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Abstract: Evolution of sound in a relaxing gas whose properties vary in the course of wave propagation, is studied.
A relaxing medium may reveal normal acoustic properties or be acoustically active. In the first case, losses
in acoustic energy lead to an increase in internal energy of a gas similarly as it happens in Newtonian
fluids. In the second case, acoustic energy increases in the course of sound propagation, and the internal
energy of a medium decreases. Variations in the internal energy of a gas are proportional to some generic
parameter, the sign of which is responsible for acoustical activity, and depends on intensity and shape
of the sound waveform. Hysteresis curves in the plane of thermodynamic states are plotted. Curves for
harmonic and several aperiodic sound impulses are plotted, discussed and compared.
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1. Introduction

Thermal conductivity, molecular absorption, scatteringand relaxation processes of different origin, lead to at-tenuation of sound and an irreversible nonlinear increasein the internal energy of a medium [1–3]. A fluid mayreveal anomalous absorption and dispersion of sound [4–7]. Some special conditions of external pumping of energy[8–10] or heat release in a chemical reaction [11] make afluid non-equilibrium, negative dispersive and acousticallyactive. Anomalous dispersion of sound and negative totalviscosity in these two examples of gases are caused by dif-
∗E-mail: anpe@mif.pg.gda.pl

ferent physical reasons but described by similar equationswith a certain generic coefficient which is responsible fordispersion in these fluids, ordinary or anomalous. In theboth cases, the relation between acoustic pressure pa andexcess acoustic density ρa takes the typical leading-orderform for the relaxing media:
pa = c2ρa + γ − 12ρ0 c2ρ2

a + 2Bc3 ∫ t
ρae−(t−t′)/τdt′, (1)

with some parameter B which may take positive or nega-tive values, τ denotes the relaxation time, c = √
γp0/ρ0is the propagation speed of infinitely-small magnitudesound, p0, ρ0 are unperturbed pressure and density ofa medium, and γ is the specific heat ratio in an ideal gas.Three terms in the right-hand side of this equality are
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well-established. In fact, two first specify the isentropicRiemann wave [1–3]. The last therm describes the relaxingproperties of a medium. For sound to be a wave process,attenuation (or amplification) and dispersion which followpropagation of sound, are considered to be small over thewavelength, |B| << ω/c, where ω denotes the charac-teristic sound frequency. In the low-frequency domain,where ωτ << 1 and B < 0, a fluid behaves as Newto-nian with attenuation proportional to B and τ . In view ofsmall |B| as compared to the characteristic wavenumberof sound, attenuation (or enhancement) of low-frequencysound is very low, as well as enlargement of the thermalmode in the field of sound [12, 13]. Eq. (1) reveals that aconnection between acoustic pressure and excess acousticdensity is not longer algebraic, but depends generally onthe prehistory of perturbations in a fluid, thereby caus-ing a medium hysteresis. In the high-frequency regime,
ωτ >> 1, the dynamic equation for acoustic pressure inone-dimensional flow takes the leading-order form:

∂2pa
∂t2 − c2 ∂2pa

∂x2 − γ + 12c2ρ0
∂2p2

a
∂t2 + 2Bc∂pa∂t = 0. (2)

To conclude about the equation of state, that is, aboutconnection of total perturbations of pressure and densityin a medium, one requires knowledge not only of acous-tic perturbations, but also of irreversible transfer of soundenergy into the energy of the thermal mode. This transferin Newtonian fluids is followed by an isobaric increaseof temperature of a medium, and, as a consequence, indecrease of its density [1, 3, 14]. In non-equilibrium me-dia, under some conditions, sound amplifies [7, 10, 11],and internal energy may decrease, that is followed by en-largement in density of a medium. Along with normal oranomalous attenuation, nonlinearity is the necessary con-dition for generation of the thermal mode in the field ofultrasound: in linear flow, acoustic and non-wave motionsof a fluid do not interact. Variations of internal energy de-pend on intensity of the wave, on B, but also on gradientsof acoustic perturbations. The thermodynamic cycles ina strain-stress diagrams for solid materials with hystere-sis nonlinearity are usually represented by loops [15, 16].Less pronounced, but similar loops are typical in New-tonian thermoconducting fluids [17]. Hedberg, Rudenkowere the first who have attracted attention to hystere-sis in Newtonian and relaxing fluids. Similar hysteresiscurves, normal or anomalous, exist in fluids with normal oranomalous attenuation of sound. decrease in the excessdensity which specifies the entropy mode. These curvesare represented by the hysteresis curves in the plane ofthermodynamic states (total excess density⇔ total excesspressure). Two examples of relaxing gases with inherentcoefficients B are described in the subsections below. The

following simplifying conditions are made in the both ex-amples:1) there is no ambient motion of a gas;2) the necessary transversal variations of ambient param-eters (in OYZ plane) do not significantly affect the wavepropagation;3) the shear, bulk viscosity of a gas and its thermal con-ductivity are not considered;4) the frequency of sound is much larger than the inversecharacteristic relaxation time: ωτ � 1;5) the magnitude of sound slowly varies over its period:
|B|c/ω � 1.
1.1. Gases in which an exothermic chemical
reaction occurs
For these kind of processes in a gas,

B = Q0(γ − 1)(Qρ + (γ − 1)QT )2c2m (3)
is the quantity evaluated at unperturbed p0, T0, Y0, where
Y denotes the mass fraction of reagent A∗ in A∗ → B∗exothermic reaction, m is the averaged molecular mass ofa gas, and Q is the heat produced in a medium per onemolecule due to a chemical reaction, Q0 = Q(T0, ρ0, Y0)[11]. The dimensionless quantities QT , Qρ are conditionedby dependence of Q0 on temperature and density of thereacting mixture:
QT = T0

Q0
(
∂Q
∂T

)
T0,ρ0 ,Y0 , Qρ = ρ0

Q0
(
∂Q
∂ρ

)
T0,ρ0,Y0 . (4)

The characteristic duration of chemical reaction is
τ = HmY0

Q0QY
, (5)

where H is the reaction enthalpy per unit mass of reagent
A∗, QY = Y0

Q0
(
∂Q
∂Y

)
T0 ,ρ0,Y0 .

1.2. Gases with excited vibrational degrees of
molecule’s freedom
The second example of fluid which may be acoustically ac-tive, relates to a gas whose steady state is maintained bypumping energy into the vibrational degrees of molecule’sfreedom by power I (I refers to a unit mass). The relax-ation equation for the vibrational energy ε per unit massis given by the formula [7]:

dε
dt = −ε − εeq(T )

τ + I. (6)
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The equilibrium value of the vibrational energy at giventemperature T is denoted by εeq(T ), and τ(ρ, T ) marksthe vibrational relaxation time. The quantity εeq(T ) inthe case of a system of harmonic oscillators, equals:
εeq(T ) = h̄Ω

m (exp(h̄Ω/kBT )− 1) , (7)
where m denotes a molecule’s mass, h̄Ω is the magnitudeof the vibrational quantum, kB is the Boltzmann constant.The above equation is valid over the domain of tempera-tures, where one can neglect anharmonic effects, i.e., be-low the characteristic temperatures, which are fairly highfor most molecules [6, 7]. The quantity

B = − (γ − 1)2T0τ2c3(
Cv + ε − εeq

τ

(
∂τ
∂T + ρ(γ − 1)T ∂τ

∂ρ

))
0 (8)

may be positive (under some conditions) [8, 9] in anon-equilibrium gas, and negative in an equilibrium one[7, 8, 10]. It is the quantity evaluated at unperturbed p0,
T0, and Cv = dεeq/dT . The relaxation time in the mostimportant cases may be thought as a function of temper-ature according to Landau and Teller with some positiveconstants Ã and B̃, τ(T ) = Ã exp(B̃T−1/3) [4, 7]. Acous-tical activity of a medium is in principle possible due tonegative dτ/dT . There exists the threshold quantity ofpumping magnitude I starting from which the excitation isnon-equilibrium, since ε − εeq ≈ Iτ .
2. Dynamics of total excess density
and pressure
The types of a Newtonian fluid motion of infinitely-smallmagnitude are well-established [18]. The linear classi-fication applies also in a weakly nonlinear flow. In onedimension, there exist two acoustic branches and the en-tropy (or thermal) mode. The generation of the thermalmode in the field of intense sound alters temperature ofthe medium of sound propagation. That happens to vis-cous fluids and yields to scattering of sound at the heateddomains [19]. The acoustic heating caused by periodicsound in Newtonian fluids is well-studied [1, 3]. The de-tails of analysis of instantaneous interaction of sound andthe thermal mode in a weakly nonlinear flow of Newtonianfluids may be found in [20, 21]. Induced scattering of soundin thermodynamically non-equilibrium media, which con-siders both domains with altered temperature and vortexflow, was considered in the papers by Molevich [22, 23].

The instantaneous generation of the thermal mode in thefield of low-frequency or high-frequency sound in the re-laxing fluids where irreversible processes may take place,have been discussed in [13, 24]. In general, the analysisapplies not only to periodic sound and describes, amongother, instantaneous variations of excess density speci-fying the thermal mode in the field of intense sound (ρedenotes excess quantity associated with the entropy mode,and Qa is the acoustic source of the entropy mode),
∂ρe
∂t = ρ0Qa, (9)

where
Qa = −2(γ − 1)Bc

ρ20
∂ρa
∂t

∫ t
ρadt (10)

in the case of chemically reacting gas [13], and
Qa = −2Bc

ρ20
(
ρ2
a + γ ∂ρa∂t

∫ t
ρadt

) (11)
in the case of vibrationally excited gas [24]. In this study,we take into account neither thermal conductivity, norshear and bulk viscosity which make the domain of acous-tical activity smaller or may prevent it at all. Inclusion ofmechanical viscosity and thermal conduction is discussedin the papers [10, 25]. We concentrate in this study onthe thermodynamic relaxation exclusively. The lower limitof integration in the expressions for Qa should be chosenin accordance to the beginning of the sound transmission.The total excess pressure p′ is a sum of acoustic pressureand excess pressure associated with the entropy mode,this last part equals zero: the entropy motion is isobaric.The total excess density consists also of two parts. Theleading-order relation takes the form

p′
ρ0c2 = pa

ρ0c2 = ρa
ρ0 + γ − 12ρ20 ρ2

a + 2Bc
ρ0

∫ t
ρadt

= ρ′ − ρe
ρ0 + γ − 12ρ20 ρ′2 + 2Bc

ρ0
∫ t

ρ′dt (12)
= ρ′

ρ0 + γ − 12ρ20 ρ′2 + 2Bc
ρ0

∫ t
ρ′dt −

∫ t
Qadt.

The irreversible decrease (or increase, if B > 0) in acous-tic energy is connected with enlargement (or reduction)of excess temperature which specifies the thermal mode.The analysis below concerns harmonic sound and someimpulses. The last term in the right-hand side of Eq. (12),though is smaller in order than other, is of great impor-tance: namely this term is responsible for irreversiblelosses or enlargement of the internal energy of a medium.
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3. Hysteresis curves for harmonic
sound
If excess pressure is a periodic harmonic function of timefor any distance from a transducer x (the phase shift isinessential),

P = p′

Mc20ρ0 = sin(ωt), (13)
R = ρ′

Mρ0 = sin(ωt) + 2b cos(ωt)− 2b
− 12M(γ − 1) sin2(ωt) +MbQ̃,

where P and R are dimensionless total excess pressureand density of a gas, b is dimensionless acoustic incrementor decrement,
b = Bc

ω , (14)
M denotes the acoustic Mach number, and

Q̃ = (γ − 1)ωt + 0.5(γ − 1) sin(2ωt) (15)
in the case of the reacting gas, and

Q̃ = (γ − 1)ωt + 0.5(γ + 1) sin(2ωt) (16)
in the case of vibrationally excited gas. The lower limit ofintegration in Eq. (12) is zero. Eqs (12), (13), (15), (16)determine dependence of the total excess pressure p′ onthe total excess density ρ′ in the parametric form. In de-pendence on sign of B, an excess total density unusuallyenlarges over a period (b > 0) or decreases (b < 0). Di-rection of the hysteresis curves is also different in the caseof positive and negative b. Two cycles of these hystere-sis curves in both fluids in acoustically active or normaldamping gases are plotted in the Fig. 1. They correspondto parameters γ = 1.4, M = 0.5 and b = −0.1 or b = 0.1.
All curves start from the point (0, 0) in the plane RP . Inboth thermodynamic processes in gases, the total excessdensity gets smaller after the whole period in the normaldamping medium, and becomes larger in an acousticallyactive one. That reflects the nonlinear isobaric growthof the entropy mode temperature, that is, the backgroundtemperature, in acoustically active gases, and its unusualdecrease otherwise. Relative variation in the internal en-ergy U over the period depends on the sign of B andequals

ω2π δUU0 = −〈 1
ρ0
∂ρe
∂t

〉 = −〈Qa〉 , (17)
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Figure 1. Dependence of the total excess dimensionless density, R ,
on the total excess pressure, P, in a chemically reacting
gas (a,c) and in a gas with excited vibrational degrees of
molecule’s freedom (b,d). Case of the periodic harmonic
sound. Plots (a,b) correspond to the damping medium (b
is negative, b = −0.1), and plots (c,d) to acoustically ac-
tive medium (b is positive, b = 0.1).

where angular brackets denote average over the soundperiod. For the periodic harmonic wave, that yields in theleading order equality valid for both examples of thermo-dynamic processes in gases:
ω2π δUU0 = −(γ − 1)ωbM2. (18)
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4. Hysteresis curves for some im-
pulses

4.1. The Gaussian impulse
If a signal may be approximately considered as Gaussian,

P = exp(−(ωη)2), (19)
where ω denotes the characteristic inverse duration of animpulse, η = t − x/c is the retarded time, Eq. (12) rear-ranges into
R = P−M γ − 12 P2−2b ∫ η

−∞
Pd(ωη)+∫ η

−∞
Qadη, (20)

where

η =

−
√
− lnP
ω , if P enlarges,

√
− lnP
ω , if P decreases. (21)

The total variation in the internal energy is identicalin both cases of thermodynamic processes in gases, andequals
δU
U0 = − ∫ ∞

−∞
Qadη = −(γ − 1)√2πbM2. (22)

The curves in Fig. 2 are plotted for M = 0.5, γ = 1.4. It isremarkable that the total density increases after passingof a positive pulse both when b is negative and positive.That reflects the integral link between acoustic pressureand density which is larger in order than the acousticsource of the entropy mode. For periodic harmonic sound,it is compensated over the whole period of sound. Never-theless, the variations in internal energy are still deter-mined exclusively by the acoustic source, Qa. The nextsection considers a symmetric bipolar impulse for whichthe integral link becomes compensated similarly as it hap-pens for sinusoidal sound.
4.2. An example of bipolar impulse
The impulse in the form

P = sin(ωη), if − π ≤ η ≤ π, (23)
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Figure 2. Dependence of the total excess density on the total ex-
cess pressure in a chemically reacting gas (a,c) and in a
gas with excited vibrational degrees of molecule’s freedom
(b,d). Case of the Gaussian impulse. Plots (a,b) corre-
spond to the damping medium (b is negative, b = −0.1),
and plots (c,d) to acoustically active medium (b is positive,
b = 0.1).
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and zero otherwise, is asymmetric. Eq. (12) transformsinto Eq. (20) with correspondent acoustic source and

η =


arcsinP
ω , if P enlarges,

−π − arcsinP
ω , if P decreases and negative,

π − arcsinP
ω , if P decreases and positive. (24)The hysteresis curves in the Fig. 3 are plotted accord-ingly to the same set of parameters as in the previoussubsections.The total relative increase in the internal energy whichassociates with irreversible loss in acoustic energy, in bothcases equals

δU
U0 = − ∫ ∞

−∞
Qadτ = −2(γ − 1)πbM2. (25)

An efficiency of the medium heating due to nonlinear at-tenuation is more than 2, 5 times larger in the case of thebipolar impulse as compared to the Gaussian one.
5. Concluding remarks
In this study, we do not consider thermal conductivity andmechanical viscosity of Newtonian fluids in order to con-clude about hysteresis due to pure relaxation. In fact,accounting for thermal conductivity would lead to the ad-ditional term in the link of acoustic pressure (that is, totalexcess pressure) and total excess density, which takes theleading-order form as follows,

pa
ρ0c2 = p′

ρ0c2 = ρ′
ρ0 + γ − 12ρ20 ρ′2 + 2Bc

ρ0
∫ t

ρ′dt

−
∫ t

Qadt + (γ − 1)χ2c2ρ20Cp
∂ρ′
∂t , (26)

where χ is thermal conduction of a gas, and Cp is its heatcapacity (per unit mass) under constant pressure. Theacoustic source, Qa in this equality should be correctedin view of Newtonian total attenuation [21]. In a thermo-conducting gas, loops of the curve ρ′(p′) may form over thedomains, where pressure decreases with time. Generally,hysteresis curves do not longer start from the point (0, 0)[17]. A difference in the hysteresis curves between twoconsidered examples of gases with relaxation is caused bya difference in acoustic sources of the thermal mode. Thatmakes curves for vibrationally excited gas more asymmet-ric with thicker part in the positive quadrants in the plane(R,P).
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Figure 3. The R ⇔ P diagrams in a chemically reacting gas (a,c)
and in vibrationally excited gas (b,c) for the asymmetric
sinusoidal impulse. Curves (a,b) corresponds to normal
attenuation (b is negative, b = −0.1), and curves (c,d) to
acoustical enhancement (b is positive, b = 0.1).

The nonlinear propagation of sound in Newtonian fluidsand these with normal attenuation is always followed byirreversible loss in acoustic energy. The macroscopic waveenergy transfers into the thermal energy of chaotic motionof molecules. In the plane of the thermodynamic states (ρ′,
p′), that means that the total density gets smaller by thenature of the case over period of harmonic sound and af-ter passing of an asymmetric acoustic pulse (examples ofSections 3 and 4.2). That is true for any sound pulse,
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for which ∫∞−∞ padt = 0 at a transducer (this conditionmakes the third term in the right-hand side of Eq. (12)zero after a pulse passing). In acoustically active me-dia, attenuation and dispersion of sound are anomalous,that leads to anomalous cooling (enlargement of ρe) ofthe background of sound propagation instead of heating.That leads also to increase of total density in the courseof propagation of harmonic sound or asymmetric soundpulse. In an example of the positive Gaussian impulse,the total density decreases in acoustically active medium.That corresponds to decrease in acoustic part of the totaldensity due to integral ”memory” link between acousticpressure and excess acoustic density (the second term inthe right-hand side of Eq. (12)), but the non-wave partof the total density, ρe, enlarges. Newtonian attenua-tion may prevent anomalous attenuation of sound duringweakly non-equilibrium processes in a medium [7, 8].An efficiency of heating (or cooling) of a medium dependsstrongly on the shape of a signal. The bipolar harmonicimpulse produces larger variations of temperature of amedium after the pulse has gone, as compared with theGaussian one. Impulses are widely used in medical andtechnical applications of ultrasound, where accurate es-timates of the thermodynamic state of a fluid are impor-tant. The relation which describes hysteresis in a fluid,Eq. (12), is also valid in the quasi-planar geometry ofslowly divergent sound beams. The hysteresis curves inthe plane of thermodynamic states may be useful in recon-struction of dispersive and viscous properties of a medium[1, 17], including these anomalous and in evaluation ofa degree of disequilibrium. equals the inverse time Theanalogous problems in optics are usually solved by laserspectroscopy [27]. Also, the remote acoustic source maybe reconstructed for a medium with known thermodynamicproperties. Ultrasonic relaxation makes it possible to heator to cool a medium remotely.First authors who have attracted attention to the pressure-volume diagrams, hysteresis curves and loops, and physi-cal distinction between different irreversible processes ac-companying nonlinear propagation of intense sound in flu-ids, were Rudenko, Hedberg [17]. They have outlined ananalogy and difference between hysteresis in Newtonianfluids and solids. The study [17] considers loops in theplane of acoustic perturbations for periodic harmonic andsaw-tooth sound in a Newtonian fluid and in a fluid withrelaxation which is described by some kernel in integrallink between acoustic pressure and excess acoustic den-sity. It includes important conclusions about dissipativeand hysteresis processes in linear and nonlinear acousticfields in fluids.
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