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New approach to noncausal identification of simultaneously operated, Kalman filters/smoothers, equipped with
nonstationary stochastic FIR systems subject to both  different smoothness constraints. For systems with abrupt parameter
smooth and abrupt parameter changes changes such robust parallel estimation scheme, called competi-
tive smoother, was described in [6]. It combines, in a statistically
Maciej Niedzwiecki and Szymon Gackowski meaningful way, the results provided by several forward-time and

backward-time Kalman filters. The analogous solution for systems
. . o with smooth parameter changes, called cooperative smoother, was
Abstract—In this paper we consider the problem of finite-interval din [7 it bi Its vielded b | Kal
parameter smoothing for a class of nonstationary linear stochastic systems proposg in [ ]__ ! CO"_‘ Ines results yielde _y severfi aman
subject to both smooth and abrupt parameter changes. The proposed Smoothing algorithms. Finally, one should mention the interacting
parallel estimation scheme combines the estimates yielded by severalmultiple model (IMM) approach, originally proposed as a solution
exponentially weighted basis function algorithms. The resulting smoother g the problem of tracking maneuvering targets [8]. The suitably

automatically adjusts its smoothing bandwidth to the type and rate of e . .
nonstationarity of the identified system. It also allows one to account for modified IMM algorithm, which can be used for the purpose of

the distribution of the measurement noise. parameter tracking (based on IRW modeling), was described in [9].
T . In principle, the IMM smoother can be obtained by combining

Index Terms—Identification of nonstationary systems, parameter .
smoothing. the results presented in [9] and [10]. However, to the best of our

knowledge, the problem of IMM-based parameter smoothing has not
been explored yet.
I. INTRODUCTION The contribution of the paper is twofold.

In this paper we consider the problem of noncausal identification, First, we extend the results presented in [6] and [7] to a new
i.e., identification based on pre-recorded data, of a nonstationatgss of estimation algorithms - exponentially weighted basis function
linear stochastic system subject to a mixed-mode parameter variat{gWWBF) trackers/smoothers. The basis function approach to system
— a combination of smooth persistent parameter changes and oddentification is based on a deterministic model of parameter variation
sional parameter jumps. In the statistical literature such approach-at is assumed that system parameters can be modeled as linear
system identification is often referred to as fixed-interval parametesmbinations of deterministic functions of time, the so-called basis
smoothing. functions. The EWBF algorithms are obtained by combining the

An interesting application which admits such problem formulatiobasis function based system description with the estimation technique
is identification of rapidly fading mobile radio channels [1]. Slonknown as exponential weighting (or exponential forgetting). Similar
time variation of the channel coefficients is due to receiver movementthe Kalman-filter-based algorithms, the EWBF algorithms belong
in space, and rapid variation is caused by abrupt changes of the spatiathe class of finite memory adaptive filters. However, unlike the
system configuration (e.g. due to switching between base station&lman-filter-based algorithms, the estimation memory of EWBF
Fixed-interval parameter smoothing can be used to reconstruct trajeackers/smoothers can be easily quantified in terms of their design
tories of channel coefficients. The reconstructed trajectories can gaameters, such as the number of basis functions and the forgetting
later used to perform realistic simulations of a mobile communicatiaronstant. This makes the EWBF algorithms much easier to handle in
system — they serve as ‘ground truth’ in demonstrations and testractice.

Most of the existing work on parameter smoothing is based onSecond, we show how one can merge results yielded by the com-
the stochastic model of parameter variation known as the integratestitive smoother with those provided by the cooperative smoother.
random walk (IRW) model — the idea goes back to Shiller [2]The resulting combined smoother preserves advantages of the com-
Adopting the IRW model of ordem, one assumes that the vector ofponent algorithms — similar to the competitive smoother it sharply
system coefficient®(t) = [61(t),...,0.(t)]" obeys the following resolves parameter jumps, and, similar to the cooperative smoother,
equation it accurately follows smooth parameter changes.

VTOt) = (1—q )" 0(t) = w(t) 1)
Il. BASIS FUNCTION APPROACH TO PARAMETER TRACKING AND

where V™ (-) denotes then-th order differenceq ' stands for the SMOOTHING
backward shift operator), ane(t), coviw(t)] = o21,, is a white
noise processIf, denotes the: x n identity matrix).

After state space embedding the problem of estimation of para
eters governed by (1) can be solved using the algorithms known as y(t) = @ (H)0(t) + v(t) @)
Kalman filters/smoothers [3], [4]. The estimation properties of thes

— T .
algorithms depend on the adopted ordeof the IRW model and on v%ere ‘p_(t) - _[gm(t), s pn(?)] denqtes the vector of |_nput
the variance quotient (smoothness tradeoff paraméter)s? /o2 — (regression) variables angt) denotes white measurement noise.

see e.g. [5]. To obtain satisfactory estimation results, both quantitiesSlJppose that identification of (2) is carried out based on the

. , d of t [e-recorded data sét(N) = {y(i), (i), i € T}, whereT =
shouild be locally ‘matched" to the type and speed of parameter v ., N] denotes the observation interval of length Denote by

ation, as well as to the signal-to-noise ratio. The matching problem *-
can be solved by means of combining results yielded by several, {f;(t) = 7l i=1,...,mte T} (3)

Consider the problem of identification of a discrete-time stochastic
I§R/stem governed by
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Powers of time are the most frequently used general-purpases

functions (although, in principleany set linearly independent square
summable sequences defined Bncan be used). Such a choice,

which stems from the Taylor series expansion theorem ancgtees
recursive computability of parameter estimates, can beettrdack
to Subba Rao [12]. All results presented in this paper wiltbaved
for the basis (3).

After combining (2) with (4), system equation can be writtkmvn
in the form

y(t) = 9" (e +o(t) ®)

wherea = [a11, ..., Qm, -+ ., Qi - . ., O] T IS thenm x 1 vector
of coefficients used to describe the parameter time vanaimd
1 (t) denotes thenm x 1 generalized regression vectoy(t) =
p(t) ® £(t), £t) = [f1(t),..., fm(t)]". The symbol® is used to
denote a Kronecker product of two matrices/vectors.

According to (5), the time-varying process of ordercan be
represented by a linear time-invariant model of order. The values

of the time-varying system parameteé?§t) can be easily recovered g(t) = Y )\\tfi\d’(

from « using the following compact version of (4)

0(t) =Z(t)a, Z(t) =L, @ (t). (6)

A. Parameter Tracking

It would be naive to assume that the expansion coefficientsn
(4) are constant in the entire time domain. This assumptionlav
mean, in fact, that the analyzed system could be regardedtiasible,
i.e., varying in a perfectly predictable manner. To copehvpivssible

fluctuations ina;;’s, the method of basis functions can be combineg

with exponential data weighting (exponential forgettingjeighting

forces the estimation to be more focused on the most receat d

where

Gu(t) =Y NP9 (0), g () = DN T )y i),
€T €T
It is straightforward to check that the quantitiés.(¢) andg.(¢) can
be evaluated by means of backward time filtering of the gtiasti
G_(t) andg_(t), respectively

G (t) = AG.(t+1) + (1 = \)G_(2)
g (t) = Aga(t + 1)+ (1 = A)g_ (). 9)

For the basis (3) with only one componefit(t) = 1, the EWBF
smoother (8) is identical with the algorithm proposed in][13

Ill. STATISTICAL PROPERTIES OF THE EXPONENTIALLY
WEIGHTED BASIS FUNCTION SMOOTHER

To simplify our analysis, we will assume that an infinite atvee
tion history is available, i.e.G.(t) = 0 Al'lp(i)yT (i),
1)y(i¢). The results of such a steady
state analysis will remain valid for the algorithm (8) as doas
1 <t < N, ie., everywhere except the boundary regions.

Denote by6,(t) = E |6.(t)| the mean path of the estimates
yielded by the EWBF smoother. The mean-squared parameier es
mation error can be written down in the form

E [ 6.(t) - 6(t) I?] = 1| 6.(t) — 6(t) |I* +tx {cov [6.(1)] }

i.e., it can be decomposed into the bias component and tlienear
omponent, respectively. Both components will be examinesbme
etail below. To arrive at analytical results, we will makeet
%)Ilowing assumptions:

samples and therefore allows one to track slow variatioesfransion (A1) The sequence of regression vectdrg(t)} is a wide sense

coefficients. The forward-time~) and backward-time+) exponen-
tially weighted basis function (EWBF) parameter trackeaket the
form

. 2
as(t) = argmin 3 A [y(z') fz,bT(i)a]
& ety

= GL' (g (1) )
where A\, 0 < X\ < 1, denotes the forgetting constaiff,-(t) =
[1,...,t], T (t) = [t,..., N] and the quantitie$z+(¢), g+ (t) are
recursively computable

G+(t) = AGL(t+ 1) +()p" (1)

g+(t) = Ag+(t £ 1) +¥(t)y(t)

Using the well-known matrix inversion lemma [5], one canilyaset
up an algorithm for recursive computation [&+ (¢)] .

B. Parameter Smoothing

The EWBF parameter smoother is a natural complement of tB?ocedure. Additionally,

causal and anticausal estimation algorithms presentdtkiprievious
subsection. The algorithm has the following form

0, (t) = Z(t)a.(t)
&.(t) = argmin ) A [y(i) — 4 (i)

i€T

=G, ' (t)g.(t) (8)

2

stationary and ergodic process with positive definite dafien
matrix E[¢(t)™ (t)] = @0 > 0.

(A2) {v(t)}, independent of{p(t)}, is a sequence of zero-mean,

independent and identically distributed random variahléth
varianceo?.

Both assumptions hold true for rapidly fading mobile radmaicnels.

A. Estimation Bias
Under the assumption (A2), one arrives at

0.(t) =E [é; (t)] =B [Z(1)G;  (t)r.(1)]

wherer, (1) = 300 Al (i)™ (1)0(i).
To facilitate further analysis, we will express all quaiettin terms
of orthonormal basis vector (i) = Cf(z) which obey

> M () (6) = L. (10)
The matrixC can be established using the classical Gram-Schmidt
we will use the following propes of the
basis (3):f(:) = Af(i — 1), f(—i) = Bf(i), where A = [a;]
is a lower triangular matrix such that;; = ( i=} ) for i =
1,...,m,5 < 4, and B = [b;] is a diagonal matrix such that
bii = (=1 fori = 1,...,m. Let H(t) = I, ® D(t) where
D(t) = CA'B. Observe thaD(t)f(i) = f\(t — 7). Note that

Z(1)G; (D)re(t) = ZaGy (Dra(t)
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whereZy, = Z(HHT (t), Ga(t) = H(t)G.()HT(¢) andrs(t) =  cov [A@(t)] =~ [@51 ® f;f(o)] E [h,\(t)hrf(t)] (@5 @ £,(0)]
H(t)r.(t). Using the identity P ® Q)(R®S) = PR® QS, which JEP

holds for Kronecker products, one obtains = T (16)

_ T
2y =L @£ (0) where the quantityl, denotes the equivalent estimation memory

Ga(t) = i A\le=il [cp(i)cpT(i)] ® [fx(t — O - Z.)] length of the EWBF smoother

i:o_ooo -1 _ T - 2|1 NpeT /. _ - 2/
B0 = D0 A plh) @ (- )] 07 ()00, bR LZOOA pon (”] BO= 2 KO

Under (A1) and (A2) it holds thaE [Gx(f)] = ®o © In. Fur- Equivalent estimation memory, different from the so-aalédfective

thermore, using the generalized law of large numbers foghted estimatign ”.“emory' ekl .the amount of informagbout
sums of random variables given by Pruitt [14], one can shcat thﬁ?(t) YVhICh is extracted fr(_)m the |n[_)ut/outp_ut data as a re;ult of
limx1 Ga(f) = E[Ga(f)] w.p.l. Hence, when the forgetting applying the method of weighted basis fupctlons [5]. One easily
constant\ is sufficiently close to 1, one can apply the foIIowingShOW that when the t_r ue parameter tra_jectory_cannot be. Ipxact
approximation rt_apresented _by the weighted sum of basis functions, the-highd
side of (16) is thdower boundon cov[A. (t)].
Gy )2 {E[GA®)} ' =®,' @ L. (11) The results derived above parallel those obtained eadiette

. . o . EWBF tracker [15]. In the case of tracking, one obtains
Using this approximation, one obtains

Z\Gy ' (t)ra(t) 0.(t)=E [éi (t)] o~ i ks (1)0(t £ ) 17)
= 30 N @5 e (i)e” ()] £ ()8 (¢ — )0(0) =
i=—o0 where
which leads to . i . -
_ > : k(i) = N'€7(0) [ /\’f(j)fT(j)} f(i), i>0.  (18)
0, (t) = ,Z ko ()O(t —7), ke(i) = AET(OEN(D).  (12) =0

_ The corresponding steady state equivalent memory spansbean
According to (12), the mean path of EWBF estima{és (t)} can optained fromly = [, k‘i(i)rl- Note thatk_ (i) = ki (i)
be approximately viewed as a result of passing the pro€@s)}  and consequently_ = I.
through a linear time-invariant filter. We will call the se&mee  gypressions fok:, (i) andl, derived for the basis (3) for different
{k«(t)} the impulse response associated with the EWBF smooth&{,mber of basis functionsr{ = 1,2, 3), and the analogous results
The impulse responsk, (i) can be alternatively expressed in theyptained earlier for the EWBF trackers, are summarized InieTa.
form Interestingly, the same expressions #qi(;) andl, are obtained for
) _ -1 m = 1 andm = 2. This means that no bias reduction can be expected
k(i) = AE7(0) LZ AT (j)} f£(i).  (13) after incorporation of the linear basis functign(t) = ¢ (but usually
there is some variance reduction compared to the first-astenator
with the same equivalent memory).

B. Estimation Variance Note that the steady state equivalent memory spans takeotire f
To quantify estimation variance of the EWBF smoother, we wifm = ¢n/(1—X) andl;, = ¢}, /(1 - )), wherec;;, and ¢, are
assume, for the time being, that the true parameter trajecan be easily computable quantities that depend on the number si ba
exactly represented by a linear combination of basis fonstilt is functions and the forgetting constant, add not depend on the

oo}

j=—00

easy to check that, in the case considered, it holds that characteristics of the input-output data.
~ ~ . For Kalman algorithms based on (1) the situation is differéthen
A0, (1) = 6.(t) — 0(t) = Z(1) G5 (t)h.(2). (14) 1 = 1, one can show that the estimation memory takes the fors
whereh, (t) = 32 At=ilap (i) (). c1(®o)/VE Whe1;§c1 is a constant that depends on the eigenvalues

of the matrix®,’“ — see [5]. No results are currently available for

m > 1, but there are some theoretical arguments which support

the claim thatl,, = c,,(®0)¢~/?™. Since the constants,, are

Aé*(t) =7Z,G ' (t)hy(t) = [@51 ® f;(o)] hy (1) (15) not known, the practically important memory schedulinglem is
difficult to solve for this class of identification algoritlsm

Using (11), the error equation (14) can be rewritten in thiefang
equivalent form

where
0o Remark: When estimation is carried out using the exponentially
hy(t) = H(t)h.(t) = Z i [p(i) ® £t — )] v(i). weighted basis function algorithms, the forgetting conistshould
i=— oo be chosen with caution — the rules of thumb which work for the

exponentially weighted least squares scheme (i.e., theofider
EWBF tracker) cannot be mechanically extended to higheéeror
EWBF estimators. For example, far= 0.99 the equivalent memory
spans of the third-order estimators are equdlitéZ 33 samples and
] I, = 48 samples, rather thah. = 200 samples and, = 400

SinceE[h, ()] = 0, it holds thatE[g* (t)] = 6(t), i.e., the smoothed
estimate is approximately unbiased. Exploiting assumpti@1) and
(A2), after elementary calculations, one arrives at

i Mg ()T (4)

i=—00

E [hx (t)h;r(t)} =0l ®0 ® samples, respectively, as one might expect based on theiexpe

with exponentially weighted least squares trackers/sheret
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Table |
Associated impulse responses and equivalent memory spans o
EWBF smoothers and trackers of different orders.

EWBF smoothers

m=1 Feu (3) = Al 122

1
I, = —(+0)® 4
T (=N (14+A2) 1—X

+
>

R

— A — 2] 1=A
m =2 Eu (i) = Al 3
L= (+N)?
* T (1-2)(1+22) 1—X

1
1

+

IR

- N i A=) [AF10AFAZ (120242
m=3 k(i) = Al (TN (1-8A+AD)

[, o __267
* = 800(1—X)

EWBF trackers

m=1 ky(i) = A1 —N)
ly = ﬁ = 13,\
m=2 Ee(i) =21 = N)[1+X— (1= N
L — (1+2)? ~ 4
* = AN (1+4r+522) — 5(1—A)

m =2 k(i) = AH(1 = A)[1+ A+ A2
=3+ NA - Ni+ 31— )22

~ _ 16
ly = 33(1—N)

IV. COOPERATIVEEWBF SMOOTHER

that excludeg(t) from the set of measurements used for estimation
of 8(t), takes the form:

R(t) = Zi(t) [GR(D)] g2 (t)
G (t) = Gi(t) — Ye()Yr (1)
gr(t) = gr(t) — Yr(t)y(t).

~—

Suppose that the measurement ndisg&)} is a sequence of zero-
mean independent random variables obeying the generaizedal
law v ~ GN (e, B) :

p(v;e, B) = m eXp{ <%)6}

where o > 0 is the unknown scale paramete$, > 1 is the
known shape parameter, ahd-) denotes the Euler's gamma func-
tion. Generalized normal law incorporates such practidatiportant
distributions as Gaussiarg (= 2), Laplace 8 = 1), and uniform
(B — o0) — see [16].

According to [13], the cooperative estimate of the paramete
trajectory can be obtained in the form

—M/B

Oa(t) = > uh(DOL(L), pi(t) o | D ler (i)’ (19)

k=1 iETS (1)

wherepj(t) > 0,k =1,..., K, > 1, ui(t) = 1, denote credibility
coefficients (related to posterior probabilities of diéfat parameter
‘patterns’), evaluated in the local decision wind@(t) = [t—1, t+
l] of (user-dependent) width/ = 27 + 1.

Similarly as in [13], one can shdwthat matching errors can be
expressed in terms of the residual erregét) = y(t) — @™ (£)05(t),

Estimation properties of EWBF algorithms depend on the ahoi "amely

of two design parameters: the forgetting constaand the number of
basis functionsn. For ‘small’ values of\ and/or for ‘large’ values

of m, the estimation memory of the EWBF algorithm decreases.

The resulting short-memory trackers/smoothers are ‘{g#&ld small
estimation bias) but ‘inacurate’ (yield large estimatioarignce).
The converse is also true — long-memory algorithms are fateu
but'slow’. The best results are obtained if the values\andm are
selected so as to match the degree and type of nonstationftte
identified system, trading off the bias and variance erronpanents.
Optimization of the design parameters is possible usinglighres-
timation techniques. Following this idea, consid€rsimultaneously
running EWBF smoothers, equipped with different setti{g§s, my }

and yielding the estimates

Oi(t) = Zi(t) [GL(H)] " gi ()
Zi(t) =L, ® i (1)

Git)= > Ayl (i)

gi(t) = D0 A ().

We will combine these estimates using the cooperative dmrapt
strategy proposed in [13].

Cooperative smoothing is a Bayesian extension of the leaee-
out cross-validation approach to model selection. In tiigraach,

(20)
where

re(t) = Py () [GR(1)] " u(t).

Hence, credibility coefficients can be evaluated withoytlementing
the corresponding holey smoothers.

V. COMPETITIVE EWBF SMOOTHER

The smoothing formula (8) is based on an implicit assumption
that parameter changes are continuous, i.e., that the axamgter
trajectory obeys the polynomial model at least in some rimigiood
of ¢. Quite obviously, the presence of jumps in the parameter
trajectory violates this ‘homogeneity’ assumption. Nolmwever,
that when parameter changes are infrequent, namely whetintbe
between subsequent jumps is greater than the equivalentorpem
length of the forward/backward EWBF trackers, at each tingaint
at least one of them generates accurate estimates of thmgtara
trajectory. In particular, the forward time tracker yieldscurate
estimates immediately before the jumps, and the backwang ti
tracker — immediately after the jumps. The degree of aceness,
i.e., ‘credibility’ of different estimators, can be easjlydged by the
magnitude of the locally observed prediction errors. Roitg [6],

credibility of each smoothed; () is assessed (locally) based orthe competitive smoother that combines results yielde&dprward

observation of matching erroe§ (¢) = y(t) —pT(1)03(t) — residual
errors yielded by the ‘holey’ smoothé; (¢) associated witt®;; (¢).

LAfter replacing the regression vectpy, (t) with the generalized regression

Holey smoother associated with the EWBF algorithm, i.ee, dime vectorpy, (¢), the proof is identical with that given in [13].
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1
time andK backward time EWBF trackers can be set up as follow o0 8,0
R K R N 0.5 0.5
Bu(t) = > |1 08, (1) + 1 (8] (1)]
k=1 0 0
—M/B
X -0.5 -05
o | Y ek () (21)
i€ Tdi (t) _10 1000 2000 3000 4000 5000 _10 1000 2000 3000 4000 5000
where Ty (t) = [t — M + 1,t] and T, (t) = [t,t + M — 1] denote ‘(e 0
the local decision windows of width\/, and
0.5 0.5
en()=yt) = (O (i £ 1), k=1,....K
0 0

are the corresponding forward/backward prediction errors
The term ‘competitive smoothing’ refers to the fact thathivi this . 05

approach, the forward and backward algorithms compete @ath

other, rather than cooperate (since, at each time instaht,ome of _;

-1
. L 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
them is assumed to be based on the correct system descyiption t t

Fig. 1. Two variants of parameter changes used in computeunlaiions:
VI. COMBINED EWBF SMOOTHER piecewise constant (two upper plots) and piecewise sidabdiwo lower

While the competitive smoother yields good estimation ltesa  P'°tS):
the regions of parameter jumps, for smooth parameter clsahgey
lead to parameter ‘jitter' - the effect caused by random dhiity
between the forward-time and backward-time algorithms e- [6§.
The converse is true for the cooperative smoother: it yigjded
results for smooth parameter changes, but ‘blurs’ all fitepfeatures
of the estimated parameter trajectory.

To obtain smoothing algorithm that works satisfactorily hath
cases mentioned above, one can fuse the cooperative sm¢b&)e
with the competitive smoother (21). Using the cooperativeathing
rule once again, one arrives at the following formula whidH te

Two types of parameter changes were considered: piecewise ¢
stant (), and piecewise sinusoidal (II) — see Fig. 1. Duepiorepriate
scaling, all parameter trajectories have the sdmenorm.

For each of the compared algorithms the steady state acatedul
mean-squared parameter estimation erBar$s-4299, || 0(¢|5000) —
0(t) ||*} were computed (to eliminate transient effects, the evialnat
was restricted to the intervgl01, 4900]). Ensemble averaging, (-)
was performed over 50 realizations of the measurement foig¢}.
The procedure was repeated for each of 3 noise intensitiegng

further referred to as a combined smoother from o, = 0.05 (SNR=26 dB) too, — 0.30 (SNR=10.5 dB). The
Oc(t) = pa(t)Ba(t) + pus(t)Bs(t) (22) distribution of noise was either Gaussiah= 2) or Laplacian § =
1). The width of the decision window was equal A6 = 21.
where Table 2 summarizes results obtained for 9 EWBF smoothﬁﬁs (
na(t) ne(t) j,k = 1,...,3), the cooperative smootheiS{), the competitive
pa(t) = na(t) + s (t) p (t) = na(t) + s (t) smoother ) and the combined smoothef). The first 3 EWBF

algorithms 67, 52, S?) were based on the polynomial model of order

—M
R B 0 (m = 1, Al = 0.818, A% = 0.920, A} = 0.975). The next 3 EWBF
nam=| > leass( algorithms 63, 53, S3) were based on the polynomial model of order
€T (1) 1 (m = 2,M\ = 0.936,\] = 0.973, A\ = 984). The last 3 EWBF

algorithms 63, S3, S3) were based on the polynomial model of

and the corresponding matching errors are given by '
order 2 n = 3, A} = 978, X7 = 0.991, A} = 0.995). The forgetting

o () — X 5 (e (4 constantsAf of constituent smoothers were not optimized in any

ea(t) = %Nl@( Jer(t) way — the corresponding values were chosen so that withih eac
< group of algorithms{S1, 53, S5}, {S%, 53,53} and {S%,S3, 55}

5y (t) = Z [ (B)er (1) +u2(t)6k+(t)] ) the equivalent memory spans of the corresponding EWBF érack

were the same and equal to 10 samples, 30 samples and 90 sample
respectively. Typical estimation results (Gaussian naise= 0.2)
are shown in Fig. 2.

Note that the combined smoother is uniformly better than all
other smoothers, including all component smoothers,if.provides
the smallest estimation errors in all cases considered. B\ioas

VII. COMPUTER SIMULATIONS advantage of the combined smoother is its increased ramstio

To check performance of smoothing algorithms, the follapiwo-  unknown and possibly time-varying degree of nonstatidyasind
tap FIR system (inspired by channel equalization appbcali was the mode of variation of the identified system.
simulated

Note that the computational load of the combined smoothewsgr
linearly with the number of component algorithrAS The analogous
count for the IMM smoother proposed in [8] is proportional A% .

() = 1 (Dult — 1) + Ba()ult — 2) + v(t) VIII. CONCLUSION

YLk = B 2 v We have shown that, by combining the results yielded by séver
whereu(t) = £1, o2 = 1, denotes the pseudo-random binary signaxponentially weighted basis function parameter tra¢kersothers
(PRBS) — the sequence transmitted over a telecommunicehimnel (run simultaneously and equipped with different settingag obtains

— andwv(t) denotes a zero-mean white noise. a new fixed-interval smoothing algorithm with improved ewsttion
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Table 2
Comparison of parameter estimation errors obtained for BEWmoothers based on the polynomial model of ordeﬁip (5'%2 S;f), 3 EWBF smoothers
based on the polynomial model of order 41( S3, S3), 3 EWBF smoothers based on the polynomial model of orde$32 65, S3), cooperative smoother

(Sa), competitive smootherSg) and combined smootheS¢). Simulations were performed for 2 variants of parametemges (I, 11). The best results are
shown in boldface.

Gaussian noise

A\ MOST

T | o Si S? S5 S2 S2 S35 Si S2 S3 Sa S Sc
0.05 || 5.48 | 16.82 | 54.80 | 13.75 | 44.78 | 125.92 | 35.99 | 110.48 | 228.80 || 5.45| 1.04 | 1.00
I | 015 7.02 | 17.31 | 54.97 | 14.39 | 4498 | 125.99 | 36.24 | 110.56 | 228.88 || 6.19 | 3.81 | 3.44
0.30 || 12.13 | 18.88 | 55.32 | 16.42 | 45.47 | 126.02 | 36.94 | 110.71| 228.78 || 8.47 | 8.40 | 6.91
0.05] 1.13 | 260 | 790 | 213 | 6.41 | 2853 | 504 | 18.16 | 10853 ][ 1.10 | 0.24 | 0.14
Il | 015 266 | 3.09 | 807 | 276 | 6.61 | 28.62 | 529 | 18.28 | 108,51 | 1.69 | 1.59 | 0.99
030|| 775 | 476 | 860 | 486 | 7.27 | 28.84 | 6.12 | 1854 | 108.66 || 3.50 | 5.38 | 3.46
Laplacian noise
T | o Si S? S5 S2 S2 S35 Si S2 S3 Sa S Sc
0.05 || 5.47 | 16.81 | 54.80 | 13.74 | 44.77 | 125.93| 35.98 | 110.49| 228.82 || 5.38 | 1.38 | 1.35
I | 05| 7.04 | 17.34 | 54.93 | 14.40 | 44.96 | 125.90 | 36.27 | 110.50 | 228.74 || 6.07 | 4.02 | 3.69
0.30 || 12.29 | 19.10 | 55.57 | 16.60 | 45.72 | 126.15| 37.18 | 110.82 | 228.83 || 8.15| 8.45| 7.08
0.05] 1.13 | 260 | 790 | 214 | 6.41 | 2854 | 504 | 18.16 | 10854 ][ 1.02 | 0.21 | 0.12
I | 015 266 | 3.08 | 805 | 276 | 6.59 | 28.64 | 528 | 18.24 | 108.67 || 1.52 | 1.39 | 0.84
030]|| 783 | 484 | 866 | 495 | 7.35 | 28.81 | 6.23 | 18.51 | 108.68|| 3.03 | 4.79 | 3.04

capabilities. The proposed smoother can be applied to meata
identification of nonstationary stochastic systems subjecboth
smooth and abrupt parameter changes. Additionally, it @aisofor

the distribution of measurement noise.
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Fig. 2. A fragment of the true piecewise constant (upper éand piecewise
sinusoidal (lower figure) parameter trajectories (broleed), along with their
estimates (solid lines) obtained using the cooperativeosineo (upper plots),
competitive smoother (middle plots), and combined smaothettom plots).
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