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4National Quantum Information Centre in Gdańsk, 81-824 Sopot, Poland
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One of the classical results concerning quantum channels is the characterization of entanglement-breaking
channels [M. Horodecki, P. W. Shor, and M. B. Ruskai, Rev. Math. Phys. 15, 629 (2003)]. We address the
question whether there exists a similar characterization on the level of quantum correlations which may go beyond
entanglement. The answer is fully affirmative in the case of breaking quantum correlations down to the, so-called,
QC (quantum-classical) type, while it is no longer true in the CC (classical-classical) case. The corresponding
channels turn out to be measurement maps. Our study also reveals an unexpected link between quantum state
and local correlation broadcasting and finite Markov chains. We present a possibility of broadcasting via non
von Neumann measurements, which relies on the Perron-Frobenius theorem. Surprisingly, this is not the typical
generalized controlled-NOT (C-NOT) gate scenario appearing naturally in this context.
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There is a well-known result concerning a characterization
of entanglement-breaking channels [1,2]. The latter are defined
as channels which turn any bipartite state (when applied to one
subsystem) into a separable (nonentangled) one. The main
result of Ref. [1] states that a channel � is entanglement
breaking if and only if its Choi-Jamiołkowski state (i.e., its
witness) 11 ⊗ �(P+) is a separable state [P+ denotes the
projector on the maximally entangled state, see Eq. (2)].
However, it is known that quantum correlations are more
general than entanglement (see, e.g., Ref. [3] and references
therein).

To our knowledge, the characterization from Ref. [1] has not
yet been refined to a case when a channel breaks more general
quantum correlations, i.e., transforms any state into a state
that does not possess some type of quantum correlation (see,
however, Ref. [4] where partial results were obtained). Here
we show that such a refinement is indeed possible for channels
mapping (when applied to one subsystem) any bipartite state
into a, so-called, QC (quantum-classical) state. Such channels
turn out to be quantum-to-classical measurement maps [5].
Moreover, we show that a similar statement does not hold in
the case of a stronger requirement of fully breaking quantum
correlations and transforming any bipartite state into a CC
(classical-classical) form. In the latter case, which is even more
intriguing than the QC one, the corresponding measurement
maps are formed by commuting positive operator-valued
measures (POVMs).

Our study of QC-type channels leads to an unintuitive and
surprising connection between the broadcasting of quantum
states [6] and correlations [5,7] on one side and finite Markov
chains (see, e.g., Ref. [8]) on the other. The existence of a
broadcastable state for a given QC-type channel is guaranteed
by the fact that each finite Markov chain, described by a
stochastic transition matrix [9], possesses by the Perron-
Frobenius theorem a stationary distribution. In fact, it happens
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that there are maps that may broadcast full rank states and
still have the broadcasting restricted only to a convex subset of
a full commuting family. A similar conclusion works for the
case of broadcasting of correlations.

Recall that a QC (or more precisely QACB) state is a
bipartite state of the form

σ QC =
∑

i

piσ
A
i ⊗ |ei〉B〈ei |, (1)

where σi’s are states on Alice’s side, {ei} is an orthonormal
basis on Bob’s side (possibly different from the computational
basis {|i〉}), and pi’s are probabilities. In the analogous way
one defines a CQ (or more precisely CAQB) state, where the
classical part (projectors on the orthonormal basis) is located
on Alice’s side.

Throughout the work we always assume that � is a trace-
preserving, completely positive map, i.e., a channel, and that

P+ := |ψ+〉〈ψ+| = 1

d

∑
i,j

|ii〉〈jj | (2)

is the projector on the maximally entangled state ψ+ and {|ij 〉}
is a fixed computational product basis. We prove the following.

Theorem 1. For any channel � its Choi-Jamiołkowski state
11 ⊗ �(P+) is a QC state if and only if 11 ⊗ �(�AB) is a QC
state for any bipartite state �AB .

Proof. We propose to call the above type of channels QC-
type channels. In order to set up the notation and methods
(cf. Ref. [1]), we present a detailed proof. In one direction the
implication is obvious. To prove it in the other one, assume
that the state 11 ⊗ �(P+) is QC:

11 ⊗ �(P+) =
∑

i

piσi ⊗ |ei〉〈ei |. (3)

From the inversion formula for the Choi-Jamiołkowski iso-
morphism [10]

�(A) = dTrA[W�(AT ⊗ 11)], (4)
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where W� = 11 ⊗ �(P+) and the transposition is defined in the
computational basis {|i〉}, it follows that Eq. (3) is equivalent
to

�(�) = d
∑

i

piTr
(
�σT

i

)|ei〉〈ei |, (5)

and hence

11 ⊗ �(�AB) = d
∑

k

pkTrB
(
�AB11 ⊗ σT

k

) ⊗ |ek〉〈ek| (6)

for an arbitrary bipartite state �AB . We define unnormalized
residual states as

�̃A
k := d pkTrB

(
�AB11 ⊗ σT

k

)
(7)

and their traces as

p̃k := Tr�̃A
k = d pkTrAB

(
�AB11 ⊗ σT

k

)
. (8)

We show that
∑

k p̃k = 1. From the assumption that � is trace-
preserving, it follows that

TrB[11 ⊗ �(P+)] = 1

d

∑
i,j

|i〉〈j | Tr�(|i〉〈j |)

= 1

d

∑
i,j

|i〉〈j | Tr|i〉〈j | = 1

d

∑
i

|i〉〈i| = 11

d
.

(9)

On the other hand, the QC assumption (3) implies that

TrB[11 ⊗ �(P+)] =
∑

k

pkσk, (10)

and consequently ∑
k

pkσk = 11

d
. (11)

Thus, the collection {dpiσi}, or equivalently its transposition

Ei := dpiσ
T
i , (12)

forms a POVM, which together with Eq. (8) implies that

∑
k

p̃k = dTrAB

(
�AB11 ⊗

∑
k

pkσ
T
k

)
= Tr�AB = 1. (13)

Hence, Eq. (6) may be rewritten as

11 ⊗ �(�AB) =
∑

k

p̃k�
A
k ⊗ |ek〉〈ek|, (14)

with �A
k := �̃A

k /Tr�̃A
k = �A

k /p̃k , which is a QC state. �
We remark that Theorem 1 will not in general be true if

one changes the QC state to a CQ one, keeping the form of
the Choi-Jamiołkowski isomorphism. Indeed, if 11 ⊗ �(P+) =∑

i pi |ei〉〈ei | ⊗ σi , then from Eq. (4) it follows that �(�) =
d

∑
i pi〈e∗

i |�|e∗
i 〉σi and 11 ⊗ �(�AB) = d

∑
i piTrB(�AB11 ⊗

|e∗
i 〉〈e∗

i |) ⊗ σi , which is in general a separable state but not a
CQ or QC one. As an example, consider �CQ as a von Neu-
mann measurement in the standard basis on a qubit. Obviously,
11 ⊗ �(P+) is a CQ state, since it is CC. Now consider a two-
qubit state �AB which is an unbiased mixture of the projectors

corresponding to two vectors: |ψ+〉 = 1/
√

2(|00〉 + |11〉) and
|+〉|0〉 [here |+〉 := 1/

√
2(|0〉 + |1〉)]. Then 11 ⊗ �(�AB) =

1/2
∑

i=0,1 �i ⊗ |i〉〈i|, where �0 := 1/2(|+〉〈+| + |0〉〈0|) and
�1 := |1〉〈1|. But [�0,�1] �= 0, breaking the necessary condi-
tion for 11 ⊗ �(�AB) to be a CQ state.

As expected from the general results of Ref. [1] on
entanglement-breaking channels, Eqs. (5), (11), and (12) imply
that the action of the QC-type channel �QC consists of a
POVM measurement followed by a state preparation, but the
preparation is always done in the same orthonormal basis {ei}

�(�) =
∑

i

Tr(�Ei)|ei〉〈ei |. (15)

The later plays the role of a classical register, so that every QC-
type channel is in fact a quantum-to-classical measurement
map [5]: �(�) gives the state of a measuring apparatus after the
measurement of {Ei} on a system in the state �. In light of this
observation, Theorem 1 states that a channel is a measurement
map if and only if (iff) its Choi-Jamiołkowski state is a QC
state.

A natural question arises if one can refine Theorem 1 even
more to the so-called CC states, i.e., states of the form

σ CC =
∑
i,j

pAB
ij |ei〉〈ei | ⊗ |fj 〉〈fj |, (16)

where now {ei} and {fj } are orthonormal bases on Alice’s and
Bob’s side, respectively, and pij is a classical joint probability
distribution. It turns out that as stated, Theorem 1 does not
specify down to such a case, because even if 11 ⊗ �(P+) is a
CC state, 11 ⊗ �(�AB) is generically a QC state. To see this,
assume that

11 ⊗ �(P+) =
∑
i,j

pij |ei〉〈ei | ⊗ |fj 〉〈fj |. (17)

From the inversion formula (4) one then obtains that

�(�) =
∑

j

Tr(�Ej )|fj 〉〈fj |, (18)

11 ⊗ �(�AB) =
∑

j

TrB(�AB11 ⊗ Ej ) ⊗ |fj 〉〈fj |, (19)

where now

Ej := d
∑

i

pij |e∗
i 〉〈e∗

i |, (20)

and the complex conjugation e∗
i of the basis vectors ei is

defined in the computational basis {|i〉}.
Similarly to the QC case, the trace-preserving property of

� implies that {Ej } forms a POVM,
∑

j Ej = 11 [cf. Eqs. (9)–
(11)]. However, in this case the POVM elements necessarily
pairwise commute:

[Ej ,Ej ′ ] = 0, (21)

since by Eq. (20) they correspond to a measurement in
one fixed basis, but they need not form a von Neumann
measurement, as in general Ej ’s may overlap:

EjEj ′ =
∑

i

pijpij ′ |e∗
i 〉〈e∗

i | �= δjj ′Ej . (22)
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What is quite important is that the POVM condition
∑

j Ej =
11 puts some constraints on pij :∑

i,j

pij |e∗
i 〉〈e∗

i | = 11

d
⇒ pi :=

∑
j

pij = 1

d
, (23)

which in turn implies that the numbers

p�
j |i := dpij (24)

are in fact conditional probabilities:
∑

j p�
j |i = 1 for any i.

Thus, the matrix P � := [p�
j |i] is a stochastic matrix [9] and

Ej =
∑

i

p�
j |i |e∗

i 〉〈e∗
i |. (25)

From a probabilistic point of view, a stochastic matrix
defines a finite Markov chain [8]: it provides transition
probabilities between the sites. Hence, with every CC-type
channel satisfying (17) there is an associated finite Markov
chain and vice versa—with every d-site Markov chain and
orthonormal bases {ei} and {fi} one can associate a CC-type
channel through the formulas (18) and (25). In what follows
we also associate a finite Markov chain with a general QC-type
channel and investigate the consequences of the broadcasting
of states and correlations.

The state (19) is obviously a QC state. It will be a CC state
iff there exists a common basis {ẽi} such that

1

pj

TrB(�AB11 ⊗ Ej ) =
∑

i

pi|j |ẽi〉〈ẽi |, (26)

for every j , where pj := Tr(�AB11 ⊗ Ej ) and pi|j :=
(1/pj )〈ẽi |TrB(�AB11 ⊗ Ej )|ẽi〉. Condition (26) means that
all the Alice residual states, to which Bob steers via his
measurement

�A
j := 1

pj

TrB(�AB11 ⊗ Ej ), (27)

are simultaneously diagonalizable, or equivalently[
�A

j ,�A
j ′
] = 0 (28)

for all j,j ′ [cf. Eq. (19)].
The above failure of Theorem 1 for CC-type channels

motivates us to introduce another characteristic of a channel.
For an arbitrary channel �, we define a set CC(�) of those
bipartite states �AB which are mapped to a CC state by 11 ⊗ �:

CC(�) := {�AB : 11 ⊗ �(�AB) − CC state}. (29)

Conditions (27) and (28) allow us to investigate CC(�) for CC-
and QC-type channels. We are able to state the following.

(1) Obviously P+ ∈ CC(�), by the very assumption (17),
but it also contains mixtures of pure states with the following
Schmidt decompositions:

ψAB(�c; ẽ) :=
∑

i

ci |ẽi〉A ⊗ |e∗
i 〉B, (30)

where �c ∈ Rd
+,

∑
i c

2
i = 1, {ẽi} is some arbitrary basis, and

{e∗
i } is the fixed basis from Eq. (25). Indeed, the states (27) for

|ψ(�c; ẽ)〉〈ψ(�c; ẽ)| read pj�
A
j = ∑

i p
�
j |ic

2
i |ẽi〉〈ẽi |, from which

there appears a stratified structure of convex sets generated
by (30): mixing is allowed only within the states with the

fixedconv

FIG. 1. Graphical representation of the set generated by vectors
(30) as a solid torus. The cross section represents convex sets
K(ẽ), generated by mixing all the states |ψ(�c; ẽ)〉〈ψ(�c; ẽ)| with a
fixed Alice’s basis {ẽi}:

∑
�c p(�c)|ψ(�c; ẽ)〉〈ψ(�c; ẽ)|. Each K(ẽ) further

contains a hierarchy of convex sets of states with Schmidt numbers
[11] not greater than k, k = 1, . . . ,d . The action of UA ⊗ 11 connects
different K(ẽ)’s and preserves the Schmidt number sets.

same, fixed {ẽi}, thus generating convex subsets K(ẽ). Partial
unitaries UA ⊗ 11 transform between different K(ẽ)’s. Further-
more, inside each K(ẽ) there is a hierarchy of convex sets with
increasing Schmidt numbers [11]. This hierarchy is preserved
by UA ⊗ 11. A schematic representation of this set is given in
Fig. 1. Note that both ψ+ and its local orbit UA ⊗ UBψ+ are of
the form (30), as UA ⊗ UBψ+ = (UAUT

B ⊗ 11)ψ+ and UAUT
B

is unitary. For a general QC-type channel, the states (30) (for
an arbitrary {e∗

i }) will not be in its CC(�QC), since the residual
states pj�

A
j = ∑

i,k cick〈e∗
i |EQC

j e∗
k 〉|ẽk〉〈ẽi | will not in general

commute as E
QC
j ’s do not.

(2) All CQ (CAQB) states belong to CC(�). Indeed,
substituting into Eq. (19) an arbitrary CAQB state,

�AB =
∑

i

pi |ẽi〉A〈ẽi | ⊗ σB
i , (31)

we obtain from Eq. (27) that �A
j = ∑

i(pi/pj )Tr(σB
i Ej )

|ẽi〉〈ẽi |. Since Tr(σB
i Ej ) = pj |i is the conditional probability

of obtaining result j when measuring POVM {Ej } in the
state σB

i , from Bayes theorem (pi/pj )Tr(σB
i Ej ) = pi|j is the

needed conditional probability [cf. Eq. (26)]. A schematic
representation of the set of CQ states is given in Fig. 2. For a
general QC-type channel, CQ states are also in its CC(�QC).

(3) Similarly to the set of all CC states, CC(�) is not
convex, which is easily seen from the bilinearity of the
condition (28), but is star shaped with respect to the maximally
mixed state 11/d2: if �AB ∈ CC(�), then

�̃AB := λ�AB + (1 − λ)
11A ⊗ 11B

d2
∈ CC(�). (32)

This follows immediately from (27), as p̃j �̃
A
j = λpj�

A
j + (1 −

λ)(TrEj )11/d2 and �̃A
j pairwise commute iff �A

j do so. The
same is true for CC(�QC) for a general CQ-type channel.
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fixed

FIG. 2. Graphical representation of the set of CQ states as a
conical surface. The generators of the cone represent convex subsets
C(ẽ), obtained by mixing all the states of the form

∑
i pi |ẽi〉〈ẽi | ⊗ σi

with a fixed Alice’s basis {ẽi}. The local group 11 ⊗ UB acts
along each such subset. Different subsets are connected by the
action of [UA] ⊗ 11, where [UA] denotes the class of UA modulo
a permutation matrix [evidently the action of Alice’s permutations
conserve each C(ẽ)]. The whole set is star shaped with respect
to (11 ⊗ 11)/d2.

We do not know at this stage if the above conditions fully
characterize CC(�) for a given CC- or QC-type channel �

and we postpone the question of its full characterization for
future research. Note that in light of Theorem 1, the sets
CC(�) for QC- and CC-type channels possess an interesting
interpretation: If we think of Alice and Bob as environment
and system, respectively, then CC(�) is the set of those initial
system-environment states �AB that after the measurement,
described by Theorem 1 by every �QC, and tracing out
the system lead to apparatus-environment states with no
quantum correlations, i.e., the apparatus becomes quantumly
decorrelated from the environment.

We now investigate if a QC-type channel �QC can be
used (after a modification) for state broadcasting [6]. We first
study a relaxed scenario where we broadcast only eigenvalues,
or in other words a classical probability distribution: For a
given state �∗ we are looking for a broadcast state σAB such
that UATrBσABU

†
A = �∗ = UBTrAσABU

†
B for some unitaries

UA and UB . We call such a relaxed broadcasting spectrum
broadcasting and the usual state broadcasting in the sense of
Ref. [6]—full broadcasting. We prove the following.

Theorem 2. For any QC-type channel �QC and any
orthonormal basis {φj } there exists at least one state �∗(φ),
diagonal in {φj }, which is N -copy spectrum broadcastable
using �QC. The state �∗(e), diagonal in the channel’s basis
{ej } [cf. Eq. (3)], is also N -copy fully broadcastable.

Proof. By Theorem 1 and Eq. (15) every QC-type channel
is a quantum-to-classical measurement map. A sufficient
condition for spectrum broadcastability of the state

�(φ) :=
∑

j

λj (φ)|φj 〉〈φj | (33)

is then that its eigenvalues �λ(φ) are preserved by the measure-
ment, i.e.,

Tr[�(φ)Ei] = λi(φ) (34)

for every i. This is equivalent to the following eigenvalue
problem, ∑

j

pi|j (φ)λj (φ) = λi(φ), (35)

for a d × d stochastic matrix

P (φ) := [pi|j (φ)], pi|j (φ) := 〈φj |Eiφj 〉. (36)

That this is a stochastic matrix, or equivalently a matrix of
conditional probabilities, follows from the fact that Ei’s form
a POVM by Eqs. (11) and (12):

∑
i

pi|j (φ) = 〈φj |
( ∑

i

Ei

)
φj 〉 = 〈φj |φj 〉 = 1 (37)

for every j . By the celebrated Perron-Frobenius theorem [9]
the above eigenvalue problem (35) has at least one non-
negative, normalized solution �λ∗(φ), from which we construct
through Eq. (33) the desired state �∗(φ). Moreover, this
solution is unique iff the matrix P (φ) = [pi|j (φ)] is primitive,
i.e., is irreducible and possesses exactly one eigenvector of the
maximum modulus (equal to 1 in our case), which in turn is
equivalent to that all the entries of the (d2 − 2d + 2)-th power
of P (φ) are nonzero [9]. We now construct from �QC a new
channel [cf. Eq. (15)]:

�(N)(�) :=
∑

i

Tr(�Ei)|ei〉〈ei | ⊗ · · · ⊗ |ei〉〈ei |, (38)

which by condition (34) N -copy spectrum broadcasts the state
�∗(φ) (or equivalently N -copy broadcasts its eigenvalues).

Since the basis {φj } above is arbitrary, we obtain from
the Perron-Frobenius theorem that there exists a spectrum-
broadcastable state in any basis (the states in different bases
can be equal though, e.g., when the bases differ only by a
permutation). For the basis {ei}, associated with �QC by the
QC condition (3), the corresponding state �∗(e) will be a fixed
point of �QC: �QC(�∗(e)) = �∗(e) by Eqs. (15) and (34). Thus
�(N)(�∗(e)) = ∑

j λ∗j (e)|ej 〉〈ej | ⊗ · · · ⊗ |ej 〉〈ej | is a full N -
copy broadcast state of �∗(e). �

All the above obviously applies to CC-type channels, as
a subclass of QC-type ones. However, as already mentioned,
with any CC-type channel � there is a naturally associated
stochastic matrix p�

j |i through Eqs. (17) and (24), without
the need for an additional basis [{e∗

i } of Eq. (25) plays its
role]. The corresponding solution �λ�

∗ ≡ �λ∗(e∗) of Eq. (35),∑
i p

�
j |iλ

�
∗i = λ�

∗j , and the state ��
∗ ≡ �∗(e∗) are now intrinsic

characteristics of the channel. Note that for an arbitrary basis
{φj }, Eq. (35) reads∑

i,k

p�
j |i |Uik|2λk(φ) = λj (φ), (39)

where φj =: Ue∗
j and |Uik|2 := |〈e∗

i |Ue∗
k〉|2 is a doubly

stochastic matrix. By the Birkhoff theorem every such a
matrix is a convex combination of at most d2 − 2d + 2 distinct
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permutation matrices Pσ , σ ∈ Sd [9], and hence

pi|j (φ) =
∑

σ∈Sd

pσ

∑
k

p�
i|k(Pσ )kj =

∑
σ∈Sd

pσp�
i|σ−1(j ), (40)

while for a general QC-type channel there will also be a
“coherent” part:

pi|j (Uφ) =
∑

σ∈Sd

pσp i|σ−1(j )(φ) +
∑
k �=l

U ∗
kjUlj 〈φk|Ei |φl〉.

(41)

The existence of a fully broadcastable state(s) �∗(e) for
any QC-type channel is in some way surprising, as the
measurements described by such channels are in general not
von Neumann measurements, but rather POVMs [cf. Eq. (15)].
The existence of a whole family of spectrum-broadcastable
states is perhaps even more surprising. Note, however, that
spectrum broadcastability is a far weaker condition than
full state broadcasting. By the same reason, although the
broadcasting channel �(N) is the same for every basis, it
depends only on �, we do not contradict the no-go theorem
for state broadcasting from Ref. [6].

From a probabilistic point of view, the existence of
(spectrum-)broadcastable states follows from the fact that
one can associate a finite Markov process with the problem
through Eq. (36), and by the Perron-Frobenius theorem
each such process possesses a stationary distribution. The
(spectrum-)broadcastable states are constructed precisely from
this distribution.

Let us continue the above analysis and study the implica-
tions of the ergodic theorem for finite Markov chains [9]: For
a stochastic matrix P , there exists a limit P ∞ := limr→∞ P r

iff P is primitive. The limit is given by

P ∞
ij = λ∗i1j , (42)

where λ∗i is the stationary distribution (Perron vector) of P

[cf. Eq. (35)] and �1 := (1, . . . ,1). Note that the limiting matrix
elements are the same for each column index i: Asymptotically
the probability for the process to be at site j does not depend
on the initial site i. As a consequence, the limiting distribution
of the process p∞

i := ∑
j P ∞

ij pj does not depend on the initial
distribution pj : ∑

j

P ∞
ij pj = λ∗i . (43)

Consider now the rth power of a QC-type channel �:

�r (�) =
∑
i,j

P (e)r−1
ij Tr(�Ej )|ei〉〈ei |, (44)

where P (e) is defined by Eq. (36). By the ergodic Theorem,
the limit limr→∞ �r =: �∞ exists iff the matrix P (e) is
primitive. By Eqs. (42) and (44), �∞ is then a constant channel,
analogously to Eq. (43),

�∞(�) = �∗(e) (45)

for any state �. Indeed, �∞(�) = ∑
i,j P (e)∞ij Tr(�Ej )|ei〉

〈ei | = (Tr�)
∑

i λ∗i |ei〉〈ei | = �∗(e) [cf. Eq. (33)]. As a con-
sequence, �∞ breaks all correlations: 11 ⊗ �∞(�AB) = �B ⊗
�∗, �B := TrB�AB .

An interesting situation arises when Eq. (35) has more than
one solution, i.e., when a QC-type channel �QC (spectrum-
)broadcasts [12] more than one state. Probabilistically, this
means that the Markov process, corresponding to �QC and
a context {φi} through Eq. (36), possesses more than one
stationary distribution. This happens when the process splits
into two or more disconnected processes. Algebraically this
means that the transition matrix P (φ) = [pi|j (φ)] is, modulo
a column permutation, a direct sum of two or more primitive
stochastic matrices:

Pd×d (φ) = P
(1)
k×k(φ) ⊕ P

(2)
(d−k)×(d−k)(φ). (46)

According to the Perron-Frobenius theorem, each of the blocks
has a unique Perron vector, �λ(1)

∗ (φ) or �λ(2)
∗ (φ), respectively

(each of them is normalized). Clearly, any d-dimensional
vector of the form �λ∗ = p�λ(1)

∗ ⊕ (1 − p)�λ(2)
∗ is again an

eigenvalue-1 eigenvector of P (φ) for any p ∈ [0,1]. We denote
the corresponding states by �

(1)
∗ (φ) := diag[λ(1)

1 , . . . ,λ
(1)
k ,

0, . . . ,0] and �
(2)
∗ (φ) := diag[0, . . . ,0,λ

(2)
k+1, . . . ,λ

(2)
d ]. This is

an example of the case where any state from the convex com-
bination p�

(1)
∗ + (1 − p)�(2)

∗ can be (spectrum-)broadcasted.
Clearly, this example generalizes to more than a binary
combination of states if the matrix P (φ) decomposes into more
than two components: if the number of terms (degeneracy)
in Eq. (46) is D, there exists a D-dimensional simplex
of states (spectrum-)broadcastable by �QC [cf. Eq. (38)].
The most degenerate case is of course when D = d, i.e.,
when the transition matrix P (φ) = 11, so that the Markov
process is trivial—there are no transitions between the sites,
which happens when the POVM is in fact a von Neumann
measurement in {φi}: Ei = |φi〉〈φi |.

One can continue the above analysis and consider local
broadcasting of correlations. From the general no-local-
broadcasting theorem from Ref. [5], we know that the only
locally broadcastable states are the CC ones. Let us thus
consider a family of CC states, built from the stationary
solutions �

(m)
∗ (φ) corresponding to a degenerate transition

matrix P (φ):

�∗AB(π ; φ) :=
D∑

m,n=1

πmn�
(m)
∗ (φ) ⊗ �(n)

∗ (φ)

=
d∑

i,j=1

D∑
m,n=1

πmnλ
(m)
∗i λ

(n)
∗j |φi〉〈φi | ⊗ |φj 〉〈φj |.

(47)

Applying to �∗AB(π ; φ) the product channel �(N) ⊗ �(N),
where �(N) is defined in Eq. (38), one achieves a local N -copy
(spectrum-)broadcasting [12] of the classical correlations:
[�(N) ⊗ �(N)]�∗AB(π ; φ) = σA1...ANB1...BN

(π ; φ) and all the
bipartite reductions σArBr

(π ; φ) are (unitary equivalent)equal
to �∗AB(π ; φ). We present a concrete example of this broad-
casting scheme in the Appendix, Eqs. (A1) and (A2), while
a version with two different channels is studied in what
follows.

Let us now assume that two different channels, �A and �B ,
satisfy the assumptions of Theorem 1 on Alice’s and Bob’s
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side, respectively, i.e.,

�A ⊗ 11(P+) =
∑

i

pA
i |ei〉A〈ei | ⊗ σB

i , (48)

11 ⊗ �B(P+) =
∑

j

pB
j σA

j ⊗ |fj 〉B〈fj |. (49)

Then one easily proves the following.
Corollary 1. If �A ⊗ 11(P+) and 11 ⊗ �B(P+) are CAQB

and QACB states, respectively, then �A ⊗ �B(�AB) is a CC
state for any state �AB .

Proof. Indeed, from the proof of Theorem 1 it follows
that �A and �B are measurement maps [cf. Eq. (15)] on
Alice’s and Bob’s sides respectively, defined by POVM
elements

EA
i := dpA

i

(
σB

i

)T
, EB

j := dpB
j

(
σA

j

)T
. (50)

Thus

�A ⊗ �B(�AB) = (�A ⊗ 11)(11 ⊗ �B)�AB

=
∑
i,j

TrA
[
EA

i TrB
(
�AB11 ⊗ EB

j

)]|ei〉〈ei | ⊗ |fj 〉〈fj |

=
∑
i,j

Tr
(
�ABEA

i ⊗ EB
j

)|ei〉〈ei | ⊗ |fj 〉〈fj |. (51)

�
The analysis of state broadcasting may be repeated

in the present scenario as well. Since 11AB ⊗ �
CQ
A′ ⊗

�
QC
B ′ (P ABA′B ′

+ ) = [11A ⊗ �
CQ
A′ (P AA′

+ )] ⊗ [11B ⊗ �
QC
B ′ (P BB ′

+ )],
the channel �

CQ
A ⊗ �

QC
B is of a QA′BCAB ′ type. From

Theorem 2 it then immediately follows that for any basis
{φAB

α }, α = 1, . . . ,dAdB , of HA ⊗ HB (the spaces HA and
HB need not be the same now) there exists a state �∗AB(φAB),
built from a stationary distribution of the stochastic matrix
(36)

P AB(φAB)αβ := 〈
φAB

β

∣∣EA
i ⊗ EB

j φAB
β

〉
, (52)

α := (ij ), and locally (spectrum-)broadcastable through
�

(N)
A ⊗ �

(N)
B [cf. Eq. (38)]. Note that the basis {φAB

α } need
not be a product one in general.

However, for a product basis φAB
α ≡ φA

i ⊗ φB
j one can

say more. The matrix P AB(φAB) is then a product as well:
P AB(φAB) = P A(φA) ⊗ P B(φB) and P AB(φAB) is primitive
iff both P A(φA) and P B(φB) are, i.e., �(N)

A and �
(N)
B spectrum

broadcast only one state each. In such a case, the product state
�∗AB(φAB) = �∗A(φA) ⊗ �∗B(φB) is the only state that can
be spectrum broadcasted and there is no local broadcasting
of classical correlations—the spectrum of �∗AB(φAB) is a
product, λ∗ij (φAB) = λ∗i(φA)λ∗j (φB). If, however, at least one
channel spectrum broadcasts more than one state, then there
exists a family of locally spectrum-broadcastable correlated
CC states, built analogously as in Eq. (47): �∗AB(π ; φA,φB) :=∑DA,DB

m,n=1 πmn�
(m)
∗A (φA) ⊗ �

(n)
∗B(φB). A concrete example of such

a situation is presented in the Appendix, Eqs. (A3) and (A4).
When it comes to local full state broadcasting, by Theorem
2 it is guaranteed for �∗AB(e,f ), which is a CC state in the
bases {ei} and {fj } [cf. Eqs. (48) and (49)], in accordance
with the general results of Ref. [5]. Again, if both matrices
P A(e) and P B(f ) are primitive, �∗AB(e,f ) is a product

state with no correlations. However, if at least one P A(e)
or P B(f ) is not primitive, by the above construction there
will be a family of locally broadcastable correlated CC states
�∗AB(π ; e,f ).

Before we conclude, let us digress on the nature of some
multipartite QC states. We assume that, e.g., Bob holds two
(possibly different) subsystems and that the joint state is
QACBB ′ , that is,

�ABB ′ =
∑

α

pασA
α ⊗ |eα〉BB ′ 〈eα|, (53)

where {eα} is a basis in HB ⊗ HB ′ , labeled by α. It is not
necessarily a product basis—for the definition of a QACBB ′

state it is enough that it is orthonormal. What is interest-
ing is that simultaneously forcing both reductions �AB :=
TrB�ABB ′ and �AB ′ := TrB ′�ABB ′ to be QACB and QACB ′ ,
respectively,

�AB =
∑

i

λi�
A
i ⊗ |ei〉B〈ei |, (54)

�AB ′ =
∑

i ′
πi ′τ

A
i ′ ⊗ |fi ′ 〉B ′ 〈fi ′ |, (55)

does not force �ABB ′ to be QABCB ′ and QAB ′CB simultaneously
(we may label such a class by QACBCB ′); i.e., {eα} in Eq. (53)
still need not be a product basis. As a simple example
consider HB = HB ′ = C2, and {eα}α=1,...,4—the Bell basis.
Then obviously both reductions �AB and �AB ′ are product,
1/2(

∑
α pασα) ⊗ 11, and hence trivially QACB and QACB ′ , but

the whole state �ABB ′ is not QACBCB ′ .
In some sense a converse of the above observation is

also true: there exist QACBB ′ states with a product basis on
BB ′, which are nevertheless not QACBCB ′ , or, equivalently,
both reductions TrB�ABB ′ and TrB ′�ABB ′ are not QACB and
QACB ′ respectively. As an example of such a state consider
HB = HB ′ = C3, and choose as {eα}α=1,...,9 in Eq, (53)
the “nonlocality without entanglement” 3 ⊗ 3 basis from
Ref. [13]. Then both TrB�ABB ′ and TrB ′�ABB ′ will contain
an overcomplete set on the B and B ′ side, respectively.

In conclusion, we have provided a refinement of the charac-
terization of entanglement-breaking channels from Ref. [1] to
more general quantum correlations and connected it to mea-
surement maps, quantum state and correlation broadcasting,
and finite Markov chains. We have considered two classes of
channels— (i) the ones that break quantum correlations by
turning them into the QC form and (ii) the ones that fully
break quantum correlations by turning them into CC ones. We
have shown that a channel belongs to the first class iff it turns
a maximally entangled state into a QC state or equivalently
it is represented by a measure-and-prepare scheme, where
the outcomes of a POVM measurement are followed by a
preparation of states from some specific orthonormal basis.
In other words, it is a quantum-to-classical measurement
map (i.e., it gives the state of the apparatus after tracing the
system).

Surprisingly, a similar question in the case of the second
class of channels becomes even more interesting: the analogy
to entanglement-breaking channels now fails and one cannot
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characterize the channels from the second class only by
their actions on the maximally entangled state. However, a
characterization from a different perspective seems possible.
First of all, it turns out that the POVMs, constituting the
channels, are mutually commuting and arise from a stochastic
matrix, thus making a connection to finite Markov chains.
Second, the set of bipartite states that are mapped into the CC
form is more complicated.

Our analysis of the ability to broadcast quantum states
and correlations by QC-type channels reveals an interesting
application of the Perron-Frobenius theorem. The existence
of a family of spectrum-broadcastable states and at least one
fully broadcastable state, even if the POVM measurement is
not of the von Neumann type, follows from the fact that each
finite Markov process possesses a stationary distribution. This
broadcasting scheme, albeit in general substantially weaker
than the standard broadcasting of, e.g., Refs. [5,6], surprisingly
goes beyond the simple C-NOT scenario. The connection
between broadcasting and finite Markov chains is, to our
knowledge, quite unexpected and will be the subject of further
research.

In fact, perfect broadcasting operations applied so far
have corresponded to a scenario where to a given input CC
state �AB = ∑

i,j pij |i〉〈i| ⊗ |j 〉〈j | one locally applies the
generalized C-NOT gates U |i〉|j 〉 := |i〉|i ⊕ j 〉. Application of
the Perron-Frobenius theorem presented in this work goes
beyond this simple scenario.

We believe that the current work opens new perspectives for
analysis of the measurement problem and state and correlation
broadcasting. Especially interesting is the possibility to study
quantum decoherence in terms of broadcasting.
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APPENDIX

Consider the following example. Let

P (1) :=

⎡
⎢⎣

0 1
2

1
2

1
2

1
2

1
2

1
2 0 0

⎤
⎥⎦ (A1)

for some fixed basis {φi} and let P (2) be an arbitrary irreducible
bistochastic matrix on R3, say

P (2) :=

⎡
⎢⎣

1
8

3
8

1
2

3
8 0 5

8
1
2

5
8 0

⎤
⎥⎦ (A2)

for the same basis. Since we know that any matrix A ∈
Md×d (R) with non-negative elements is irreducible iff (11 +
A)d−1 has all elements non-negative, we may easily check
that both matrices are irreducible. The unique Perron vector
of P (1) is just �λ(1) = [ 1

3 , 1
6 , 1

2 ]T . The unique eigenvector of the
irreducible bistochastic matrix is of course �λ(2) = [ 1

3 , 1
3 , 1

3 ]T .
Consider now the stochastic matrix P := P (1) ⊕ P (2) on R6

Then any state of the form �∗AB(π ) = ∑2
m,n=1 πmn�

(m)
∗ ⊗

�
(n)
∗ with �

(1)
∗ := diag[ 1

3 , 1
6 , 1

2 ] and �
(2)
∗ := diag[ 1

3 , 1
3 , 1

3 ] can be
spectrum broadcasted and full broadcasted by the product of
the channels �(N), defined in Eq. (38).

An even simpler example with two different channels can
be constructed to illustrate spectrum broadcasting and full
broadcasting of correlations. Namely, consider two bistochas-
tic matrices of the form

P A :=

⎡
⎢⎣

0 1
2

1
2

0 1
2

1
2

1 0 0

⎤
⎥⎦ (A3)

and

P B :=

⎡
⎢⎣

2
3 0 1

3
1
3 0 2

3

0 1 0

⎤
⎥⎦ (A4)

for some basis {φi}. They are clearly reducible. Finding their
Perron vectors and defining �∗AB(π ) := ∑2

m,n=1 πmn�
(m)
∗ ⊗

�
(j )
∗B as �

(1)
∗A := diag[0, 1

2 , 1
2 ], �

(2)
∗A := [1,0,0] and �

(1)
∗B :=

diag[ 1
2 ,0, 1

2 ], �
(2)
∗B := [0,1,0], we see that �∗AB(π ) is locally

broadcastable by the map �
(N)
A ⊗ �

(N)
B , where �A are �B are

defined again by Eq. (38).
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