at smart surveillance related video analysis and
action recognition. It employs 3D model of the human body, and genetic algorithm
combined with annealed particle filter for searching the global optimum of model
state, best matching the object’s 2D observation. Additionally, new motion cost
metric is employed, considering current pose and history of the body movement,
favouring the estimates with the lowest changes of motion speed comparing to
previous poses. The “genetic memory” concept is introduced for the genetic process-
ing of both current and past states of 3D model. State-of-the-art in the field of
human body tracking is presented and discussed. Details of implemented method are
described. Results of experimental evaluation of developed algorithm are included
and discussed.

Keywords Pose estimation - Evolutionary optimization

1 Introduction

Human action recognition lies in the scope of computer vision research for years
[12]. Tt can be utilized in human-computer-interaction methods (HCI), for gesture
navigated user interfaces [10], for markerless motion capture systems, and threats
recognition in smart surveillance systems [3]. This process often comprises of
following stages: background modelling, detection of foreground objects, classifica-
tion and tracking of objects, and finally analysis of the performed action for event
recognition. In monocular vision systems a body pose to be estimated in 3D must be
calculated based on a single 2D observation (video frame). For this purpose a
generative approach is employed, utilizing 3D model of a human body, its pose
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being a subject to algorithmic alterations, as a result obtaining various 2D projec-
tions. Those 2D images of poses are compared with current 2D observation for best
match. The pose is iteratively altered by optimization algorithms, based on matching
metric values. The most popular optimization approaches are simulated annealing [4]
and genetic algorithms [5]. In a single camera system (monocular) the estimation of
3D features of the object based on 2D projection is ambiguous. Therefore, multi-
camera approaches are widely introduced, dealing with ambiguity by fusion of data
from multiple 2D projections obtained from various observation points. Those tech-
niques perform very well, and already have found a commercial application in
markerless motion capture of actor performance [2, 6, 8, 9].

In the reported work a monocular vision is considered, as a basis for general
purpose computer vision system, that can be useful in any conditions without strict
requirements on the number and positions of cameras, e.g. for “smart home”
applications such as health assessment based on physical activity, contactless user
interfaces, or smart surveillance systems, recognizing human action for event
detection.

In the paper first state-of-the-art in the pose estimation algorithms is described, then a
structure and purpose of designed reference recordings database are presented, next a
proposal of the new single camera method is presented based on evolutionary programming,
motion dynamics and hierarchical pose estimation. Finally the approach is tested and results
are discussed.

2 State-of-the-art in monocular and contactless human body tracking

Pose estimation methods utilize multidimensional parameterization of the body, where its
state is described by degrees of freedom (DOFs) related to bones rotations and body position
in space. Possible approaches are not consistent, as models can have 25-34 DOFs, while 3D
animated models employ over 40 DOFs [4].

A 3D model of the body is considered, characterized by body proportions, number of
DOFs, and angle restrictions. The optimal state of such model is being sought, the one which
best matches the shape of current 2D observation of the real body and fulfils body
biomechanical constraints.

Currently developed monocular vision methods try to cope with ambiguous
relation between 2D observed shape and 3D pose being estimated. If an object is
provided only as a shape (binary image of the silhouette, blob, and mask) extracted
from the scene by typical background modelling and object detection methods, then
information related to body orientation is unknown. It can either face the camera or
be turned back. Other problem is related to presence of self occlusion, when limbs
can be partially or fully hidden behind the torso and their state is undefined.

In case of orientation errors we propose employing well established methods of face
detection, i.e. cascade of boosted classifiers working with Haar-like features [11] for
resolving front-back mistakes.

In case of occlusions the unknown state of the limb is estimated as an interpolation
between two well defined states (for off-line analysis, when each frame of the
sequence is available) or as a continuation of previous well estimated motion, with
utilization of Kalman filter for description of its state (for on-line analysis, when
future states are yet unknown) [20].
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2.1 Pose assessment

The model X to object Z matching degree w(X,Z) can be expressed as a cumulative metric
(1) proposed by Deutscher et al. [4], employing coverage of their silhouettes (2) and their
edges (3):

wX,Z2) =w'(X,Z) - w'(X,Z) (1)

1 &
X,7) = — 1 -piX, Z 3
( exr)( N ; pil > (3)
where:
X model state
Z observation (object shape or edges extracted from the video frame)
N number of comparison points in the model image and object image
pi,p{  pixel-wise logical AND operator between model’s and object’s regions and edges

respectively.

Optimization of model state based on matching metric w(X,Z) is performed with follow-
ing methods.

2.2 Particle filtering optimization

Probabilistic modelling of possible multidimensional states of the tracked body is typically
performed with particle filtering approach (PF), known also as “CONditional DENSity
propag ATION” (CONDENSATION). In the computer vision applications it was first intro-
duced for tracking outlines of hands [7], and later extended for whole body [4, 13]. PF
method is useful for analysis of multiple hypotheses, here called “particles”. Even if some
model states are less probable considering previous states, they are taken into account,
resulting in more robust tracking. The new particles are located densely around previous
match, but also are randomly scattered in the whole range. The one with highest match
(likely global optimum of w(X,Z)) is taken as a result. This method considers many
modalities with varying probability, therefore it tests various action courses at the same
time. Unfortunately, finding global optimum requires employing large numbers of particles,
and long computation times are reported (e.g. 1 video frame in 18 min) [4].

2.3 Annealed particle filter
An interesting modification of PF method is Annealed Particle Filter (APF), where the
optimum search is performed in M stages, so called layers. The layer m is characterized with

annealing speed (3,,, where 1 > 3, > (; > ... > 33, and analyzed metric is w,,,(X,Z) = w(X,
7)™, The higher the 3,, the more coarse w,,(X,Z) is, and the search is less susceptible to
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local optima (Fig. 1). In consecutive layers the particles are located in the most probable
areas, where high values of w,,(X,Z) occur, with some randomization introduced. This
method performs significantly better than PF [4].

2.4 Benchmarking

For methods efficiency comparison several databases were created, i.e. Vlasic et al. silhou-
ette database [19], and HumanEva benchmarks [17]. The latter consists of database of multi-
camera recordings of several human actions, reference motion data gathered with high
precision motion capture system, and Particle Filtering basis algorithm provided along with
documentation and reference results [17].

2.5 Predefined action recognition

Other approach can be taken for distinct motions such as walking. Instead of estimating
every consecutive pose, a common approach is to compare estimated pose to given presets,
e.g. phases of walking [14, 16], but applications are limited to detection of predefined
actions only, and extension of this set is time-consuming [3].

3 Reference data repository

For the purpose of assessment of estimation quality a reference poses database is prepared in
Gdansk University of Technology, comprising of input poses of the actor performance, and
reference description of actual poses. Recorded actions contain: variants of falling, tipping,
fainting, resting down, balancing, tying a shoelace, sitting with crossed arms, legs, embrac-
ing torso, etc. (31 sequences ca. 6 s long). However, the captured poses data turned out to be
not precise enough for the method evaluation described in Section 5, therefore supplemen-
tary input poses are synthesised employing adjustable 3D model whose state is stored in the
database for reference. Nevertheless, for both real actor images and 3D model images the
approach is the same, and the repository is able to include real as well as synthesised data.
The body pose tracking algorithm accepts a sequence of 1-bit images containing silhouettes
of actual moving body (so called “masks”) obtained from the camera image. Its output
comprises of state vector of 3D model, the one that was the best match for the particular 2D
pose. Therefore objective assessment of the pose estimation quality requires a comparison

a b
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Fig. 1 APF layers of sample metric w,,(X,Z) = w(X,Z)™: a 3,=0.1, b By=1. The smaller the /3, is the
coarser the function, and optimization is less susceptible to local optima
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between the actual 3D state of the actor’s body and estimated 3D state of the model. The
reference state can be acquired by Motion Capture system, measuring positions and angles
of body joints (Fig. 2).

3.1 Video data acquisition

Reference video sequences for the database can be recorded with any number of
cameras. It is advised to locate each camera at height of 2.0 m above the floor level,
aimed at —20° elevation down, and in case of multiple cameras to acquire signifi-
cantly different views of the action, e.g. st camera perpendicular to action (direction
of a walk or fall), 2nd parallel to the action, 3rd observing action at angle 45°
(Fig. 3). For the video database currently developed Canon XH GI1 video cameras are
used, recording FullHD image with 1920%1080 pixels resolution and 50 frames per
second. A HDV (high definition video) format is used, with lossy video compression
in the H.262/MPEG-2 Part 2 standard. Cameras are synchronized by GENLOCK
reference signal produced by the lst camera, and used to set internal clocks of other
cameras. In this case timestamps are registered along with the image, therefore for
further editing those recordings can be precisely synchronized.

Video recordings are performed on a green background (green-box), therefore correct
extraction of foreground objects (so called “keying”) is significantly aided by employing
colour thresholding algorithm (Fig. 4).

In applications meant for real-time operation in arbitrary conditions, the background
removal/object detection procedure is performed by far more complex algorithms of back-
ground estimation, e.g. modelling of pixel’s color statistical properties, representing it as a
mixture of Gaussians with iteratively adjustable means and deviations in a RGB color space
[18], what lies beyond the scope of this paper.

3.2 Motion capture data acquisition

For registration of the reference 3D data of actor’s poses a Motion Capture system OptiTrac
[21] is used synchronized with video cameras. A 25 markers setup is used, aimed at reading
positions of main body joints, omitting fingers and face expression.

Obtained data are exported to widely used BVH (Biovision hierarchy) format,
facilitating data processing, storage, and visualization in popular 3D animation
software. The file header starts with a keyword HIERARCHY and contains declara-
tion of a virtual skeleton hierarchy, i.e. locations and lengths of bones (OFFSET),
available degrees of freedom (CHANNELS) and relation parent-child between bones
(JOINT). After the header a MOTION section starts, first containing length of a

Video 2D 1-bit mask Pose Estimated
camera > image —» ofinput estimation L »| 3D state of Assessment of
¢ pose the model \ matching
between
estimated and
i actual pose
Motion | Actual 3D state of
Capture 4 the actor

Fig. 2 Block diagram of body estimation quality assessment, based on reference data registered by Motion
Capture system
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(I - Video camera
—~ o O - Motion Capture camera

- - Action direction
VIS

Fig. 3 Spatial configuration of the recording setup (fop view)

sequence (e.g. Frames: 469), then length of a single frame in seconds (e.g. Frame
Time: 0.016667, which can be converted to 60 frames per second). Finally, data for
each captured frame for each bone DOF follow separated by a tabulator, and new
line sign at the end of frame description (Fig. 5).

3.3 Database structure

For organization and storage of acquired data an Open Source MySQL 5.1 database is
used, with InnoDB storage engine, running under Ubuntu Linux 11.04 operating
system. Created relational database comprises of 5 tables with columns and relations
presented in Fig. 6.

Table “Action” contains data from each action registered by any number of cameras.
Technical parameters of cameras are stored in a table “Camera”, containing foreign key
“action_id”, referring various cameras to particular “Action” recorded with them. Table
“Frame data bin” for each “Camera” stores registered video frames as an original images
and 1-bit images of object masks. For each “Action” and for each frame individually
(identified by “frame no”) a table “Data_bvh” contains captured reference motion
“data_bvh” (format compliant with BVH). Table “Skeleton_bvh” stores description of a
skeleton hierarchy for particular registered “Action”.

Such architecture allows for concurrent storage of actions recorded with any
number and types of video cameras and any type of Motion Capture setup (as long
as skeleton hierarchy and motion descriptions are provided in the BVH format). This
approach also allows for integration of other datasets, both monocular and multi-
camera, such as HumanEVA [17], inside one database.

1: for (frame from sequence)

2 Split image into color components: red, green, blue, stored as a 8-bit words

3 for (pixels of the image)

4: if (green > 128 AND red < 80 AND blue < 80) pixel = @ #pixel is the background
5 else pixel = 1 #pixel in an object

6 end

7: end

Fig. 4 Pseudo-code of image preprocessing: keying of green background and object detection, resulting in 1-
bit image containing mask of the object
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HIERARCHY
ROOT Hips
{ OFFSET 0.000000 0.000000 0©.000000
CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation
JOINT LeftHip
{ OFFSET  4.740440 -3.195970-0.322709
CHANNELS 3 Zrotation Xrotation Yrotation [..]

MOTION

Frames: 469

Frame Time: 0.016667

0.030173 8.158459 0.074069 -0.154345 0.080239 -0.3143820.124953 [..]

Fig. 5 Listing of a BVH file (abridged): section of skeleton definition and motion data

4 Genetic programming extension to APF-based pose estimation

Proposed new body pose estimation algorithm is based on genetic evolution of 3D models
population tested against current 2D silhouettes from single camera. The models generation
and fitness testing are performed with respect to evolutionary programming paradigm [1,
12], utilizing genetic algorithm extended with new concept of “genetic memory”, and
combined with APF for additional optimization.

In the proposed model-to-object matching method following ideas are employed:

the matching procedure should be performed in two stages:

e first, the local optima of higher hierarchy of the body are sought (torso, head, i.e. the
parts influencing location of arms),

* next, for each found optimum a second search run is performed, considering also lower
hierarchy of the body parts (forearms, arms, legs, and hands),

— the observed motion (model and object state changes in consecutive frames) is contin-
uous and fluent, abrupt speed vector changes are not plausible (yet still are considered as
possible),

Action: Camera: Frame_data_bin:
id: int(11) id: int(11 id: int(11)
name : text N action_id : int(11) _| camera_id : int(11)
lenght_s : int(11) — camera_type : text | frame_no :int(11)
date : date observ_angle : int(11) original : longblob
author : text resolution : text mask : longblob

description : text

Data_bvh:
id: int(11)
action_id : int(11)
frame_no : int(11)
data_bvh : text

Skeleton bvh:
id: int(11) P
action_id : int(11) d
hierarchy : text

Fig. 6 Block diagram of database structure and relations. Foreign keys are marked with bold font
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— therefore, for selection of best estimates during genetic optimum search, the history of
motion and current estimated motion should be considered,

— the history of motion is inscribed into “genetic memory” of the object

— utilizing genetic operators of cross-over and mutation a new, possibly better, estimates
can be obtained based on previous estimates,

— the process is repeated until a criteria of matching between model and observation is
fulfilled.

The concepts introduced above are summarized in the following subsections.
4.1 3D model of human body

Implemented body model consists of 17 elements, modelled as balls and cuboids,
some with limited Degrees of Freedom (DOF), 40 DOFs total. The structure of the
model is presented in Figs. 7 and 8, and Table 1. Model state is described with g=40
values (genes) of current state, subject to modification by genetic algorithm and
optimum search, and H-g values of H-long history of previous states (“genetic
history”), which is neither crossed-over nor mutated. The model state can be de-
scribed as:

X= {xm,xz‘o, e Xg 05 X115 X215 -+ o Xg 5o S XLH, X2 Hy - - -xg,H} (4)

where: the subscript 0 depicts current moment in the history,

genes X ; = Xj;  higher hierarchy,

genes x17; + X30; lower body (legs)

genes x3;; + X40; lower hierarchy,
j=10,1,...,H) age in the genetic history.

Fig. 7 3D model of human body
(segment edges only for visualiza-
tion, not present in actual model
mask)
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Ho I Lo Hy Ly

0 7

| T Y T Y

| X1,00 X2,00 =+ X16,0 X17,00 X18,01 ++ Xa0,0 : X1,10 X2,10 + X161 X17,10 X18,1/ ++ Xa0,1

L I 1 J
Y Y Y

Age=0 Age=1 Age=2
Current state Genetic history

H—Higher hierarchy state

L - Lower hierarchy state
Fig. 8 Single object structure: model’s state with “genetic history” of previous states
4.2 Genetic fitness function
Used matching metric is an extension of standard approach with shape and edge coverage

metrics, Eq. (3). A new addition was made, considering “motion cost” v(X), related to
motion dynamics and movement speed changes (5):

wX,Z) =w'(X,Z) - w*(X,Z) - v(X) (5)
where:
v(X) = exp —% S (voi - Vi)’ (6)
=1 h=1
where:

N number of bones analysed in current hierarchy level

Table 1 Parts of the modelled body and angle limits for joints (degrees)

Rotations

o P Y
BOdy part Model Kmin Kmax f’min 6max Ymin Ymax HierarChy
Hip Cuboid —-180 180 —-180 180 —180 180 Higher
Abdomen Cuboid -15 15 -110 15 -15 15 Higher
Torso Cuboid -5 5 Fixed -5 5 Higher
Neck Cuboid -15 15 =30 30 =50 50 Higher
Head Ball —45 45 =30 15 Fixed Higher
Thigh x2 Cuboid -15 90 70 125 75 75 n/a
Calf x2 Cuboid Fixed 145 0 Fixed n/a
Foot x2 Cuboid =15 15 —45 30 -15 15 n/a
Forearm x2 Cuboid Fixed Fixed -150 0 Lower
Arm x2 Cuboid 0 360 0 360 —-155 35 Lower
Hand x2 Ball -20 20 Fixed Fixed Lower
Hip location in space: X y z Higher

40 values are used to describe full state of the model
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vo; current angular motion speed for i-th value of state model calculated
as x; o—x;; (the time span is 1 frame, therefore no denominator for speed
calculation is written)

vy,; historical angular motion speed for i-th value of state model calculated
as X p—Xip-1-

Presented metric (5) is used as a fitness function for evolutionary processing. w(X,Z)<(0,1),
and the perfect match is obtained when w(X,Z)=1.

4.3 Crossing-over and mutation of the model states

All model states are aged (Fig. 9), and then selected two model states X and Y are
crossed-over by exchanging one, randomly selected i-th value (i € (1; g=40)) from
current state x;o with also i-th value of the other state y;o. The mutation is
performed on randomly selected i-th value from current state, changing it by random
value A e (=5;5) (Fig. 10), with the requirement that the result stays in allowed
angle limit for joints (Table 1).

4.4 Hierarchical pose matching

Hierarchical matching of 3D model to 2D shape of the body is performed by
successive consideration of model parts, starting high in the hierarchy, proceeding to
lower levels. In each run the model is simplified to represent only the parts that are
on the current hierarchy level (Fig. 11). The algorithm performs following steps (also
show on block diagram in Fig. 12):

1. Nrandom objects (model pose estimations) are generated. Initially the history contains
static pose, i.e. for every i: x;0 =X;1 = X;2 = ... = X; .

2. Each estimate is evaluated utilizing genetic fitness function, Eq. (5) (shape and edges
coverage, and motion cost) for higher hierarchy of the body.

3. M=2 stages of APF are performed (6,=1, 3;=0.25, 3,=0.1) for local optima search
over the fitness function. N particles in 16-dimensional space are used (genes x; ; + X,
describing higher hierarchy), initialized with current state of higher hierarchy model,
and adjusting only the current state (not the “genetic history”). Head and shoulders
shape is very distinct and optimum search converges easily (Fig. 11b).

4. Estimates are ranked and N’ < N best estimates (APF particles) are selected.

HoI'—o H1|'—1 H2||-2

Y Y Y
Age=0 Age=1 Age=2
Current state Genetic history  Genetic history

Discardthe oldest and shift right

Hol'—o Holl-o H1||-1

Fig. 9 Aging process
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ObIectxl Ho | s
Crossover: Mutation:
exchange random x; replacerandom x;
ofthe current state of the current state

objecty| Hy [ L,
|

T
Age=0
Current state
(crossed-over,
mutated)

Fig. 10 Genetic crossover and mutation

5. Utilizing each of N’ best estimates all (N-N") worse estimates are readjusted, by substi-
tuting x; o + X160 genes in the state with genes of randomly selected higher hierarchy
estimate. Probability of selection is proportional to the value of estimate w(X,Z) calcu-
lated in APF in step 3. The results are N readjusted objects with well fitting higher
hierarchy of the body.

6. Optimum search is then performed with M=2 stages of APF with N particles in 10-
dimenstional space of lower hierarchy bones. Local optima of those bones rotations are
found (Fig. 11c¢).

7. Each estimate is evaluated utilizing genetic fitness function (shape end edges coverage
and motion cost).

8. Best L>1 estimates are presented on the screen to the user and compared with
reference Motion Capture data for subjective rating of the pose and for algorithm
benchmarking.

9. All N estimates from step 7 are aged: in the history the last state of age H is removed,
other states are shifted right by g cells. New state of the model is created by crossing-
over (with probability 0.5) all worse (N-L) estimates with randomly selected one of L
best ones. Finally the mutation of the current state is performed (with probability 0.1).
It is then taken as a starting point for matching the model to next video frame.

10. The process repeats from step 2.

Steps 3—6 are presented in a graphical form on Fig. 13.

Tt |

Fig. 11 Hierarchical matching of 3D model to 2D observation of human body: a sample pose, b 3D model
posed by first run (high hierarchy) and the difference between pose and model shape, ¢ 3D model posed by
second run (lower hierarchy) and the difference between pose and model shape
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Current states + “static” history assumption (object
was not moving at the start)

Random initialization

Random objects (candidate]
NX | poses for current video
frame)
Assessment of hiigher hierarchy body fitness(shape matching
w and motion costs) ranking and selection of top/N’ objects

APF adjustment of the best|
N’x candidates

(higher hierarchy)

Upper body generation: new N/N’ combinations for every of

v N’ candidates, repulting in N candidates

NX | Candidate poses |
Assessment of J;me lower hierarchy body (shape matching

y and motion cost
APF adjustment of the best
Nx candidates
(full body)

Aging, storing pgses in “genetic memory” and creating next
 generation (reprqduction and mutation)

A
Choose L best objects
Acquire next video frame

Fig.12 Block diagram of the evolutionary algorithm (description in the text)

The algorithm is implemented in C++ utilizing own pose generation library (it provides
binary image of 3D model silhouette based on its state description and camera position) and

Object 1 Object N
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Calculate fitness
of Hy in 1% pass
of Hy+L, in 2" pass

l

Search for local
loptimum by AFP

Calculate fitness
of Hy in 1%t pass
of Hy +Lg in 2" pass

l

Search for local
optimum by AFP

Y

/ Rank objects —— —
Best N’ objects : Other objects L
[ I — L
' e
| C
| \ Y )
: Readjust remaining
| objects
| v
I 7l 7
I

//7

Random selection and substitution of current state

Fig. 13 APF optimization of N objects extended with ranking and readjustment of the worst ones
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OpenCV library [15] for image processing (normalization, matching measure calculation,
result visualization).

5 Algorithm evaluation

For the experiment and objective assessment of the results a set of 10 poses was prepared
utilizing 3D model posed by hand, each accompanied with H=3 long genetic history of
motion, comprised of 3 poses before the target pose (Fig. 14).

Current poses and their histories were saved in designed database as bitmap files, and
supplemented with the BVH-formatted reference data in a form of bones angles values for
particular poses. Then the pose estimation algorithm was initialized with T-shape pose (all
angles equal to zero) and performed higher and lower hierarchy estimation with respect to
designed algorithm. After the pose estimation the model state was compared to respective
reference data and cumulative Sum of Squared Differences (SSD) of angles for all bones was
calculated to assess the pose estimate.

In the experiment the following values were used: number of objects N=60, best N'=6
objects were selected for reproduction, motion history length H=3, M=2 stages APF was
performed, and best L=1 object was used for comparison to reference values. The genetic
optimization process was performed for 100 iterations, as this value assured reasonable
processing time of ca. 60 s (10milliseconds for rendering and calculating the metric for a
single candidate pose). Relation between those parameters and computation time is straight-
forward, therefore more precise or more coarse analysis can be performed in particular time
constrains. Moreover, any number of N objects can be divided into groups processed in
separate threads (parallel calculations on multi-core CPU) for a significant improvement,
which is the goal for the next implementation.

Obtained results of estimation of 10 poses (Fig. 15) employing the genetic modification
of APF with 3 step history, and hierarchical matching are presented in Table 2. For reference
the same poses were estimated utilizing APF method, executed until the SSD error decreased
below the one achieved by Genetic APF.

If the arms are stretched away from the torso (poses 1+5 in Table 2), then the higher
hierarchy matching result is high, due to precise localization of the torso and head shape.
Then, for the whole body, errors of shape and edges matching higher and lower hierarchy
(for torso and arms) sums, therefore decreasing total matching result.

Contrary, if in the pose shape arms connect to the torso (poses 7+10 in Table 2), then the
matching obtained in the first stage of higher hierarchy estimation is low, because of the
attempt of matching “handless” model to full body shape. Then, the matching value

Fig.14 One of the analysed poses with //=3 long history: a—¢ 3 previous poses stored in the history, d current
estimated pose
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(T el
HlE “ m

Fig. 15 10 test poses: 1+5—arms stretch away from the torso, 6—arms embrace the torso, 710 arm or two
arms connect the torso

increases in the second stage, when full model is used and the hands positioned correctly
provide correct matching of shape and edges.

The least effective matching process was observed for pose 6, where the arms are
embracing the torso, and large degree on ambiguity is present, as very low information is
contained in the shape. This type of the pose (self occlusion, limbs very close to the torso)
stays currently as the main challenge in pose estimation research.

Poses 1 and 2 were created with abrupt motion change comparing to the historical poses,
therefore the matching result is lowered despite average SSD values. More thorough experi-
ments will be conducted for precise determination of the correct influence of motion cont v
(X) on total w(X,Z). Currently shape, edges, and motion cost metrics are considered as

Table 2 Results of hierarchical matching of body model for various poses

Pose Higher hierarchy Lower hierarchy Bones angles Number of iterations
matching w(X,Z) matching w(X,Z) errors: SSD

Genetic APF APF
1 0.900 0.852 11.72 150 230
2 0.915 0.874 11.08 150 322
3 0.944 0.903 13.14 150 412
4 0.943 0.885 16.78 150 312
5 0.954 0.930 8.95 150 474
6 0.919 0.832 24.80 150 252
7 0.883 0.961 3.48 150 528
8 0.927 0.977 2.31 150 488
9 0.947 0.979 8.30 150 385
10 0.880 0.965 2.49 150 435

SSD is a Sum of Squared Differences of bones angles compared to the reference values. A number of
iterations of genetically modified APF and standard APF methods are presented. APF was executed until the
SSD error decreased below the one achieved by Genetic APF
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equally important, while for longer sequences and histories this approach may lead to motion
continuity preference over shape estimation precision.

6 Summary

Hybrid genetic-APF method was proposed and tested. New metric for model-to-object
matching was proposed employing motion dynamics and movement speed changes. The
concept of “genetic memory” was introduced, facilitating processing of the motion history
and accounting the history in estimate fitness measurement. The genetic crossing-over
operator forces APF algorithm to assess other modes of the model matching metric, and
genetic mutation introduces randomness, important for avoiding local optima. The proposed
algorithm can be used for other body hierarchies with more than two hierarchy levels, and
various genetic history lengths H.

The future work will focus on optimization by means of parallelization of the genetic
algorithm, i.e. splitting of objects set into groups analysed by separate threads for multi-core
CPUs, e.g. supercomputer clusters. Also an implementation of limbs occlusions handling is
planned. Moreover, the matching metric will be further extended by introducing pixel-level
motions (e.g. based on Optical Flow or Motion History Imaging).
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