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Abstract—In this paper we consider the problem of finite-interval
parameter smoothing for a class of nonstationary linear stochastic systems
subject to both smooth and abrupt parameter changes. The proposed
parallel estimation scheme combines the estimates yielded by several
exponentially weighted basis function algorithms. The resulting smoother
automatically adjusts its smoothing bandwidth to the type and rate of
nonstationarity of the identified system. It also allows one to account for
the distribution of the measurement noise.

Index Terms—Identification of nonstationary systems, parameter
smoothing.

I. I NTRODUCTION

In this paper we consider the problem of noncausal identification,
i.e., identification based on pre-recorded data, of a nonstationary
linear stochastic system subject to a mixed-mode parameter variation
– a combination of smooth persistent parameter changes and occa-
sional parameter jumps. In the statistical literature such approach to
system identification is often referred to as fixed-interval parameter
smoothing.

An interesting application which admits such problem formulation
is identification of rapidly fading mobile radio channels [1]. Slow
time variation of the channel coefficients is due to receiver movement
in space, and rapid variation is caused by abrupt changes of the spatial
system configuration (e.g. due to switching between base stations).
Fixed-interval parameter smoothing can be used to reconstruct trajec-
tories of channel coefficients. The reconstructed trajectories can be
later used to perform realistic simulations of a mobile communication
system – they serve as ‘ground truth’ in demonstrations and tests.

Most of the existing work on parameter smoothing is based on
the stochastic model of parameter variation known as the integrated
random walk (IRW) model – the idea goes back to Shiller [2].
Adopting the IRW model of orderm, one assumes that the vector of
system coefficientsθ(t) = [θ1(t), . . . , θn(t)]

T obeys the following
equation

∇m
θ(t) =

(
1− q−1)m

θ(t) = w(t) (1)

where∇m(·) denotes them-th order difference (q−1 stands for the
backward shift operator), andw(t), cov[w(t)] = σ2

wIn, is a white
noise process (In denotes then× n identity matrix).

After state space embedding the problem of estimation of param-
eters governed by (1) can be solved using the algorithms known as
Kalman filters/smoothers [3], [4]. The estimation properties of these
algorithms depend on the adopted orderm of the IRW model and on
the variance quotient (smoothness tradeoff parameter)ξ = σ2

w/σ
2
v –

see e.g. [5]. To obtain satisfactory estimation results, both quantities
should be locally ‘matched’ to the type and speed of parameter vari-
ation, as well as to the signal-to-noise ratio. The matching problem
can be solved by means of combining results yielded by several,

Manuscript received March 5, 2012; revised July 24, 2012, November 15,
and December ??, 2012; accepted December 18, 2012. Date of publication
January ??, 2013; date of current version December ??, 2012. The associate
editor coordinating the review of this manuscript and approving it for
publication was Dr. Erik Weyer.

The authors are with the Faculty of Electronics, Telecommunications
and Computer Science Department of Automatic Control, Gdańsk Univer-
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simultaneously operated, Kalman filters/smoothers, equipped with
different smoothness constraints. For systems with abrupt parameter
changes such robust parallel estimation scheme, called competi-
tive smoother, was described in [6]. It combines, in a statistically
meaningful way, the results provided by several forward-time and
backward-time Kalman filters. The analogous solution for systems
with smooth parameter changes, called cooperative smoother, was
proposed in [7] – it combines results yielded by several Kalman
smoothing algorithms. Finally, one should mention the interacting
multiple model (IMM) approach, originally proposed as a solution
to the problem of tracking maneuvering targets [8]. The suitably
modified IMM algorithm, which can be used for the purpose of
parameter tracking (based on IRW modeling), was described in [9].
In principle, the IMM smoother can be obtained by combining
the results presented in [9] and [10]. However, to the best of our
knowledge, the problem of IMM-based parameter smoothing has not
been explored yet.

The contribution of the paper is twofold.
First, we extend the results presented in [6] and [7] to a new

class of estimation algorithms - exponentially weighted basis function
(EWBF) trackers/smoothers. The basis function approach to system
identification is based on a deterministic model of parameter variation
– it is assumed that system parameters can be modeled as linear
combinations of deterministic functions of time, the so-called basis
functions. The EWBF algorithms are obtained by combining the
basis function based system description with the estimation technique
known as exponential weighting (or exponential forgetting). Similar
to the Kalman-filter-based algorithms, the EWBF algorithms belong
to the class of finite memory adaptive filters. However, unlike the
Kalman-filter-based algorithms, the estimation memory of EWBF
trackers/smoothers can be easily quantified in terms of their design
parameters, such as the number of basis functions and the forgetting
constant. This makes the EWBF algorithms much easier to handle in
practice.

Second, we show how one can merge results yielded by the com-
petitive smoother with those provided by the cooperative smoother.
The resulting combined smoother preserves advantages of the com-
ponent algorithms – similar to the competitive smoother it sharply
resolves parameter jumps, and, similar to the cooperative smoother,
it accurately follows smooth parameter changes.

II. BASIS FUNCTION APPROACH TO PARAMETER TRACKING AND

SMOOTHING

Consider the problem of identification of a discrete-time stochastic
system governed by

y(t) = ϕT(t)θ(t) + v(t) (2)

where ϕ(t) = [ϕ1(t), . . . , ϕn(t)]
T denotes the vector of input

(regression) variables andv(t) denotes white measurement noise.
Suppose that identification of (2) is carried out based on the

pre-recorded data setΩ(N) = {y(i),ϕ(i), i ∈ T}, whereT =
[1, . . . , N ] denotes the observation interval of lengthN . Denote by

{fj(t) = tj−1, j = 1, . . . ,m, t ∈ T} (3)

the set of the so-called basis functions. Adopting the basis function
approach, one assumes that each time-varying system coefficient can
be represented by a linear combination of basis functions (for more
details on the BF approach, and its comparison with other methods
of identification of nonstationary systems, see [5] and [11])

θi(t) =

m∑

j=1

αijfj(t), i = 1, . . . , n, t ∈ T. (4)
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Powers of time are the most frequently used general-purposebasis
functions (although, in principle,any set linearly independent square
summable sequences defined onT can be used). Such a choice,
which stems from the Taylor series expansion theorem and guarantees
recursive computability of parameter estimates, can be traced back
to Subba Rao [12]. All results presented in this paper will bederived
for the basis (3).

After combining (2) with (4), system equation can be writtendown
in the form

y(t) = ψT(t)α+ v(t) (5)

whereα = [α11, . . . , α1m, . . . , αn1, . . . , αnm]T is thenm×1 vector
of coefficients used to describe the parameter time variation, and
ψ(t) denotes thenm × 1 generalized regression vector:ψ(t) =
ϕ(t) ⊗ f(t), f(t) = [f1(t), . . . , fm(t)]T. The symbol⊗ is used to
denote a Kronecker product of two matrices/vectors.

According to (5), the time-varying process of ordern can be
represented by a linear time-invariant model of ordernm. The values
of the time-varying system parametersθ(t) can be easily recovered
from α using the following compact version of (4)

θ(t) = Z(t)α, Z(t) = In ⊗ f
T(t). (6)

A. Parameter Tracking

It would be naive to assume that the expansion coefficientsαij in
(4) are constant in the entire time domain. This assumption would
mean, in fact, that the analyzed system could be regarded as reducible,
i.e., varying in a perfectly predictable manner. To cope with possible
fluctuations inαij ’s, the method of basis functions can be combined
with exponential data weighting (exponential forgetting). Weighting
forces the estimation to be more focused on the most recent data
samples and therefore allows one to track slow variations inexpansion
coefficients. The forward-time (−) and backward-time (+) exponen-
tially weighted basis function (EWBF) parameter trackers take the
form

θ̂±(t) = Z(t)α̂±(t)

α̂±(t) = argmin
α

∑

i∈T±(t)

λ|t−i|
[
y(i)−ψT(i)α

]2

= G
−1
± (t)g±(t) (7)

where λ, 0 < λ < 1, denotes the forgetting constant,T−(t) =
[1, . . . , t], T+(t) = [t, . . . , N ] and the quantitiesG±(t), g±(t) are
recursively computable

G±(t) = λG±(t± 1) +ψ(t)ψT(t)

g±(t) = λg±(t± 1) +ψ(t)y(t)

Using the well-known matrix inversion lemma [5], one can easily set
up an algorithm for recursive computation of[G±(t)]−1.

B. Parameter Smoothing

The EWBF parameter smoother is a natural complement of the
causal and anticausal estimation algorithms presented in the previous
subsection. The algorithm has the following form

θ̂⋆(t) = Z(t)α̂⋆(t)

α̂⋆(t) = argmin
α

∑

i∈T

λ|t−i|
[
y(i)−ψT(i)α

]2

= G
−1
⋆ (t)g⋆(t) (8)

where

G⋆(t) =
∑

i∈T

λ|t−i|
ψ(i)ψT(i), g⋆(t) =

∑

i∈T

λ|t−i|
ψ(i)y(i).

It is straightforward to check that the quantitiesG⋆(t) andg⋆(t) can
be evaluated by means of backward time filtering of the quantities
G−(t) andg−(t), respectively

G⋆(t) = λG⋆(t+ 1) + (1− λ2)G−(t)

g⋆(t) = λg⋆(t+ 1) + (1− λ2)g−(t). (9)

For the basis (3) with only one componentf1(t) ≡ 1, the EWBF
smoother (8) is identical with the algorithm proposed in [13].

III. STATISTICAL PROPERTIES OF THE EXPONENTIALLY

WEIGHTED BASIS FUNCTION SMOOTHER

To simplify our analysis, we will assume that an infinite observa-
tion history is available, i.e.,G⋆(t) =

∑∞
i=−∞ λ|t−i|ψ(i)ψT(i),

g⋆(t) =
∑∞

i=−∞ λ|t−i|ψ(i)y(i). The results of such a steady
state analysis will remain valid for the algorithm (8) as long as
1 ≪ t ≪ N , i.e., everywhere except the boundary regions.

Denote by θ̄⋆(t) = E
[
θ̂⋆(t)

]
the mean path of the estimates

yielded by the EWBF smoother. The mean-squared parameter esti-
mation error can be written down in the form

E
[
‖ θ̂⋆(t)− θ(t) ‖2

]
= ‖ θ̄⋆(t)− θ(t) ‖2 +tr

{
cov

[
θ̂⋆(t)

]}

i.e., it can be decomposed into the bias component and the variance
component, respectively. Both components will be examinedin some
detail below. To arrive at analytical results, we will make the
following assumptions:

(A1) The sequence of regression vectors{ϕ(t)} is a wide sense
stationary and ergodic process with positive definite correlation
matrix E[ϕ(t)ϕT(t)] = Φ0 > 0.

(A2) {v(t)}, independent of{ϕ(t)}, is a sequence of zero-mean,
independent and identically distributed random variableswith
varianceσ2

v.

Both assumptions hold true for rapidly fading mobile radio channels.

A. Estimation Bias

Under the assumption (A2), one arrives at

θ̄⋆(t) = E
[
θ̂⋆(t)

]
= E

[
Z(t)G−1

⋆ (t)r⋆(t)
]

wherer⋆(t) =
∑∞

i=−∞ λ|t−i|ψ(i)ϕT(i)θ(i).
To facilitate further analysis, we will express all quantities in terms

of orthonormal basis vectorsfλ(i) = Cf(i) which obey

∞∑

i=−∞

λ|i|
fλ(i)f

T
λ (i) = Im. (10)

The matrixC can be established using the classical Gram-Schmidt
procedure. Additionally, we will use the following properties of the
basis (3):f(i) = Af(i − 1), f(−i) = Bf(i), whereA = [aij ]

is a lower triangular matrix such thataij = ( i−1
i−j ) for i =

1, . . . ,m, j ≤ i, and B = [bij ] is a diagonal matrix such that
bii = (−1)i−1 for i = 1, . . . ,m. Let H(t) = In ⊗ D(t) where
D(t) = CAtB. Observe thatD(t)f(i) = fλ(t− i). Note that

Z(t)G−1
⋆ (t)r⋆(t) = ZλG

−1
λ (t)rλ(t)
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whereZλ = Z(t)HT(t), Gλ(t) = H(t)G⋆(t)H
T(t) and rλ(t) =

H(t)r⋆(t). Using the identity(P⊗Q)(R⊗S) = PR⊗QS, which
holds for Kronecker products, one obtains

Zλ = In ⊗ f
T
λ (0)

Gλ(t) =
∞∑

i=−∞

λ|t−i|
[
ϕ(i)ϕT(i)

]
⊗

[
fλ(t− i)fTλ (t− i)

]

rλ(t) =
∞∑

i=−∞

λ|t−i| [ϕ(i)⊗ fλ(t− i)]ϕT(i)θ(i).

Under (A1) and (A2) it holds thatE [Gλ(t)] = Φ0 ⊗ Im. Fur-
thermore, using the generalized law of large numbers for weighted
sums of random variables given by Pruitt [14], one can show that
limλ→1 Gλ(t) = E [Gλ(t)] w.p.1. Hence, when the forgetting
constantλ is sufficiently close to 1, one can apply the following
approximation

G
−1
λ (t) ∼= {E [Gλ(t)]}−1 = Φ

−1
0 ⊗ Im. (11)

Using this approximation, one obtains

ZλG
−1
λ (t)rλ(t)

∼=
∞∑

i=−∞

λ|t−i|
[
Φ

−1
0 ϕ(i)ϕT(i)

]
f
T
λ (0)fλ(t− i)θ(i)

which leads to

θ̄⋆(t) ∼=
∞∑

i=−∞

k⋆(i)θ(t− i), k⋆(i) = λ|i|
f
T
λ (0)fλ(i). (12)

According to (12), the mean path of EWBF estimates{θ̄⋆(t)} can
be approximately viewed as a result of passing the process{θ(t)}
through a linear time-invariant filter. We will call the sequence
{k⋆(t)} the impulse response associated with the EWBF smoother.

The impulse responsek⋆(i) can be alternatively expressed in the
form

k⋆(i) = λ|i|
f
T(0)

[
∞∑

j=−∞

λ|j|
f(j)fT(j)

]−1

f(i). (13)

B. Estimation Variance

To quantify estimation variance of the EWBF smoother, we will
assume, for the time being, that the true parameter trajectory can be
exactly represented by a linear combination of basis functions. It is
easy to check that, in the case considered, it holds that

∆θ̂⋆(t) = θ̂⋆(t)− θ(t) = Z(t)G−1
⋆ (t)h⋆(t). (14)

whereh⋆(t) =
∑∞

i=−∞ λ|t−i|ψ(i)v(i).
Using (11), the error equation (14) can be rewritten in the following

equivalent form

∆θ̂⋆(t) = ZλG
−1
λ (t)hλ(t) ∼=

[
Φ

−1
0 ⊗ f

T
λ (0)

]
hλ(t) (15)

where

hλ(t) = H(t)h⋆(t) =

∞∑

i=−∞

λ|t−i| [ϕ(i) ⊗ fλ(t− i)] v(i).

SinceE[hλ(t)] = 0, it holds thatE[θ̂⋆(t)] ∼= θ(t), i.e., the smoothed
estimate is approximately unbiased. Exploiting assumptions (A1) and
(A2), after elementary calculations, one arrives at

E
[
hλ(t)h

T
λ (t)

]
= σ2

vΦ0 ⊗
[

∞∑

i=−∞

λ2|i|
fλ(i)f

T
λ (i)

]

cov
[
∆θ̂⋆(t)

]
∼=

[
Φ

−1
0 ⊗ f

T
λ (0)

]
E
[
hλ(t)h

T
λ (t)

] [
Φ

−1
0 ⊗ fλ(0)

]

∼= σ2
vΦ

−1
0

l⋆
(16)

where the quantityl⋆ denotes the equivalent estimation memory
length of the EWBF smoother

l−1
⋆ = f

T
λ (0)

[
∞∑

i=−∞

λ2|i|
fλ(i)f

T
λ (i)

]
fλ(0) =

∞∑

i=−∞

k2
⋆(i).

Equivalent estimation memory, different from the so-called effective
estimation memory, characterizes the amount of information about
θ(t) which is extracted from the input/output data as a result of
applying the method of weighted basis functions [5]. One caneasily
show that when the true parameter trajectory cannot be exactly
represented by the weighted sum of basis functions, the right-hand
side of (16) is thelower boundon cov[∆θ̂⋆(t)].

The results derived above parallel those obtained earlier for the
EWBF tracker [15]. In the case of tracking, one obtains

θ̄±(t) = E
[
θ̂±(t)

]
∼=

∞∑

i=0

k±(i)θ(t± i) (17)

where

k±(i) = λi
f
T(0)

[
∞∑

j=0

λj
f(j)fT(j)

]−1

f(i), i ≥ 0. (18)

The corresponding steady state equivalent memory spans canbe
obtained froml± =

[∑∞
i=0 k

2
±(i)

]−1
. Note thatk−(i) ≡ k+(i)

and consequentlyl− = l+.
Expressions fork⋆(i) and l⋆ derived for the basis (3) for different

number of basis functions (m = 1, 2, 3), and the analogous results
obtained earlier for the EWBF trackers, are summarized in Table 1.
Interestingly, the same expressions fork⋆(i) and l⋆ are obtained for
m = 1 andm = 2. This means that no bias reduction can be expected
after incorporation of the linear basis functionf2(t) = t (but usually
there is some variance reduction compared to the first-orderestimator
with the same equivalent memory).

Note that the steady state equivalent memory spans take the form
l±m = c±m/(1− λ) and l⋆m = c⋆m/(1− λ), where c±m and c⋆m are
easily computable quantities that depend on the number of basis
functions and the forgetting constant, anddo not depend on the
characteristics of the input-output data.

For Kalman algorithms based on (1) the situation is different. When
m = 1, one can show that the estimation memory takes the forml1 =
c1(Φ0)/

√
ξ wherec1 is a constant that depends on the eigenvalues

of the matrixΦ1/2
0 – see [5]. No results are currently available for

m > 1, but there are some theoretical arguments which support
the claim thatlm = cm(Φ0)ξ

−1/2m. Since the constantscm are
not known, the practically important memory scheduling problem is
difficult to solve for this class of identification algorithms.

Remark: When estimation is carried out using the exponentially
weighted basis function algorithms, the forgetting constant should
be chosen with caution – the rules of thumb which work for the
exponentially weighted least squares scheme (i.e., the first-order
EWBF tracker) cannot be mechanically extended to higher-order
EWBF estimators. For example, forλ = 0.99 the equivalent memory
spans of the third-order estimators are equal tol± ∼= 33 samples and
l⋆ ∼= 48 samples, rather thanl± ∼= 200 samples andl⋆ ∼= 400
samples, respectively, as one might expect based on the experience
with exponentially weighted least squares trackers/smoothers.
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Table I
Associated impulse responses and equivalent memory spans of

EWBF smoothers and trackers of different orders.

EWBF smoothers

m = 1 k⋆(i) = λ|i| 1−λ
1+λ

l⋆ =
(1+λ)3

(1−λ)(1+λ2)
∼= 4

1−λ

m = 2 k⋆(i) = λ|i| 1−λ
1+λ

l⋆ = (1+λ)3

(1−λ)(1+λ2)
∼= 4

1−λ

m = 3 k⋆(i) = λ|i| (1−λ)[1+10λ+λ2−(1−λ)2i2]
(1+λ)(1+8λ+λ2)

l⋆
∼= 267

800(1−λ)

EWBF trackers

m = 1 k±(i) = λi(1− λ)

l± = 1+λ
1−λ

∼= 2
1−λ

m = 2 k±(i) = λi(1− λ)[1 + λ− (1− λ)i]

l± =
(1+λ)3

(1−λ)(1+4λ+5λ2)
∼= 4

5(1−λ)

m = 2 k±(i) = λi(1− λ)[1 + λ+ λ2

−
3
2
(1 + λ)(1 − λ)i + 1

2
(1− λ)2i2]

l±
∼= 16

33(1−λ)

IV. COOPERATIVEEWBF SMOOTHER

Estimation properties of EWBF algorithms depend on the choice
of two design parameters: the forgetting constantλ and the number of
basis functionsm. For ‘small’ values ofλ and/or for ‘large’ values
of m, the estimation memory of the EWBF algorithm decreases.
The resulting short-memory trackers/smoothers are ‘fast’(yield small
estimation bias) but ‘inacurate’ (yield large estimation variance).
The converse is also true – long-memory algorithms are ‘accurate’
but‘slow’. The best results are obtained if the values ofλ andm are
selected so as to match the degree and type of nonstationarity of the
identified system, trading off the bias and variance error components.
Optimization of the design parameters is possible using parallel es-
timation techniques. Following this idea, considerK simultaneously
running EWBF smoothers, equipped with different settings{λk,mk}
and yielding the estimates

θ̂
⋆
k(t) = Zk(t) [G

⋆
k(t)]

−1
g
⋆
k(t)

Zk(t) = In ⊗ f
T
k (t)

G
⋆
k(t) =

∞∑

i=−∞

λ
|t−i|
k ψk(i)ψ

T
k (i)

g
⋆
k(t) =

∞∑

i=−∞

λ
|t−i|
k ψk(i)y(i).

We will combine these estimates using the cooperative smoothing
strategy proposed in [13].

Cooperative smoothing is a Bayesian extension of the leave-one-
out cross-validation approach to model selection. In this approach,
credibility of each smoother̂θ⋆k(t) is assessed (locally) based on
observation of matching errorse◦k(t) = y(t)−ϕT(t)θ̂◦k(t) – residual
errors yielded by the ‘holey’ smoother̂θ◦k(t) associated witĥθ⋆k(t).
Holey smoother associated with the EWBF algorithm, i.e., the one

that excludesy(t) from the set of measurements used for estimation
of θ(t), takes the form:

θ̂
◦
k(t) = Zk(t) [G

◦
k(t)]

−1
g
◦
k(t)

G
◦
k(t) = G

⋆
k(t)−ψk(t)ψ

T
k (t)

g
◦
k(t) = g

⋆
k(t)−ψk(t)y(t).

Suppose that the measurement noise{v(t)} is a sequence of zero-
mean independent random variables obeying the generalizednormal
law v ∼ GN (α, β) :

p(v;α, β) =
β

2αΓ(1/β)
exp

{
−
( |v|

α

)β
}

where α > 0 is the unknown scale parameter,β ≥ 1 is the
known shape parameter, andΓ(·) denotes the Euler’s gamma func-
tion. Generalized normal law incorporates such practically important
distributions as Gaussian (β = 2), Laplace (β = 1), and uniform
(β → ∞) – see [16].

According to [13], the cooperative estimate of the parameter
trajectory can be obtained in the form

θ̂A(t) =

K∑

k=1

µ⋆
k(t)θ̂

⋆
k(t), µ⋆

k(t) ∝




∑

i∈T⋆

d
(t)

|e◦k(i)|β



−M/β

(19)

whereµ⋆
k(t) ≥ 0, k = 1, . . . ,K,

∑K
k=1 µ

⋆
k(t) = 1, denote credibility

coefficients (related to posterior probabilities of different parameter
‘patterns’), evaluated in the local decision windowT ⋆

d (t) = [t−l, t+
l] of (user-dependent) widthM = 2l + 1.

Similarly as in [13], one can show1 that matching errors can be
expressed in terms of the residual errorsek(t) = y(t)−ϕT(t)θ̂⋆k(t),
namely

e◦k(t) =
ek(t)

1− rk(t)
(20)

where

rk(t) = ψ
T
k (t) [G

⋆
k(t)]

−1
ψk(t).

Hence, credibility coefficients can be evaluated without implementing
the corresponding holey smoothers.

V. COMPETITIVE EWBF SMOOTHER

The smoothing formula (8) is based on an implicit assumption
that parameter changes are continuous, i.e., that the true parameter
trajectory obeys the polynomial model at least in some neighborhood
of t. Quite obviously, the presence of jumps in the parameter
trajectory violates this ‘homogeneity’ assumption. Note,however,
that when parameter changes are infrequent, namely when thetime
between subsequent jumps is greater than the equivalent memory
length of the forward/backward EWBF trackers, at each time instant
at least one of them generates accurate estimates of the parameter
trajectory. In particular, the forward time tracker yieldsaccurate
estimates immediately before the jumps, and the backward time
tracker – immediately after the jumps. The degree of accurateness,
i.e., ‘credibility’ of different estimators, can be easilyjudged by the
magnitude of the locally observed prediction errors. Following [6],
the competitive smoother that combines results yielded byK forward

1After replacing the regression vectorϕk(t) with the generalized regression
vectorψk(t), the proof is identical with that given in [13].
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time andK backward time EWBF trackers can be set up as follows

θ̂B(t) =

K∑

k=1

[
µ−
k (t)θ̂

−
k (t) + µ+

k (t)θ̂
+
k (t)

]

µ±
k (t) ∝




∑

i∈T±

d
(t)

|ε±k (i)|β




−M/β

(21)

whereT−
d (t) = [t −M + 1, t] andT+

d (t) = [t, t +M − 1] denote
the local decision windows of widthM , and

ε±k (i) = y(t)− ϕT(i)θ̂±k (i± 1), k = 1, . . . ,K

are the corresponding forward/backward prediction errors.
The term ‘competitive smoothing’ refers to the fact that, within this

approach, the forward and backward algorithms compete witheach
other, rather than cooperate (since, at each time instant, only one of
them is assumed to be based on the correct system description).

VI. COMBINED EWBF SMOOTHER

While the competitive smoother yields good estimation results in
the regions of parameter jumps, for smooth parameter changes it may
lead to parameter ‘jitter’ - the effect caused by random switching
between the forward-time and backward-time algorithms – see [6].
The converse is true for the cooperative smoother: it yieldsgood
results for smooth parameter changes, but ‘blurs’ all step-like features
of the estimated parameter trajectory.

To obtain smoothing algorithm that works satisfactorily inboth
cases mentioned above, one can fuse the cooperative smoother (18)
with the competitive smoother (21). Using the cooperative smoothing
rule once again, one arrives at the following formula which will be
further referred to as a combined smoother

θ̂C(t) = µA(t)θ̂A(t) + µB(t)θ̂B(t) (22)

where

µA(t) =
ηA(t)

ηA(t) + ηB(t)
, µB(t) =

ηB(t)

ηA(t) + ηB(t)

ηA/B =




∑

i∈T⋆

d
(t)

|e◦A/B(i)|β



−M/β

and the corresponding matching errors are given by

e◦A(t) =

K∑

k=1

µ⋆
k(t)e

◦
k(t)

e◦B(t) =

K∑

k=1

[
µ−
k (t)ε−k (t) + µ+

k (t)ε
+
k (t)

]
.

Note that the computational load of the combined smoother grows
linearly with the number of component algorithmsK. The analogous
count for the IMM smoother proposed in [8] is proportional toK2.

VII. C OMPUTER SIMULATIONS

To check performance of smoothing algorithms, the following two-
tap FIR system (inspired by channel equalization applications) was
simulated

y(t) = θ1(t)u(t− 1) + θ2(t)u(t− 2) + v(t)

whereu(t) = ±1, σ2
u = 1, denotes the pseudo-random binary signal

(PRBS) – the sequence transmitted over a telecommunicationchannel
– andv(t) denotes a zero-mean white noise.
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Fig. 1. Two variants of parameter changes used in computer simulations:
piecewise constant (two upper plots) and piecewise sinusoidal (two lower
plots).

Two types of parameter changes were considered: piecewise con-
stant (I), and piecewise sinusoidal (II) – see Fig. 1. Due to appropriate
scaling, all parameter trajectories have the sameL2 norm.

For each of the compared algorithms the steady state accumulated
mean-squared parameter estimation errorsEv{∑4900

t=101
‖ θ̂(t|5000)−

θ(t) ‖2} were computed (to eliminate transient effects, the evaluation
was restricted to the interval[101, 4900]). Ensemble averagingEv(·)
was performed over 50 realizations of the measurement noise{v(t)}.
The procedure was repeated for each of 3 noise intensities ranging
from σv = 0.05 (SNR=26 dB) toσv = 0.30 (SNR=10.5 dB). The
distribution of noise was either Gaussian (β = 2) or Laplacian (β =
1). The width of the decision window was equal toM = 21.

Table 2 summarizes results obtained for 9 EWBF smoothers (Sk
j ,

j, k = 1, . . . , 3), the cooperative smoother (SA), the competitive
smoother (SB) and the combined smoother (SC). The first 3 EWBF
algorithms (S1

1 , S2
1 , S3

1 ) were based on the polynomial model of order
0 (m = 1, λ1

1 = 0.818, λ2
1 = 0.920, λ3

1 = 0.975). The next 3 EWBF
algorithms (S1

2 , S2
2 , S3

2 ) were based on the polynomial model of order
1 (m = 2, λ1

1 = 0.936, λ2
1 = 0.973, λ3

1 = 984). The last 3 EWBF
algorithms (S1

3 , S2
3 , S3

3 ) were based on the polynomial model of
order 2 (m = 3, λ1

1 = 978, λ2
1 = 0.991, λ3

1 = 0.995). The forgetting
constantsλk

j of constituent smoothers were not optimized in any
way – the corresponding values were chosen so that within each
group of algorithms{S1

1 , S
1
2 , S

1
3}, {S2

1 , S
2
2 , S

2
3} and {S3

1 , S
3
2 , S

3
3}

the equivalent memory spans of the corresponding EWBF trackers
were the same and equal to 10 samples, 30 samples and 90 samples,
respectively. Typical estimation results (Gaussian noise, σv = 0.2)
are shown in Fig. 2.

Note that the combined smoother is uniformly better than all
other smoothers, including all component smoothers, i.e.,it provides
the smallest estimation errors in all cases considered. An obvious
advantage of the combined smoother is its increased robustness to
unknown and possibly time-varying degree of nonstationarity and
the mode of variation of the identified system.

VIII. C ONCLUSION

We have shown that, by combining the results yielded by several
exponentially weighted basis function parameter trackers/smoothers
(run simultaneously and equipped with different settings), one obtains
a new fixed-interval smoothing algorithm with improved estimation

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


6

Table 2
Comparison of parameter estimation errors obtained for 3 EWBF smoothers based on the polynomial model of order 0 (S1

1 , S2
1 , S3

1 ), 3 EWBF smoothers
based on the polynomial model of order 1 (S1

2 , S2
2 , S3

2 ), 3 EWBF smoothers based on the polynomial model of order 2 (S1
3 , S2

3 , S3
3 ), cooperative smoother

(SA), competitive smoother (SB) and combined smoother (SC). Simulations were performed for 2 variants of parameter changes (I, II). The best results are
shown in boldface.

Gaussian noise

T σv S1
1 S2

1 S3
1 S1

2 S2
2 S3

2 S1
3 S2

3 S3
3 SA SB SC

0.05 5.48 16.82 54.80 13.75 44.78 125.92 35.99 110.48 228.80 5.45 1.04 1.00
I 0.15 7.02 17.31 54.97 14.39 44.98 125.99 36.24 110.56 228.88 6.19 3.81 3.44

0.30 12.13 18.88 55.32 16.42 45.47 126.02 36.94 110.71 228.78 8.47 8.40 6.91
0.05 1.13 2.60 7.90 2.13 6.41 28.53 5.04 18.16 108.53 1.10 0.24 0.14

II 0.15 2.66 3.09 8.07 2.76 6.61 28.62 5.29 18.28 108.51 1.69 1.59 0.99
0.30 7.75 4.76 8.60 4.86 7.27 28.84 6.12 18.54 108.66 3.50 5.38 3.46

Laplacian noise

T σv S1
1 S2

1 S3
1 S1

2 S2
2 S3

2 S1
3 S2

3 S3
3 SA SB SC

0.05 5.47 16.81 54.80 13.74 44.77 125.93 35.98 110.49 228.82 5.38 1.38 1.35
I 0.15 7.04 17.34 54.93 14.40 44.96 125.90 36.27 110.50 228.74 6.07 4.02 3.69

0.30 12.29 19.10 55.57 16.60 45.72 126.15 37.18 110.82 228.83 8.15 8.45 7.08
0.05 1.13 2.60 7.90 2.14 6.41 28.54 5.04 18.16 108.54 1.02 0.21 0.12

II 0.15 2.66 3.08 8.05 2.76 6.59 28.64 5.28 18.24 108.67 1.52 1.39 0.84
0.30 7.83 4.84 8.66 4.95 7.35 28.81 6.23 18.51 108.68 3.03 4.79 3.04

capabilities. The proposed smoother can be applied to noncausal
identification of nonstationary stochastic systems subject to both
smooth and abrupt parameter changes. Additionally, it accounts for
the distribution of measurement noise.
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Fig. 2. A fragment of the true piecewise constant (upper figure) and piecewise
sinusoidal (lower figure) parameter trajectories (broken lines), along with their
estimates (solid lines) obtained using the cooperative smoother (upper plots),
competitive smoother (middle plots), and combined smoother (bottom plots).
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