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ABSTRACT: The GPS system is widely used in navigation and the GPS receiver can offer long-term stable
absolute positioning information. The overall system performance depends largely on the signal environments.
The position obtained from GPS is often degraded due to obstruction and multipath effect caused by buildings,
city infrastructure and vegetation, whereas, the current performance achieved by inertial navigation systems
(INS) is still relatively poor due to the large inertial sensor errors. The complementary features of GPS and INS
are the main reasons why integrated GPS/INS systems are becoming increasingly popular. GPS/INS systems
offer a high data rate, high accuracy position and orientation that can work in all environments, particularly
those where satellite availability is restricted.

In the paper integration algorithm of GPS and INS systems data for pedestrians in urban area is presented. For data
integration an Extended Kalman Filter (EKF) algorithm is proposed. Complementary characteristics of GPS and INS with
EKF can overcome the problem of huge INS drifts, GPS outages, dense multipath effect and other individual problems
associated with these sensors.

1 INTRODUCTION obstructed in urban areas due to tall buildings and

other obstacles [1-2].

The GPS system is a part of a satellite-based In an INS system, the angular rate and specific

navigation system. The fully operational GPS includes
24 or 28 active satellites approximately uniformly
dispersed around six circular orbits with four or more
satellites each. Theoretically, three or more GPS
satellites will always be visible from most points on
the earth’s surface, and four or more GPS satellites
can be used to determine an observer’s position
anywhere on the earth’s surface 24 hours per day. The
GPS receiver can offer positioning information with
output rate between 1 and 10 Hz. However, the
system performance depends largely on the signal
environments. GPS uses the energy of the radio
waves for obtaining the navigation parameters hence
it is prone to jamming. Also the signal may get

force measurements from the Inertial Measurement
Unit (IMU) are processed to yield the position,
velocity and attitude solution. General, inertial IMU,
which incorporates three-axis accelerometers and
three-axis gyroscopes, can be used as positioning and
attitude monitoring devices. Such systems can
navigate autonomously and provide measurements at
a higher data rate (e.g., 100 Hz). However, the system
has to be initialized and calibrated carefully before
application. Moreover, the sensor errors are growing
unboundedly over time. The presence of residual bias
errors may deteriorate the long-term positioning
accuracy [3-4].
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Due to the complimentary characteristics of GPS
and INS, they are often integrated to obtain a
complete and continuous navigation solution [5-7].

The inertial sensors used in IMU are made in
MEMS  (Micro  Electro-Mechanical =~ Systems)
technology. MEMS technology enables
miniaturization, mass production and cost reduction
of many sensors. In particular, MEMS inertial sensors
that include an acceleration sensor and an angular
velocity sensor (gyroscope, or simply “gyro”) are the
most popular devices. Almost all MEMS acceleration
sensors have a seismic mass and support spring made
of silicon. The structure of MEMS gyros is somewhat
similar to that of acceleration sensors — a mass
supported by a spring is continuously vibrated in the
device, and the Coriolis force generated by the
applied angular velocity affects the movement of the
mass (vibrating gyroscope). The mass in a MEMS
device is very small, and therefore, the inertial forces
acting on the mass, especially the Coriolis force, are
also extremely small. Thus, the design of the circuit
that measures the movement in mass due to the force
is important in addition to the design of the
mechanical structure. Recently MEMS inertial sensors
have been built with an integrated circuit, with sensor
structure on a single device chip [4].

A typical structure of a MEMS acceleration sensor
is shown in Figure 1 [4], where a silicon mass is
supported by silicon springs and the displacement of
the mass due to acceleration is measured by
capacitance change between the mass and fixed
electrodes. Since the mass is very small and the
displacement is also small, the resolution of the
device is generally limited to around 0.1 mg Hz.
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Figure 1. Structure of MEMS acceleration sensor (2-axis) [4].

The basic structure of MEMS gyroscopes is similar to
acceleration sensors, i.e., a mass is supported by springs.
The main difference in operation is that the angular velocity
is obtained by measuring the Coriolis force on the vibrating
mass. Thus, the movement of the mass should have at least
two degrees of freedom. The device is shown in Figure 2

[4].
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Figure 2. Conceptual structure of an MEMS gyroscope [4].

Inertial sensors have numerous applications. INS
is a self-contained system that integrates three
acceleration and three angular velocity components
with respect to time and transforms them into the
navigation frame to deliver position, velocity, and
attitude components. The three orthogonal linear
accelerations are continuously measured through
three-axis accelerometers while three gyroscopes
monitor the three orthogonal angular rates in an
inertial frame of reference. In general, IMU, which
incorporates three-axis accelerometers and three-axis
gyroscopes, can be used as positioning and attitude
monitoring devices. However, INS cannot operate
appropriately as a stand-alone navigation system.

The presence of residual bias errors in both the
accelerometers and the gyroscopes, which can only be
modeled as stochastic processes, may deteriorate the
long-term positioning accuracy. Hence, the INS/GPS
data integration is the desirable solution to provide
navigation system that has better performance in
comparison with either a GPS or an INS stand-alone
system.

2 IMU DESCRIPTION

We use a commercially available IMU, model MTi-G
from Xsens Technologies. Figure 3 shows this sensor.
Its size is 58x58x22 mm (WxLxH), and it weights 50
grams.

The IMU has three orthogonally-oriented
accelerometers, three gyroscopes, three
magnetometers and GPS reciver. The accelerometers
and gyroscopes are MEMS solid state with
capacitative readout, providing linear acceleration
and rate of turn, respectively. Magnetometers use a
thin-film magnetoresistive principle to measure the
earth magnetic field. The performance of each
individual MEMS sensor within the MTi IMU are
summarized in table 1 and GPS receiver in table 2.
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Figure3. MTi-G Xsens IMU with annotated sensor
Cartesian coordinates.

The MTi-G sensor has a built-in algorithm that
provides the absolute heading and attitude of the
unit, which is expressed as the rotation matrix Rss. It
can be used to directly transform the readings from
the sensor (S) to the global (G) Cartesian coordinates
frames. The typical absolute orientation errors are
summarized in table 3. Performance is quite good
whenever the earth magnetic field is not disturbed,
for example by metallic objects, power lines, personal
computers, or any device containing electro-magnetic
motors.

Table 1. Performance of individual sensors in Xsens IMU.
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Figure 4. Conventional IMU navigation algorithm.

Other IMU navigation method pedestrian-oriented
can be based on a step detection algorithm and use
orientation information directly from IMU. There are
several step detection algorithms that have been
proposed by researches in the literature [3, 8].

The algorithm implemented for step detection
consist of the following four steps [8]. First step,
compute the magnitude of the acceleration ai for each
sample I, like

_ 2 2 2
a —Jaxi +a, +a . (1)

Second step, computes the local acceleration

A G M variance, to remove gravity, like
Axes 3 3 3
Full Scale FS +50 m/s? +300 °/s + 750 mGuass 1 it 5
Linearity 0.1% of FS  0.2% of FS  0.2% of FS ol = Z (a _a_) @)
Bias stability 0.02 m/s? 1°/s 0.1 mGuass G ot “ J i)’
Bandwidth 30 Hz 40 Hz 10 Hz J=mw
Max update rate 512 512 512 _

A — accelerometers, G — gyroscopes, M — magnetometers

Table 2. GPS receiver parameters.

Receiver type 50 channels L1 frequency, C/A
code

GPS update rate 4 Hz

Start-up time cold start 29s

Tracking sensitivity -160 dBm

Timing Accuracy 50ns RMS

Table 3. Performance of attitude and heading as provided
Xsens fusion algorithm in matrix Res

Static accuracy (roll/pitch) <0.5°
Static accuracy (heading)* <1°
Dynamic accuracy 2° RMS
Angular resolution 0.005 °

*in homogeneous magnetic environment

3 NAVIGATION ALGORITHS USING DATA
FROM IMU

The conventional IMU navigation algorithm is to
integrate the gyroscopes and accelerometers data
(Figure 4). However, the position values obtained by
this method are reliable for only a short period of
time. This is due to the accelerometer’s inherent drift
error as well as the gyro rate drift error, which means
that when double integration of the acceleration
measurements, the drift error is also accumulated
over time and increases dramatically with time. So the
estimated position will be far away from the actual
position.

where a. is a local mean acceleration value, is
computecf like

1 i+w

2.4, ®)

q=i—-w

a4 =
T 2w+l

and w defines the size of the averaging window in
samples. Third step, uses two thresholds. First (T7) is
applied to detect the swing phase (Bi), whereas the
second (12) applied to detect the stance phase (Bz) in a
single step while walking.

L oo, >T
B, = o (4)
0 otherwise

T, o,<T
B, = S )
0 otherwise

Fourth step, is detected in sample i when a swing
phase ends and stance phase starts. Figure 5 shows
details of this step detection method. Step detection
also is possible using data from gyroscope and
magnetometer [3].

403


http://mostwiedzy.pl

A\ MOST

P = s . 3 i I — W |
0 50 100 150 200 250 300 350 400
samples

Figure 5. Conventional IMU navigation algorithm.

Also it is necessary to estimate the Stride Length
(SL) at every detected step in order to calculate the
total forward movement of a person while walking.
SL depends on the person, its leg length, and its
walking speed and the nature of the movements
during walking, and etc. The algorithm proposed by
Weinberg [9] assumes that SL is proportional to the
bounce, or vertical movement, of the human hip. This
hip bounce is estimated from the largest acceleration
differences at each step. The algorithm implemented
for SL estimation consists of the following three steps
[8]. First step, compute the magnitude of accelerations
ai, as in eq. 1. Second step, Low-Pass filter this signal
(). In particular we use a filter of order 6 and cut-off
frequency at 5 Hz. Third step, estimate the SL using
Weisberg expression.

SL, = K {max® ©6)

= =iy w)

where the maximum and minimum operations are
applied over the filtered accelerations in a
window of size 2w+l around the sample iw
corresponding to the k stance detection. K is a
constant that has to be selected experimentally or
calibrated. Table 4 shows examples results for K=I. In
the Weinberg methodology, using a fixed K value, is
valid for accurately estimating SL even at different
walking speed.

Table 4. Results for Stride Length (SL) estimation algorithm.
Stepl  Step2  Step3  Step4d  Stepb
1.17m  1.26m 1.25m 1.29m 1.41m

SL for K=1

Navigation method based on step detection
algorithm and use orientation information directly
from IMU is a good solution for estimating human
trajectories. However, the drift of position obtained
by this method is proportional to the travelled
distance, changes in walking speed (K is a constant),
changes in walking direction, data quality from IMU
(accelerometers, gyroscopes and magnetometers) and
etc.
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4 ALGORITHM FOR INS AND GPS DATA
INTEGRATION

The INS/GPS data integration algorithm is based on
Extended Kalman Filter (EKF) usage [10, 11]. EKF uses
Taylor series, where the idea of a linear approximation to
describe a function in the neighborhood of some point by a
linear function is applied. The algorithm works in a two-
step prediction/correction process. In the prediction step,
the Kalman filter produces estimates of the current state
variables. Because of the recursive nature of the algorithm,
it can be run in real time. The present input measurements
and the previously calculated state is used; no additional
past information is required [12]. The very idea is presented
in the Figure 6 where X are a priori and a
posteriori system state, ?’_ ﬁ) are a priori and &
posteriori covariance matrix, H is measurement
matrix, K, is Kalman gain, R, Q are process and
state variance of the system, z, is measurement matrix,
A is process model.

Initial State

Prediction

1. State Prediction

%= f‘()ek—Huk—l’o) @
2. Covariance Error Prediction [
P =AAPA71AI.T +WA'Qk7IWA'T ®
7 Correction (Innovation Step) A

1. Kalman Gain
K, =P H(HP H +V,RV]) ©
2. State Correct — Update
£,= %+ Kz - h(E0) o
3. Covariance Error Update
P, =(I-K,H, )P (1)

Figure 6. EKF sensor data integration algorithm diagram.

Prediction can be described as follows (7) and (8)
in the Figure 6, where f (x,u,w is nonlinear
function, which uses a previous filter state as well as
control impact and the process noise. A4, (or AJ ) is
a Jacobian, f with respectto x, W, (or W'yis a
Jacobian, f  with respect to w functlon Where A
and W are follows:

S Jii

J YA

iy = o (%1o241,0), (12)
Ofin /.

VV[;'],j] =5x[] (xk—l’uk—l’o)' (13)

[/]

And correction is applied as follows (9) (10) and
(11) in the Figure 6, where H, (or H’) is Jacobian,
derivative of the function £ with respect to x, V,
(or v’ ) is Jacobian as wel], function derlvatlve of
with respectto v and A (x V) is nonlinear function
representin;l state. and measurement relation.
Jacobians and V' canbe expressed as follows:
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! =M (s 0). (14)

Sh,

v/ =—1(x 0), 15

[i.j] 5xm( k ) (15)
where

x, = f(x%.1,,,0). (16)

All Jacobians ought to be recalculated in every step
iteration, when the GPS/IMU model is generated.

The state estimate vector consists of 20 elements

x=[xyzv,v,v. qb b b

Xy zT (11)
P.O,P. Py Py Py &]
initialized with:
x=[000,000,1000,0.0010.0010.001,
(12)

000,0.0010.0010.001,0]"

where x y z is location [m], v, v, v, is velocity [m/s], g is
quaternion vector, b, b, b, is bias [G], ¢x ¢y = is rotation
phase [rad], @u @w ¢u is rotation biases, g is
gravitation.

The observation covariance matrix R is diagonal
matrix consisting of GPS position error (5 m) and
velocity error (0.5 m/s) in direction x, y, z, while the
covariance noise diagonal matrix equals:

0= diagonal([0.50.50.5,0.5 0.50.5,
0.000010.000010.000010.00001,0.010.010.01,  (13)
0.0010.0010.001,0.0010.0010.001,0.01])

5 RESULTS

The purpose of this study is to track the position of a

pedestrian walking outside. One foot of the pedestrian is
mounted with an IMU, which is used to measure the
acceleration and angular rate of the walking foot. The GPS
module is attached to a straight pole with the GPS antenna
on the top of it so that the GPS position signal can be
obtained more easily. The pedestrian localization is
achieved by integrating the inertial and GPS information.
Figure 7 shows IMU and GPS antenna localization on
the body.

GPS
Antena

Figure 7. IMU and GPS antenna localization on the body.

The IMU/GPS based pedestrian localization
algorithm is firstly implemented when a pedestrian is
walking along a 20mx20m square. The result of the
IMU/GPS algorithm using EKF is shown in figure 8.

— true trajectory
—— IMU trajectory
—— GPS trajectory
——— EKF trajectory

R SGOtnly SEELEIEELT SEERISERERSE SRR

20| - ; " : 8, .

-----------

Figure 8. The pedestrian trajectory represented by different
methodologies for 20mx20m square.

Another test was conducted in an environment
shown in figure 9 and the results of the IMU/GPS
algorithm using EKF is shown in figure 10.

Figure 9. The environment test area.
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Figure 10. The pedestrian trajectory represented by different
methodologies for environment.

It is obvious that EKF corrected trajectory is more
accurate than the trajectory calculated by IMU and
GPS separately. Result for EKF is nearly GPS
trajectory when GPS errors are between 1 to 5 meters.

6 CONCLUSIONS

In this paper, we proposed an EKF to integration of
GPS and INS systems data for pedestrians location in
urban environment. Obtained results show that EKF
algorithm is more accurate and robust, than
algorithms using data from GPS and INS systems
separately. However, the situation of long-term GPS
outage is not considered in this paper. Our future
work will focus on the improvement of the
localization accuracy in long-term operations.
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