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1Department of Atomic Physics and Luminescence, Faculty of Applied Physics and Mathematics, Gdańsk
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Abstract. Quantification of DNA damage, induced by various types of incident radiation as well as
chemical agents, has been the subject of many theoretical and experimental studies, supporting the
development of modern cancer therapy. The primary observations showed that many factors can lead to
damage of DNA molecules. It became clear that the development of experimental techniques for exploring
this phenomenon is required. Another problem was simultaneously dealt with, anticipating on how the
damage is distributed within the double helix of the DNA molecule and how the single strand break
formation and accumulation can influence the lethal double strand break formation. In this work the most
important probabilistic models for DNA strand breakage and damage propagation are summarized and
compared.

1. Introduction
Although for many years DNA damage has been subject to various studies, in recent years a new
approach has been undertaken in order to assess the influence of radiation and chemical agents action on
DNA. Breakage of the DNA double helix has been investigated under various conditions when exposed
to both ionizing and non-ionizing radiation as well as other reactive species, like hydroxyl radicals or
cutting and nicking enzymes. In all these attempts the main goal was to be able to obtain highest levels of
double-strand breaks (DSBs), lethal to living cells. It was also found that accumulation of single strand
breaks (SSBs) can lead to DSBs appearance and further to cell death, when the single-strand lesions
appear in both strands within a small distance, h. This distance is measured in basepairs for double
stranded DNA molecule. It describes a span between SSBs created in opposite strands that will lead to
hydrogen bond rupture between complementary bases lying between these breaks and further create a
DSB in DNA molecule. Together with changes in DNA conformation, this distance became one of the
most important parameters to be determined in samples exposed to damaging agents of various kinds.

Simultaneously, investigations on the probability of breaking a DNA strand by incident particles were
conducted. In early years the damage distribution assessment was based on probabilistic models. The
very first studies accounted for neither parameters like random lesion distribution within both strands nor
the strength of phosphodiester bonds in the DNA backbone [1], and the experimental data fitted to the
theoretical model that was developed gave a value of h = 2. Some later developments brought more light
to the problem of how single-strand lesions are deployed between strands of DNA molecules and their
influence on DSBs formation [2] as well as the difference in the enzyme and particle action on DNA
molecule. Moreover, it was found that the conformation of the plasmid molecule has a great impact on
the yields of damage obtained from irradiation [3].

Nano-IBCT 2011 IOP Publishing
Journal of Physics: Conference Series 373 (2012) 012013 doi:10.1088/1742-6596/373/1/012013

Published under licence by IOP Publishing Ltd 1

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


The earliest studies employed sucrose gradient centrifugation for breaks analysis and focused only
on transitions from relaxed, R, to linear, L, DNA form. When a new experimental method, agarose gel
electrophoresis, was brought in for analysis of DNA damage induced by radiation [4], the possibility of
investigating the decrease in supercoiled, S, DNA levels arose. The relations between various topological
forms of DNA as well as levels of damage that could be detected with this new method were derived.
Further fragmentation of linear molecules was also investigated and the loss of linear molecules due to
multiple DSBs (MDSBs) formation was described [5]. This fragmentation was also considered with
respect to the DSB in DNA being a result of a multiple SSBs accumulation or by simultaneous cleavage
of both strands by a damaging agent.

In all cases the experimental results obtained for various types of damaging agents showed some
discrepancies in the determination of the h value. In addition, with development of the theory, more
accurate modeling of experimental data was possible, leading to a correct description of the damage
formation mechanism.

Nowadays more sophisticated computational models are in use. Due to their complexity it is now
possible to deal not only with simple break formation, but also to account for the influence of irradiation
of the DNA environment, i.e. living cell, and thus secondary species attack [6–9]. Moreover, an accurate
examination of the mode of action of various incident particles can be performed at the same time
[10, 11].

The very first attempts to describe transformations in DNA conformations upon damage turned out to
give a solid base for SSBs and DSBs determinations and are continuously used for simple modeling of
damage in experimental works dealing with DNA and protein damage induced by chemical agents [12],
ions [13], OH radicals [14, 15], photons [16] or neutrons [17]. In this paper the most important early
developments in DNA damage assessment theory will be presented and summarized.

2. Modeling of DNA damage
Very early studies [1] introduced a simple model for the assessment of the h parameter from the molecular
weight decrease of enzymatically treated DNA molecules. The main disadvantage of this approach was
that it takes an average number of DSBs per DNA molecule only. Also, an assumption was made, stating
that all phosphodiester bonds in a DNA molecule are equally breakable. Such simplifications could be
valid when breaks are created by enzymes, such as DNA-ase, but they are not valid when particles are
the damaging agent. Therefore, in order to satisfy more general experimental conditions, more detailed
modeling was required.

2.1. The Freifelder and Trumbo model [2]
In the model developed by Freifelder and Trumbo [2] the authors analyzed the transitions between R and
L DNA forms, initiated by X-ray radiation. Both the average numbers of DSBs and SSBs were taken
into account in order to determine the h value. The reasoning for this work was a mismatch between new
experimental data and earlier theory. The discrepancy was attributed to the effects caused by obtaining
lesions in DNA molecules with irradiation by high energy particles rather than enzymes. By analyzing
the probabilities of DSB formation depending on the position of the first and all the following SSBs in
both strands, a general formula for the probability that no DSBs will occur in the molecule, F (N) was
derived. By solving this equation, the authors showed that a fraction of molecules, which does not suffer
a DSB is

F =

[
L −R

L

]b

=
L −b(2h+1)b

L
, (1)

where b= 1
2 ps is the average number of SSBs per strand, ps is the average number of SSBs per double-

stranded molecule, L is the number of phosphodiester bonds per single strand and R is the number of
forbidden positions for next SSB formation.
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Using the Poisson distribution of SSBs in the molecule to evaluate their number N and thus accounting
for varying numbers of such lesions in molecules that are present in the sample, a more precise equation
describing F was obtained

F =
∞

∑
N=0

[F (N)e−ps(pN
s /N!)], (2)

where F (N) is a probability that N SSBs in a molecule are arranged so that no DSBs can be formed.
The authors did not find this equation to be more precise when fitting their experimental data, in addition,
the solution in computationally more difficult to find. Thus, the equation (1) was rearranged in order to
obtain the value of h

h =
L

2b
(1−F ∗)− 1

2
, (3)

where F ∗ is the b-th root of F . If h needs to be expressed in terms of pd , the average number of DSBs
per molecule, the calculations lead to

h =
pdL

2b2 −
1
2

or pd =
b2

L
(2h+1). (4)

Equation (4) is equivalent to the formula derived in [1], given for a polydisperse system.
To account for different probabilities of damaging phosphodiester bonds by irradiation the authors

discussed the likelihood of the SSB occurrence next to a specific DNA base. Assuming that the DNA
sample used in the experiment contained molecules large enough to be considered possessing a random
sequence of nucleotides in both strands and that the breaks can only occur adjacent to a purine, a quarter
of the phosphodiester bonds could not be broken. Therefore, the probability that a phosphodiester bond
will be broken, b/L , should be taken as b/(3/4L ) instead. As the same reasoning would apply to the
number of forbidden regions in the molecule, R, thus their ratio in equation (1) remains unchanged.

2.2. The Blok and Loman model [18]
In some later work the damage yield was analyzed in terms of the action of secondary particles, like
electrons or radicals that are formed in living cells upon irradiation. First, a formula for D37, a 37 %
survival dose where, on average, there is one lethal lesion present per one DNA molecule, was derived
to yield

D37 =
100
rQ

(N0 +C), (5)

where N0 is the DNA concentration (number of molecules per ml), r is the number of eV per gram
per rad. Q and C are given by Q = ∑i εiGi and C = S

Q ∑i αiεiGi, where Gi is the radical yield (OH•,
H• or e−aq, respectively), and εi is the efficiency of inactivation of a reaction between the i-th radical
and the DNA molecule. Because the solution always contains impurity molecules that remove part of
the primary radicals, the αi parameter, which describes a ratio of rate constants of the i-th radical for
reaction with impurity and DNA molecules, respectively, was introduced. Nonetheless, no allowance
for impurities present in the solution that originate from DNA preparation was made. Furthermore, the
authors assumed that these impurities can only act as radical scavengers. The authors did not observe a
linear relationship between D37 and DNA concentration in their experimental results. The discrepancies
between the derived equation (5) and experimental data were explained to be due to a secondary radical
formation in the DNA molecule upon attack of primary radicals. The molecule itself would not suffer
damage but would interact further with other, undamaged molecules in the solution.

The average number of single strand breaks present in the double stranded molecule, ps, being a sum
of such lesions present before, p0

s , and after irradiation, p, in a molecule containing L base pairs was
shown to be

ps = p+ p0
s = 2L n, (6)
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where n is the probability that a break has occurred between two arbitrarily chosen neighboring bases
in a strand. The authors determined the average number of DSBs per molecule, pd , with respect to the
average number of SSBs that appear in the double stranded molecule

pd =
(p+ p0

s )
2

4L
(2h−1) =

p2 +2p0
s p

4L
(2h−1)+ const. (7)

If no SSBs are present in the DNA sample before irradiation, the constant in equation (7) is small and can
be neglected, thus the relationship is similar to (4) given in [2]. The obtained relationship contains both
linear and quadratic terms for SSBs appearance in the sample upon irradiation. Also, in case of lack of
initial breaks the formula simplifies to a quadratic-only relationship and h can be easily calculated from
the slope of pd versus ps plot.

The value of h obtained by the authors was very close to the ones obtained previously, but a mismatch
between calculated and measured values of p0

s gave a reasonable doubt on the accuracy and the rationale
of theoretical analysis presented by the authors. Also, the experimental data were showing a linear
increase in pd with ps at low doses of radiation, instead of a quadratic one. This was explained by
introducing two mechanisms of DSBs formation. It was postulated that at low doses DSBs are formed by
single-hit events involving radical attack and, thus, the initial presence of SSBs is not required, whereas
at higher doses the accumulation of SSBs will cause an increase in the number of DSBs as a primary
mechanism.

This formula was later used by van der Schans [3] giving four times larger values of h when applied
to his data for γ-irradiated DNA samples. A temporal local denaturation following SSBs appearance was
given as a possible explanation.

2.3. The van Touw model [4]
The model presented by van Touw and coworkers [4] was developed to handle the data authors obtained
from a newly developed method for DNA breaks analysis - agarose gel electrophoresis. In their
experiments they could analyze not only the transitions between R and L forms of DNA, but also the
loss of the initially supercoiled DNA. Contrary to gradient centrifugation techniques [3, 19], for the
first time it was possible to follow dose-dependent quantitative changes in all three DNA forms since
they got separated completely on the gel. All the previously derived models either did not account for
the contribution of various mechanisms to DSBs formation or treated the formation of SSBs by simply
averaging their amount between both strands in the double stranded molecule. According to the authors,
such an assumption was not correct because it does not allow for overlapping of SSBs in both strands
within the h distance. The formulas derived here took into account a binomial distribution of the SSBs
between two DNA strands and the probability that regions with SSBs in opposite strands within h can
overlap each other.

The authors analyzed the probabilities with which the molecules in an irradiated sample are affected
by SSBs and DSBs formation. Also, a multiple hit DSB originating from two independently formed
SSBs was distinguished. Moreover, the model allows predicting levels of potential SSBs that are not
visible on the gel, but still present in DNA molecules. For all these cases a binomial distribution of
probability of a hit was used and a Poisson probability of lesions distribution was applied. The analysis
led to the conclusion that a probability, w, that a SSB in one strand will find a SSB in the other strand
within a distance h is 2a/L . Thus, a fraction of molecules, f , of contour length L , that has, by single
hits, nd DSBs and ns SSBs and additional nds DSBs as a result of ns SSBs was derived to be

f (pd , ps,2h/L ;nd ,ns,nds) = P(pd ;nd) ·

{
P(ps;ns) ·

ns

∑
ks=0

[B(ns,1/2;ks) ·B(m,w;nds)]

}
. (8)

Noticing that f given by (8) is a multivariate distribution function, a relationship between pds and ps (in
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agreement with [18]) was also obtained

pds =
( ps

2

)2
· 2h
L

. (9)

The ps and pd parameters, representing the average numbers of SSBs and DSBs that originated from a
single-hit event per molecule, can be related to the radiation dose, D, in the following way

ps = p0
s +D/D37s, (10)

pd = p0
d +D/D37d = p0

d + ε ps, (11)

where p0
d and p0

s represent numbers of SSBs and DSBs in molecules at zero dose, respectively, and D37s
and D37d are doses, at which there is, on average, one single-hit SSB and one single-hit DSB per DNA
molecule, respectively. The ε parameter expresses the efficiency with which a single-hit DSB is created
over a SSB.

From (8) the authors derived a set of formulas allowing to follow the changes in S, R and L forms
of DNA. For fraction S that has no SSBs (ns = 0) and DSBs (nd = 0) and thus no multiple-hit DSBs
(nds = 0)

S(nd ,ns,nds = 0) = P(pd ;0) ·P(ps;0). (12)

In case of fraction R that has at least one SSB (ns ≥ 1), no DSBs (nd = 0) and thus no multiple-hit DSBs
(nds = 0), a following relation was derived

R(nd ,nds = 0,ns ≥ 1) = P(pd ;0) ·

{
∞

∑
ns=0

[
P(ps;ns) ·

ns

∑
ks=0

(B(ns,1/2;ks) ·B(m,w;0))

]
−P(ps;0)

}
. (13)

The last fraction, L, is the fraction, which has only one DSB created either by single- or double-hit
(nd +nds = 1)

L(nd +nds = 1) = P(pd ;1) ·
∞

∑
ns=0

{
P(ps;ns) ·

ns

∑
ks=0

[B(ns,1/2;ks) ·B(m,w;0)]

}

+P(pd ;0) ·
∞

∑
ns=0

{
P(ps;ns) ·

ns

∑
ks=0

[B(ns,1/2;ks) ·B(m,w;1)]

}
. (14)

The authors derived also a simplified set of equations describing quantitative changes in all three DNA
fractions upon irradiation and lesions formation

S = e−pd · e−ps , (15)

R' e−pd ·
[
e−pds− e−ps

]
, (16)

L' (pd + pds) · e−pd · e−pds . (17)

These equations are valid only when numbers of ps and 2h/L are low and pd/ps is high. Otherwise
some inconsistency at higher doses, i.e. higher ps numbers, can be seen between equations (12)–(14)
and (15)–(17).

The approach taken by the authors allowed for the first time to determine numbers of SSBs, DSBs,
loss of initial S form and the distance h, required to create a DSB from two independent SSBs in irradiated
molecules. The distance h, calculated using this model, was shown to be approximately 30 bp. Such a
large discrepancy with values found in the literature (see section 2.2) was ascribed to a difference in the
DNA preparation method rather than a result of more accurate modeling. Although the authors provided a
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very detailed set of equations describing changes in topoisomeric forms of DNA (12)–(14), unfortunately
the formulas did not include the evolution of the fragmented form, F , which certainly appears at higher
doses of radiation.

Nonetheless, it was also possible to follow the time evolution of three main DNA topoisomeric forms.
The simplicity of the new experimental method – agarose gel electrophoresis – made it being widely used
by scientists in radiation studies.

This model was later modified by Hempel and Mildenberger [20], who noticed that the number of
DSBs, pd given by (11) should include a factor for pds as both types of damage will create an L form of
DNA

p̃d = pd + pds. (18)

The h value obtained from fitting to the experimental data was much higher than reported by others,
reaching 60 bp. It was doubted that such long distance between SSBs would cause enough instability
in the molecule in order to create a DSB. The authors had also noticed that from the simplified set of
equations (15)–(17) one can derive another formula describing changes in the levels of DSBs, namely

p̃d =
L

S+R
. (19)

The advantage of this modification was that only the relative fluorescence measurements of the gel had
to be performed in order to assess levels of DNA damage.

2.4. The Cowan model [5]
Simultaneously, another model, based on earlier work [2, 21], was derived. The damage to the DNA
sample was introduced by nicking and cutting enzymes that can mimic breaks appearance in DNA upon
irradiation, allowing to fully control damage induction. Apart from managing the transitions between S,
R and L DNA forms, the authors also considered various cases, including further fragmentation of linear
DNA due to MDSBs formation and thus appearance of the F form. In addition, a situation, where not
100 % of the starting material is in a supercoiled form was discussed.

First, the case with only the single stranded nicking being the damaging agent was considered.
Changes in levels of the supercoiled DNA form were assumed to follow an exponential loss of the
starting material with time, t

S(µ) = e−µ . (20)

with µ = λ · t, where λ is a proportionality constant. The µ parameter is the number of nicks created
in a molecule up to time t and can be considered as a ’nicking dose’. Derivation of other formulas,
describing changes in levels of R and L forms, required more advanced mathematics and led the authors
to the following relations

R(µ) = 2e−µ/2−2e−µ +µX , (21)

L(µ)> q−1
(

eµq/2−1
)(

µX−Y + e−µ/2− e−µ

)
and (22)

L(µ)< µ (2−qµ)−1
(

µX−Y + e−µ/2− e−µ

)
, (23)

where

X =
∞

∑
k=1

e−µ(1+kq)/2[µ(1− kq)+/2]2k−1/(2k!) and (24)

Y =
∞

∑
k=1

e−µ(1+kq)/2[µ(1− kq)+/2]2k−1[2k+µ(1− kq)/2]/(2k!). (25)

Nano-IBCT 2011 IOP Publishing
Journal of Physics: Conference Series 373 (2012) 012013 doi:10.1088/1742-6596/373/1/012013

6

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


The q parameter denotes the size of the taboo zone – the area, where no further breaks can form. The
MDSBs were simply assessed to be the rest of the material missing from the quantification of the three
main forms with respect to the initial conditions

F(µ) = 1−S(µ)−R(µ)−L(µ). (26)

When an additional factor, causing a DSB formation simultaneously to SSBs appearance with
efficiency φ (cutting dose), proportional to t via constant ρ , was introduced, the equations (20)–(23)
took the following form

S(µ,φ) = e−φ S(µ), (27)

R(µ,φ) = e−φ R(µ), (28)

L(µ,φ) = e−φ [L(µ)+φ{S(µ)+R(µ)}]. (29)

In the situation, where the cleaving mechanism dominates over the single strand cut, it was possible to
simplify the theory to

S(µ,φ) = e−(µ+φ) (30)

R(µ,φ) =
(
1− e−µ

)
e−φ (31)

L(µ,φ) = φe−φ (32)

F(µ,φ) = 1− e−φ (1+φ). (33)

By dividing equations (30)–(32) by 1−F(µ/φ), the authors obtained a set of formulas that correspond
to the bands on gel and thus values for S, R and L can be obtained directly. In such case also µ and φ can
be determined as

φ = L′/(1−L′), (34)

µ =− ln[S′(1+φ)], (35)

where S′ and L′ are the relative proportions of S and L forms. Accounting for the fact that not 100 % of
the starting material being in supercoiled form increased to the values of µ and φ by starting nicking and
cutting doses µ0 and φ0

µ = µ0 +λ t, (36)

φ = φ0 +ρt. (37)

The last situation that was analyzed was the case when both mechanisms were taking place together
with topoisomerase I action that unwinds supercoiled molecules leaving them in an R form with
no breaks. Therefore, it was necessary to introduce another parameter, θ , describing the rate of
topoisomerase I interaction with DNA. This parameter is analogous to µ and φ , except that the interaction
has an effect only if it is the primary one of all three. Equations (26) and (29) remain unchanged, whereas
(27) and (28) take the following form

S(µ,φ ,θ) = e−θ S(µ,φ), (38)

R(µ,φ ,θ) = R(µ,φ)+
(

1− e−θ

)
S(µ,φ). (39)

As previously, a simplified theory for the case of DNA cleavage being the predominant mechanism was
derived. The obtained equations were the same, except for µ being replaced by µ +θ .

From plots of molecular proportions of different DNA forms, obtained for varied values of all three
parameters, the authors concluded that if only the nicking mechanism of DNA damage is involved, the
DSBs start appearing when almost all of the S form of DNA is lost. When, in addition, a cleaving
mechanism is involved, even a small increase in the cleaving rate φ would cause much faster degradation
of the starting material; the simplified theory can only be used when DNA cleaving is truly the
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predominant mechanism. Their final finding was that if in the initial sample there are some relaxed
but not nicked molecules or the molecules, initially supercoiled, undergo unwinding before nicking
and cleaving, the loss of the supercoiled material is much faster, yet the topo-enzyme plays no role
once all supercoiled molecules are lost. In comparison to the earlier model [2], the authors used their
exact formula (21) and concluded that the oversimplified approach used previously underestimates the
proportion of relaxed molecules being lost due to DSBs formation from multiple SSBs.

3. Summary
In this paper a few initial statistical models aiming at describing the distribution of lesions in DNA
molecules, caused by damaging agents like enzymes, ionizing radiation or secondary species attack,
are presented. With the development of experimental techniques, allowing for the separation of main
topological forms of DNA, there was an urge to improve models in order to account for new phenomena
that could then be observed. The earliest attempts were developed further to account for more topological
DNA forms as well as for various conditions under which damage can be induced. The value of h
parameter varies between models and experiments, still raising the issue of the length of the h that is
necessary to create a DSB from two SSBs.

The distinction between the mode of action of an enzyme and radiation on a DNA molecule permitted
to develop independent methods for description of topological changes in DNA. The accurate description
of dynamical changes in DNA conformations upon the action of the damaging agent allows an assessment
of the efficiency of the agent in damaging the DNA molecule that is an important issue in cancer therapy.
The most advanced models of those presented here have laid the foundation for more advanced modeling
developed recently. Nonetheless, they are still in use, aiding the analysis of experimental data and dealing
with outcomes of the radiation-induced damage by electrons, photons or ions.
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