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1. Introduction

Recently, interest has arisen in the derivation of closed-form expressions for parameter derivatives of the associ-
ated Legendre functions. In Ref. [1], Brychkov has arrived at several representations of [dP% (z)/0V]v=n, [0Q % (2)/0V]y=n,
[BP{,‘(z)/apL]M:m and [d Qﬁ(z)/au]ﬂzm (here and throughout the rest of this paragraph it is understood that m,n € Np),
some being compact, other being quite expanded. Cohl [2,3] has ingeniously shown that from the knowledge of the
parameter derivatives [dK (t)/9u]=m and [0, (t)/du]u=m of the modified Bessel functions, with the aid of known in-
tegral relationships between P (z), Q% (z) and Ky (t), 1,(t), one may deduce elegant formulas for [anf(z)/av],,:n_l/z,
[0Q) (2)/3V]v=n—1/2, [dPY (2)/d ) u=m and [dQ}' (2)/d/x],.=m. Finally, in Refs. [4,5] the present author has extensively stud-
ied derivatives of P! (z) in the case when one of its parameters is a fixed integer. In particular, using finite-sum expressions
for PX(z), we have derived the following two formulas for [8 P~ (2)/9 ] u=m (cf. Ref. [4, Egs. (3.4), (3.28) and (3.29)]):
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In turn, using contour-integral representations of 8 P]'(z)/dv, we have arrived, among others, at the following three formulas
for [0P]}(2)/9V]v=n (cf. Ref. [5, Egs. (5.7), (5.8) and (5.9)]):
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In the above equations, and in what follows, v (¢) is the digamma function defined as
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This marked effort towards extending the knowledge on parameter derivatives of the associated Legendre functions has
been driven not only by a purely mathematical concern. It actually appears that such derivatives are met in solutions of a
number of problems of theoretical acoustics, electromagnetism, heat conduction and other branches of theoretical physics.
A very recent relevant example from the field of mathematical optics is the problem of construction of the generalized
Green'’s function for a scalar wave in the Maxwell fish-eye medium [6]. An exhaustive list of other works where the reader
will find a variety of applications of the derivatives in question is provided in Ref. [5].

In this paper, we shall pursue further the subject of derivation of closed-form expressions for parameter derivatives of
the associated Legendre function of the first kind in the case when one of its parameters is a fixed integer. First, in Section 2
we shall show that there exists a simple relationship between the derivatives [dP]'(z)/0Vv]y=n and [d P,’f(z)/au]u:m, both
with m,n € Np. Next, in Section 3 we shall use this relationship, in conjunction with the formulas (1.1) and (1.2), to derive
four further representations of [d P} (z)/dV]y=n, two of them involving sums of powers of (z+ 1)/2 and the remaining two
— sums of powers of (z — 1)/2. Interestingly, each out of these four representations contains only two sums. Therefore, the
two new expressions for [dP]'(z)/dv]y=, containing sums of powers of (z+ 1)/2 appear to be markedly simpler than the
previously derived representations (1.4) and (1.5), while the two new expressions involving sums of powers of (z—1)/2 are
of the same degree of complexity as the representation (1.3). In addition, as a by-product, we shall obtain in that section
two useful finite-sum representations of [y (n +m+ 1) — ¥ (n+ 1)]P]'(2). In the final Section 4, we shall exploit the results
of Section 3 to find some new representations of the associated Legendre function of the second kind of integer degree and
order, Q[ (2), suitable for use for numerical purposes in various parts of the complex z-plane.

Throughout this work, we adopt the standard convention according to which z € C, with the phases restricted by

-7 <arg(z) <7, —mT<arg(zx1) < (1.7)
(this corresponds to drawing a cut in the z-plane along the real axis from z = —o0 to z=+1). Hence, it follows that

—z=eTz,  —z4+1=eFT(z-1), —z-1=eT"(z+1) (argz) 20). (1.8)
Furthermore, we define

(Z-1)"=z-D"+1D* (@eC) (19)

(this must be remembered when implementing numerically formulas for [dP]'(z)/dv]y=n or Q]'(z) derived below!). For
the natural logarithm, we take the Riemann’s point of view and consider In¢ as a single-valued function on the domain
{0<|¢] <00, —00 < arg¢ < oo}, subject to the constraint In1 = 0. Next, it will be implicit that x € (-1, 1), u,v € C and
k,m,n € Np. Finally, it will be understood that if the upper limit of a sum is less by unity than the lower one, then the sum
vanishes identically.

The associated Legendre functions of the first and the second kinds used in the paper are those of Hobson [7]. Their
definitions, both off and on the cut, are the same as in the standard handbooks on special functions, such as Refs. [8-12],
as well as in the classic Robin’s monograph [13-15].

2. Arelationship between [ P}'(z)/dV]y=y and [0 P,’,‘ @) /op]p=m

The departure point for our considerations in this section is the following Rodrigues formula, due to Barnes [16, Sec. 59],
for the associated Legendre function of the first kind when the sum of its degree and its order is a non-negative integer m:
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In terms of the Jacobi polynomial
1 d"
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Pn D@ =@+ D) S [@= D" @+ D] (@.pe0), (2.2)
Eq. (2.1) may be rewritten as
ml 21\
PI V()= —— (" PR ™M (). 2.3
v (@ F(v+1)< 7 > m (2 (2.3)

(With no doubt, the reader has immediately realized that the Jacobi polynomial appearing on the right-hand side of Eq. (2.3)
is a multiple of the Gegenbauer polynomial C,(n"*mﬂ/ 2 (z). However, we shall not make any use of this fact here.) Differen-
tiation of Eq. (2.3) with respect to v, followed by setting v =n, yields
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The replacement of m by n 4+ m results in the relationship

2
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If in Eq. (2.5) one exploits the following two explicit representations of the Jacobi polynomial P,f,“’ﬂ ) (2) [10, Sec. 5.2.2]:
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respectively.

In this work we are interested in the case when both the degree and the order of the Legendre function derivatives are
integers. Therefore, above we have focused on the derivation of the relations (2.9) and (2.10) between [dP]'(2)/dV]y=n and
[aPY (2)/d ] yu=m. It is evident, however, that starting from Eq. (2.3) one may obtain relationships between the derivatives
[anf(z)/av]M:m,U and [anf(z)/au]M:m,v for arbitrary complex v.

3. Some new representations of [d P1'(z)/9v]y=n and [d P} (x) /dV]y=p WithO<m < n

In this section, we shall use the results of Section 2 to provide several expressions for the derivative [dP}'(2z)/dV]v=n,
which supplement these given in Eqgs. (1.3)-(1.5). Also, related formulas for the derivative [d P]} (x)/dV]y=n will be presented.

The first from among these expressions for [dP]'(z)/0v]y=n follows if one plugs the representation (1.2) of
[Pk (2)/dpt]u=m into the relationship (2.10). The result,
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pm 1
8;,)(2) =P,T(z)1nz'; +[¢(n+m+1)—w(n—m—i—l)]P,T(z)
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(3.1)

is seen to be much simpler than either of the representations (1.4) or (1.5). An infinite variety of other representations of
[0P(2)/dV]y=n, involving sums of powers of (z+ 1)/2, may be obtained by taking linear combinations, with coefficients
such that their sum is unity, of the expressions in Egs. (1.4), (1.5) and (3.1). For instance, multiplying Eq. (3.1) by —1 and

adding to the sum of Eqgs. (1.4) and (1.5) leads to another remarkably simple formula

z+1 2= I\ ke mytm—k—1)! [z + 1\
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k
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For m =0 both the representations (3.1) and (3.2) of [dP}'(2)/dV]y=n reduce to the formula

Py (2) _ ken  (k4+m)! ~ <+1>
Y v:n—Pn(z)ln +22() *)Zn k)‘[W(k—kn—H) Yk+1)] . 7

found by the author in Ref. [17, Sec. 5.2.7] (cf. also Ref. [18]).

(3.2)

(3.3)

From the above findings, one may deduce two interesting and, as we shall see in a moment, useful identities involving

the function P]'(z). If we equate the right-hand sides of Eqs. (1.4) and (3.1), this results in the first of these relations:

m/2n—m

2 _
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[w(k—i—n—i—l)—w(k—i—m—i—l)]( ;]> o<m<n).

Replacement of z by —z in the above equation, followed by the use of the well-known property
Py (=2)=(=)"Py'(z) (0<m<n),

and also of Eq. (1.8), leads to the second identity:
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(n+m)!<z—1)m/2 n (k +n)!
S m—m)!\z+1 Lk +m)!(n—k)!
z—1

k
x[1ﬁ(k+n+1)—1/;(k+m+l)](7> O<m<n). (3.6)

Playing with Eq. (1.3) and with the identity (3.6), one may obtain an infinite variety of representations of [d P]]'(z)/0V]y=n
containing sums of powers of (z— 1)/2. Two examples of such representations are

m
% P [arme Dty -m )P
+(z2_1>m/2”"" (k +n +m)!
4 kl(k+m)!(n—m —k)!
k=0
k
z—1
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+(n—m)!<z+1> g k!(k +m)!(n —k)! ( 2 > Osms<m) (3.7)
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% :Pﬂ(z)ln#+[w(n+m+1)—21//(n+1)—1/f(n—m+1)]P21(z)

N 21\ ktntmyk+m+1) (z—1\F
( 4 ) p k'(k +m)!(n —m — k)! < 2 )

+(n+m)!<z—1>m/22": (k +n)!
m—m!\z+1 P k!(k +m)!(n —k)!
z—1

2
For m =0, both Egs. (3.7) and (3.8) reduce to the Schelkunoff’s formula [19] (cf. also Ref. [17, Sec. 5.2.6])

k+miyk+n+1) (z—1)\F
kH2(n — k)! ( 2 )

k
x[2¢(k+n+1)—1ﬁ(k+m+1)]< ) O <m<n). (3.8)

oP,(2)
av

z+1

=Pp(2)In

v=n

(3.9)

—2y(+ DPy@) +2)
k=0

From the representations of [dP]'(z)/dv],=, found above, one may construct counterpart representations for
[0P;™(2)/0V]v=n, using the relationship [5, Eq. (5.24)]

aP;™(2) . (n—m)! 9P (2) B B B m
5 | S @rmi e | [vn+m+1) —ym—m+1)]P,™(2) (O<m<n) (3.10)
and the well-known property
Py ="M om0 <m<n). (311)
n—m)!

Moreover, it does not offer any difficulty to derive counterpart expressions on the cut x € (—1, 1) by using the formulas

dPE™(x) _ timm2 dPE™(x 4 i0) _ oFim2 dPE™(x —i0)
v v=n v v=n v v=n
_ 1[eﬂﬂmﬂ IPSTEATO) | rimy2 OPST (6 2 10) } (312)
2 v v=n av v=n
together with

PEM(x) = eHTM/2pEMm (x 1 j0) = eFTM/2pEM (x _ j0)

1, 4 . i .
=5 [eFT™/2pEM (x +i0) + e T2 PEM (x — j0) ] (3.13)
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and
x+1xi0=14x, x—1+i0=e*7(1—x).
Proceeding accordingly, from Egs. (3.1), (3.2), (3.7) and (3.8) one deduces that

SP;V(X) =P,’1"(x)ln]+x+[1//(n+m+1)—w(n—m+1)]P,’1"(x)
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14x k
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4 k'(k+m)!(n —m —k)! 2
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2

k
x[zw(k+n+1)—1/f(k+m+1)]( ) o<m<n).

Counterpart expressions for [dP;™(x)/dv],=n are most easily obtained from Eqs. (3.15)-(3.18) and the relation

AP ™(x) m (M —m)! P (x)
=) n+m)! odv

8 v v=n v=n

which follows from Egs. (3.10), (3.12) and (3.13).

—[vm+m+1)—yn-—m+D]P,"(x) (O<m<n),

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

Concluding this section we note that, in principle, the relations (2.9) and (2.10) might be also used in the opposite direc-
tion, i.e., to construct representations for [BP#(Z)/B/L]M:m from those known for [ P]'(z)/0Vv],=n. As it appears, however,
that all expressions for [d P4 (2) /du]yu=m obtainable in this way are much more complex (and thus potentially less useful)

than these in Egs. (1.1) and (1.2), we do not present them here.


http://mostwiedzy.pl

A\ MOST

R. Szmytkowski / ]. Math. Anal. Appl. 386 (2012) 332-342 339

4. Some new representations of Q"'(z) and Q"' (x) withO<m<n

The associated Legendre function of the second kind, Q/(z), may be defined [7] as the following linear combination of
the Legendre functions of the first kind P5 (z) and PY(—2):
€TV PY (2) — Py (—2)

0l = Ty (Im(z) 2 0). (4.1)

In the special case of u =m, Eq. (4.1) simplifies to

T eq””"Pm(z) P (—2)
sin(;rv)

Q') = (Im(z) 2 0). (4.2)

Hence, after exploiting the I'Hospital rule, one obtains

1 19P7(2) (—)" 9P (—2)
z fm P2 + = -
Qn'(2) = (2) + > 1 5 ™
Thus, we see that the problem of evaluation of Q]'(z) with 0 <m < n may be reduced to that of derivation of expressions
for [0P]'(£2)/0V]y=n.
Accordingly, after combining Eq. (4.3) with Egs. (1.3) and (3.1), we obtain

(0<m<n, Im(2) 20). (43)

v=n v=n

z+1 1

Q' (2) = —Pm(z)ln ¢5[W(n+m+1)+¢(n+1)]zﬁgl(z)
EE™ A+m)! (2 -1\ kAn—mim—k—1) (zF 1)\
S (n—m)!( 4 ) Z(:F) ki +m — k! < 2 )

Emm 2 I\ ktn+m)lyk+n+m+1) (zF1
* 2 ( 4 ) Z() k!(k + m)!(n —m — k)! ( 2 >

@ m+m! 21\, (k +n)!
2 (n—m)!(zil) Z(i) k'(k +m)!(n —k)!

1 k
x [Wk+n+1) —yk+m+1)—yk+ 1)](%) O<m<n), (4.4)

where the upper signs follow if [d P} (z)/dV]y=n is evaluated from Eq. (1.3) and [dP}'(—2)/8V]y=y from Eq. (3.1), while the
lower signs result if the roles of Egs. (1.3) and (3.1) are interchanged. The same expression for Q;'(z) as above is obtained
if Eq. (4.3) is coupled with Egs. (1.4) and (3.7). Further, using Egs. (1.3) and (3.2) in Eq. (4.3) leads to

QN (2) = —Pm(z)ln 2+

EN)m 221\ km)im—k—1) (zF1\*
+ 2 (zqil) Z( ) k!(n —k)! ( 2 )

Gmm 2 1\ k+n4m)!
T (4) PG ki +m)!(n —m — k!

1
T 5[1/f(n + D) +yn—m+ 1P (2)

k
x [W(k+n+m+l)—W(k+m+1)—1//(k+1)]<?)

m/2 n

"m+m)! (zF1 kMY Ek+n+1) (zF1
£ (n—m)!(zil) D) ki(k +m)!(n —k)! ( 2

) o<m<n). (4.5)

Next, if [d P} (z)/dV]v=n is obtained from Eq. (3.1) and [8 P (—2)/dVv]y=, from Eq. (3.7), or vice versa, then Eq. (4.3) yields
the expressions

QN (2) = —Pm(z)ln +1 Fym+m+ 1P (2)

+

EE™ +m) (2 -1\ ktn—mim—k—1) (zF 1)\
2 (n—m)!< 4 ) 2. Kl(n+m—k)! ( 2 )
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n+m ,,2 _ q\Mm/2n-m
i(:t) (z l) Z(i)k (k+n+m)!

2 4 k'(k+m)!(n —m —k)!

[2w(k+n+m+1)—w(k+m+1)]( 7;1)

E"m+m! 21\, k4!
2 (n—m)!(z:i:l) Z(i) k!(k +m)!(n —k)!

k
x[2¢k+n+1) =2y k+m+1) —yk+ 1)](?) oO<m<n). (4.6)

We are not aware of any appearance of either of the formulas (4.4)-(4.6) in the literature. Furthermore, if Eqs. (3.1) and
(3.8) are used in Eq. (4.3), this results in

1
Q"2 = —P’"(z) n 2t F v+ DPRG)

EEM +m)! (2 -1\ ktn—mim—k—1! zF 1\
S (n—m)!< 4 ) 2 Kl(n+m — k! < 2 )

N (F)m+m <22 —l)m/zni"f(i)k k+n+myk+m+1) (zzpl)k

2 4 k!(k +m)!(n —m — k)! 2

n (B)" (n+m)! (zq:1>m/2 Zn:(i  k+miyk+1) (z;l

2 m—m'\z+1 kl(k +m)!(n — k)! ) ) o<m<n), (4.7)

which is the same as what follows if Eqs. (1.3) and (1.4) are plugged into Eq. (4.3) (cf. Ref. [5]). Finally, insertion of Eqs. (3.2)
and (3.7) into Eq. (4.3) leads to

+

Q'@ = —P'"()l n—F;3 [I/f(ﬂ+m+1)+1/f(n—m+1)]Pm(z)
EMEM 21\ kmim—k—D (251K
= 2 <Z:|:1> Z( ) k!(n —k)! ( 2 )

+

B2 -1\ kEnemlyk+1) (zF1)
2 ( 4 ) Z(i) k!(k+m)!(n—m—k)!< 2 >

n (D" (n+m)! <z¢ 1 >m/2 Xn:(i)k k+m)Wyk+m+1) (zq:]
2 m—m!\z+x1 k!(k +m)!(n —k)! 2

) og<m<n), (4.8)

which, in turn, is the same as what is obtained if Eqgs. (1.3) and (1.5) are coupled with Eq. (4.3) (cf. again Ref. [5]; for
alternative derivations of the above result see Ref. [14, pp. 81, 82 and 85] and Ref. [4]). Other expressions for Q'(z) may
be obtained by combining Eqs. (4.4)-(4.8), with the possible help of the identities (3.4) and (3.6).

Once Q/7(z) is evaluated, one may find Q,;™(z) from the well-known relationship

(n —m)!
m z) 0<m< 49
QL@ =y @ @<m<n). (4.9)
We conclude with the observation that using the formula
QMx) = - ) ~———[e7TM2QM(x +i0) +eTM2QM(x —i0)] (-1<x<1), (4.10)

which follows from the Hobson’s [7] definition of the associated Legendre function of the second kind on the cut, and
employing the identities in Eq. (3.14), from Eqs. (4.4)-(4.8) one derives counterpart representations of Q'(x), with 0 <
m < n, listed below:

1+x

1
QM x) = —Pm(x)ln ¢§[¢(n+m+1)+w(n+1)]13;"(x)

L @@ @ m)! 1—2\ ™2 ktn—m)m—k—-1! /1Fx\
2 (n—m)!< 4 ) . kI(n+m—k)! ( 2 )
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+

BH)"F)" (1 —x2>m/2'§1(_)k k+n+mlyk+n+m+1) (1 :Fx>k
2 4 P k!(k +m)!(n —m —k)! 2

"™ (+m)! (1 :Fx)’“/2 ) )
+ 2 m—m)!\1xx pard k!(k +m)!(n — k)!

x [W(k—i—n—i—l)—w(k—i—m—l—l)—W(lH—l)](]jx

k
) O<m<n,
1+x
1—x

()" (F)™ <1 ix)m/z T k+m)!m —k — 1)! (1 ;x)"
2 1Fx prd k!(n —k)! 2

1 1
Q,’{'(x):iPT(x)ln ¢§[¢(n+1)+1/f(n—m+1)]1>;"(x)

+

BHNEM 1=\ kn+m)
T <4> kgo(_) Kk + m)!(n —m — k)!

k
x [W(k—i—n—i—m—i—l)—W(l<+m+1)—1//(k+1)](1 :ZFX)

+

"™ (1 +m)! <1 :Fx)’“/zX”:(_)k (k+mlyk+n+1) <1 TX
2 m—m)!\1x£x = k!(k +m)!(n — k)! 2

QM (x) = %P,T(x)ln 1+

Fy@m+m+1)PN(x)
1—x

L D@ @ +m)! (1 —x2>’"/2 "k +n—m)lm—k— 1) (1 :Fx>"

2 n—m)! 4 paard k!(n +m —k)! 2

+

(H)(F)™ (1 —x2 >m/2 ninf(—)k (k+n+m)!
2 4 prard k!(k +m)!(n —m —k)!

2

G"@" +m! (1FN\"P S k)
+ 2 (n—m)!(lﬂ:x) Z( )k!(k+m)!(n—k)!

k
x [21/r(k+n+m+1)—1//(k+m+1)]<1:Fx)

X [2w(k+n+1)—2¢(k+m+1)_¢,(k+1)]<1:sz

k
) O<m<n),

QM (x) = %P,T(x)ln 1+

T Y@t P (x)
— X

L D@ @ +m)! (1 —x2>’"/2 " (k+n—m)lm—k— 1) (1 :Fx)"

2 (n —m)! 4 pard k'(n +m —k)! 2

+

H"F" <1 —x2>’"/2’§(_)k (k+n+mlyk+m+1) (1 ;x)k
2 4 P k'(k +m)!(n —m —k)! 2

k
) oO<m<n

L @@ (- m)! <1 :Fx)’“/zX”:(_)k (k+m)y(k+1) (1 Tx
2 m—m)!\1x£x = k!(k +m)!(n —k)! 2
and
1 1+x 1
Q,T(x):EP,T(x)ln]_X:FE[tﬁ(n+m+1)+1//(n—m+l)]P,T(x)
L @) (1x M2 k+mlm—k— 1! [ 1Fx\
2 <1:Fx> p k!(n —k)! ( 2 )

k
) O<m<n,
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(4.12)

(413)

(4.14)
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L @ (1 —x2>m/z’§’(_)k k+n+mlyk+1) (1 :Fx)k
k=0

2 4 k!(k +m)!(n —m —k)! 2
n m m/2 n k
n B"(F)™ (n+m)! <1 :Fx) Z(_)k k+myk+m+1) <1 :Fx) O<m<n), (415)
2 (m-m!\1+£x pare kl(k +m)!(n — k)! 2
Q, ™(x) is then given by
Cmyon _m(n—m)! m
Q") =(-) 7(n+m)!Q,1 (x) (0<m<n). (4.16)
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