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In this work a scaling technique of signed residue numbers is proposed. The method is 
based on conversion to the Mixed-Radix System(MRS) adapted for the FPGA 
implementation. The scaling factor is assumed to be a moduli product from the Residue 
Number System (RNS) base. Scaling is performed by scaling of terms of the mixed-radix 
expansion, generation of residue representations of scaled terms, binary addition of these 
representations and generation of residues for all moduli. The sign is detected on the basis 
of  the value of the most significant coefficient of the MRS representation. For negative 
numbers their residues are adequately corrected. The basic blocks of the scaler are realized 
in the form of the modified two-operand modulo adders with included additional multiply 
and modulo reduction operations. The pipelined realization of the scaler in the Xilinx 
environment is shown and analyzed with respect to hardware amount and maximum 

pipelining frequency. The design is based on the LUTs(26x 1) that simulate small RAMs 
serving as the main component for  the look-up realization. 

 

1. INTRODUCTION 

 
The Residue Number  System (RNS) [1],[2],[3]  is a non-positional number 

system that has been invented in order to decompose certain operations on large 
integers into sets of operations on small numbers. The simplicity of such RNS 
operations as addition, subtraction and multiplication is offset by the difficult 
realization of scaling, division, sign detection, magnitude comparison and 
overflow detection. Hence the RNS can be advantageous for the realization of 
these algorithms where the operations of the first group dominate. To such 
algorithms belong those of the digital signal processing such as the Finite Impulse 
Response (FIR) and the Fast Fourier Transform (FFT).  In these algorithms the 
multiplications represent the most expensive operation, however when the 
coefficients of the algorithm are fixed, the more simple multiplication by a 
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constant can be applied. In the RNS the multiplication is decomposed into a set of 
multiplications of small numbers with the binary size of the RNS moduli. For the 
5-bit moduli the multiplications by a constant  can be performed by look-up using 
logic functions of  five variables with  5-bit look-up tables. The latest Field 
Programmable Gate Arrays (FPGA) as  Virtex-7 by Xilinx [4] have 6-bit LUT 
address, hence they can be used directly for 6-bit moduli. The multiplication 
problem has become much easier for  the applications that can be implemented on 
the FPGA platform  due to the introduction of the fast Multiply-Accumulate 
(MAC) units (DSP slices) that comprise 18x25 bit multipliers. For example, 
Virtex-7 XC7VH870T contains 1920 DSP slices, whereas the total number of 6-
bit LUT’s is 547600.  

As the RNS is an integer number system, the fractional or real coefficients of 
the DSP algorithm have to be transformed to integers by multiplication by a 
suitable constant, K and appropriate rounding off. K should be large enough to 
provide for the required accuracy of the representation of algorithm coefficients. 
This transformation makes that the sum of products of input signal samples and 
the transformed coefficients becomes close to the  RNS number range, M. In order 
to avoid overflow in the next processing stage,  the sum represented in the RNS 
has to be divided by K  or by the number comprising also the growth of the 
dynamic range of the signal resulting from summation of terms.  

The scaling algorithms were presented  in several works[1], [5-12]. The main 
difficulty was the need to use memories that reduced the processing speed. The 
algorithm by Szabo and Tanaka[1] allowed for scaling by a product moduli from 
the RNS base in n clock cycles, where the clock cycle denotes the time required 
for the elementary operation such as residue multiplication by a constant or 
residue subtraction. Jullien [5] proposed an algorithm that permitted for scaling 
by a product of s moduli out of the n RNS moduli in    1log2 ++ sn cycles. The 

main group of scaling techniques are the methods based on the Mixed-Radix 
System (MRS) or the CRT decomposition.There is also a method based on core 
function [15].Taylor and Huang [6] presented a technique called the autoscale 
multiplier, where the scaling process is performed by truncating the mixed-radix 
conversion to a level, where the binary size of the scaled integer does not exceed 
the binary size of the address of high-speed memories. Miller and Polky [7] 
reported a scaling technique in n+1 clock cycles with an absolute error bound 
of )2/( 0in − , where

0i  is an index, ni ≤0
 used in rounding the scaled integer, i.e., 

only 
0i  mixed-radix coefficients are used for the representation of the scaled 

integer. The scaling using the CRT was attempted by Jenkins [8], but this 
technique was inefficient due the necessity of performing the modulo M operation 
without having the suitable fast algorithms. Jullien [5] also described a technique 
based on "estimates" and the CRT with the possibility of emerging of large error. 
Shenoy and Kumaresan [9] described a method that allows scaling by a product 
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of moduli in log n  cycles, where the cycle denotes the access time of the high 

speed memory. The technique uses the CRT and the redundant modulus to 
compute the magnitude index in the CRT formula. Ulman and Czyżak [10] 

proposed a scaling technique in non-redundant residue arithmetic that uses only 

small memories with the size at most of   1log
2

+m  -bits, and arithmetic elements, 

where  m
2

log  is the binary size of the modulus. In this technique, K can be  a real 

number. A novel concept of scaling was recently presented  by Meyer-Baese and 

Stouraitis [11], they proposed effective scaling by 2 by transforming the scaling 

operation into division remainder zero by checking parity of the number and 

adding 1 when necessary in order to assure the existence of multiplicative 
inverses of 2 with respect to all moduli of the RNS base. This method can be 

extended by repeating scaling by 2, or by directly using the power of 2, but this 

approach requires larger look-up tables. The known scaling methods have certain 
drawbacks that makes their application in the high-speed DSP difficult. The first 

drawback is the special form of the moduli of the RNS base and their fixed and 

limited number, that may enforce their increased size to attain the necessary 

dynamic range. The increased size makes other operations like multiplication by 
a constant  not realizable by table look-up. The second is the use of large look-up 

tables, that practically excludes pipelining. The third is the limitation imposed on 

the form of the scaling factor. The scaling factor is usually limited to one or two 
moduli or their product. Moreover, the majority of the known methods do not 

provide the scaling of signed numbers with the implicit sign. The certain remedy 

may be the use of scaling techniques termed the approximate CRT methods. They 
allow to reduce the scaler complexity and provide other desirable characteristics. 

Griffin et. al. [12] presented a method termed (L+δ)-CRT]. The scaling factor can 
be any number from [0, M). This technique allows to use approximate scaled 

projections and also instead modulo M operation, operation modulo µ, where µ is 
a more convenient number with respect to modulo reduction. However, the use of 

the approximate values may lead to large, unacceptable errors in scaling of signed 

numbers. 
In this work a scaling technique of signed residue numbers with implicit sign 

based on the MRC for DSP applications is presented. It is assumed the RNS base 

consists of five-bit moduli. Such moduli provide for the necessary dynamic range 
in many applications and also they allow to easily implement modulo 

multiplication by a constant in the FPGA environment. In the paper first the RNS, 

MRC and fundamental issues of scaling  are reviewed, next the conversion of the 
MRC algorithm to the form suitable for implementation the FPGA enrironment, 

the scaling technique and the scaler architecture are described. Finally the results 

of implementation are shown. 
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2. THE RNS, MRS AND  SCALING FUNDAMENTALS  
 

A. Residue Number System 

 

The nonnegative integer N from the number range [ ]1-,0 M  is represented in 

the RNS by the digit vector ( )
nmmm

N,...,N,N
21

, where 
jmN   is the least 

nonnegative residue from the division of N  by jm , n,...,,,j 321= . The numbers 

jm , termed the moduli, are the elements of the system base, { }nm,...,m,mB 21=  

and ∏
=

=
n

j

jmM
1

. If the moduli jm  are pair-wise mutually prime, there is one-to-

one mapping between the number set and the representation set, given by the 

Chinese Remainder Theorem, where the value of an integer N is given by the 

formula 

M

n

j
jNN ∑

=

=
1

,          (1) 

with 
j

j m
mjjj NMMN ⋅⋅= −1

, 
j

j m
MM = , and 11 =⋅ −

jm
jj MM . 

1−
jM  is the 

multiplicative inverse of jM  modulo jm , and exists if ( ) 1 =jj m,Mgcd . For 

signed numbers denoted as X , if M  is even, NX =  for 2/MN < , and 

MNX −= . if 2/MN ≥ . If M  is odd, NX =  for 21 /)M(N −< , and 

MNX −= . if 21 /)M(N −≥ . 

 

B. The Mixed Radix System(MRS) 
  

X with the  RNS representation ( )
nmmm

XXX ,...,,
21

 can be represented in the MRS 

as 

∏∑
−

==

=
1

11

i

j

j

n

i

i maX          (2) 

where 

1
1 m

Xa =           (3a) 

2
2

2
1

12

1

m
m

m m
aXa ⋅−=        (3b) 
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3
3

3
21

213

1

m
m

m mm
aaXa

⋅
⋅−−=         (3c) 

i
ii m

m

i

j

j
m

i

j

i

k

kii

m

maXa

C
C 1

1

1

1

2

1

1

3

−

=

−

=

−

=

⋅⋅−= ∑ ,i=4,..,n.    (3d) 

The RNS/MRS conversion by (3) has a sequential form, but also exists the 

parallel methods. The important advantage of the MRS is sign detection, 

especially easy if  0
2
=nm . If 2/nn ma <  then 0≥X  else X<0. 

 
B. Scaling fundamentals 

 

We first consider scaling of unsigned numbers. i.e. NX = . If K  is a positive 

integer scaling factor, the scaling result, Y  has the following form 

K

K
XX

Y
−

= .          (4) 

Provided that 
im

K1 exists, the corresponding residue of Y , iy  is given by 

i
i

i
i

m
m

m
imi

KK
XxYy )

1
)( ⋅−== .     (5) 

If K is a real number, the residues of the scaling result can be expressed as  

i

i

m

m K

X
Y







= ,i =1,2,..,n,       (6) 

where {}⋅ denotes the rounding off to the nearest imteger. 

im
Y can be determined in (5) for those moduli for which 

im
K1  exists, this is 

the case when im , i=1,2,...,n and K are mutually prime. K may be chosen as a 

product of certain moduli of B. Assume without of loss of generality, that first s 

moduli of B are chosen, i.e.,  

C
s

i

imK
1=

=            (7) 
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with s<n. Then the multiplicative inverse of K for im ,i=1,2,...,s does not exist 

and iy  for these moduli cannot be computed by using (5). In [13] Garcia and 

Lloris proposed the calculation of  jy , j=s+1,...,n, with (5) by look-up with the 

use of ss yyyy ,,...,, 21  as the memory address . This technique may require large 

look-up tables that excludes low-level pipelining. The second problem in (5) is 

the computation of 
K

X . If K is equal to one of the moduli no computation is 

needed, or its also simple if the binary size of K does not exceed the acceptable 

length of the look-up table address. Generally the computation of 
K

X  requires 

the conversion to a weighted system, for example, to the MRS. The MRS also 

facilitates scaling if K is a product of the RNS moduli, 

The scaling can be also performed by using the conversion to the mixed-radix 

form, division of each term by K and rounding off the quotient.. If  we represent 
X in the mixed-radix  system 

112121 ...... amammmaX nn +++= − ,       (8) 

where jj ma <≤0 . after division of each term by K, we obtain 

K

a

K

ma

K

mmma
Y nn 112121 ...

...
++= −

        (9)
 

After rounding off the individual quotient to integers, we may obtain the residues 
of Y, 

i
i m

mm

n

K

a

K

ma

K

mmma
Y







+







+







= − 1121211 ...

...

   (10)
 

where {}⋅ denotes rounding off to the nearest integer. When K is the product of 

first s moduli of the RNS base the scaling result has the following  form 

i

i

i

i

i

m

m

sn

si

n

sk

kims

m

s

i
ks

ik

k

i

m
maa

m

a
Y ∑∑

−−

+=

−

+=
+

=
−+

=

⋅++=
1

2

1

1

1

1
1 C
C

 

Using (10), scaling can be performed by the summation of the rounded 
quotients and the forward RNS conversion. The error will not exceed 0.5n, but it 

can be reduced by applying the additional error compensation channel that will 

sum up the properly rounded fractional parts of the quotients. When K  is a 

moduli product, error compensation under certain conditions can be avoided. For 
example, let n = 6, then 

 

(11) 
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 112213321443215543216 amammammmammmmammmmmaX +++++= , (12) 

moreover, assume  4321 mmmmK = . We get 

4321

1

432

2

43

3

4

4
556/

mmmm

a

mmm

a

mm

a

m

a
amaKXYR +++++== ,  (13) 

We can truncate fractional terms in (13) and the maximum error will be equal to 

1234

1234 1

mmmm

mmmm
t

−
=ε  .          (14) 

The integer scaling result by (14) is as follows 

ii mm
amaY 456 +=      i=1,2,3,4,5,6.      (15) 

Operations in (15) can be performed with one look-up and two-operand modulo 

im addition. If the number of terms is greater than 2, multi-operand modulo 

addition is needed. . 
 

C .Scaling of signed numbers with the  implicit sign 

 

The scaling of signed integers with the implicit sign can be carried out in the 

manner given in[14]. Let 
YN  

covers the interval )/,0[ KM . The scaling result, Y, 

obtained by scaling of a signed integer X  , is determined  as follows 

For 0/
22
==

K
MKM ,  

YNY =    if KMNY 2/< ,      (16a) 

or  

KMNY Y /−=     if KMNY 2/≥ .     (16b) 

For 0/
22
≠=

K
MKM ,  

YNY =     if   2/)1/( −≤ KMNY      (17a) 

or  

 KMNY Y /−=    if   2/)1/( −≥ KMNY .    (17b) 

 
Hence for (16) we receive the residues of the scaling result in the M ring as 

ii

i
m

Yi

m

ym
N

K

M
mN

K

M
MY −−=+−= , i=1,2,...,n.   (18) 

Next we shall consider the computation of (18) with the use of the MRS. 

 

Example 1. Scaling of negative number using the MRC for },,,{ 4321 mmmmB =  

and 4321 mmmmK = . YN can expressed as  D
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21

1

1

2
334

mm

a

m

a
ama

K

N
NY +++== .

   

       (19) 

After truncation we receive for nonnegative numbers 

  334 amaNY Ymi

+== ,         (20) 

and for negative  

ii mim
amammmY 33443 −−−= , i=1,2,...,4.     (21) 

 

3. SCALER ARCHITECTURE AND IMPLEMENTATION 
  

 In Fig. 1 the scaler architecture is shown for the base 

{ } }32,31,29,27{,,, 4321 == mmmmB  and 783292721 =⋅== mmK . It is assumed 

that all moduli have 5-bit binary length. We first describe the implementation of 

the RNS/MRS converter. The computations are performed by using  (22-25).  

1
1 m

Xa =                 (22) 

2
2

1
1

12

1

m
m

m m
aXa ⋅−=          (23) 

( )
3

33
3

33
21

12313

1

m
mm

m
mm mm

mamaXa ⋅−+−=      (24) 

( )
4

44
4

4
4

44
321

213312214

1

m
mm

m
m

m
mm mmm

mmammamaXa ⋅−+−+−=   (25) 

 

In the first stage the binary adders BA11-BA13 compute the differences 

im
aX

i

− , 4,3,2,1=i .( the first digit in the description of the blocks denotes the 

number of the stage). It is assumed that 1a  is two's complement encoded. ROM11 

performs the multiplication of the difference 1
1

aX
m
− by the multiplicative 

inverse of 1m  and  reduction of the product modulo 2m . For computation of 3a  

first the difference ( )1
3

aX
m
−  is calculated by the binary adder BA32 and next 

4
122 m

mam −  by ROM12. BA21 adds the outputs of ROM12 and ROM13 and 

multiplies the result by the multiplicative inverse 

3
21

1

m
mm

. Next ROM21 

computes 3a . In the final converter stage 4a  is determined with the use of BA31 
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and ROM31. The ROMs in the 4
th
 stage calculate the residues of the scaling result 

by (20). ROM51-ROM54 perform  ii ym − . The sign of the RNS number is 

detected on the basis of 4a  value. The sign of the number controls the multiplexer 

and decides whether the result is computed by (20) or (21). The scaler shown in 

Fig. 1 has been implemented in Xilinx FPGA environment. The following 

implementation results have been obtained. 
 

 
 

Fig. 1. The architecture of the residue scaler of signed numbers based on the MRS 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Maciej Czyżak, Robert Smyk, Zenon Ulman 

 

 

98 

Device utilization summary: 

Selected Device : 6vcx240tff784-2  

 

Slice logic utilization:  

Number of slice registers:             106  out of  301440      

Number of slice LUTs:                  119  out of  150720    0%   

Number used as logic:                 99  out of  150720     0%   

   Number used as memory:                20  out of  58400      0%   

         

       Timing Summary: 

--------------- 

Speed Grade: -2 

Minimum period: 1.518ns (maximum frequency: 658.610MHz) 

   Minimum input arrival time before clock: 0.550ns 

   Maximum output required time after clock: 0.659ns 

 

It is seen the that high pipelining frequency can be attained. It can also be 

remarked that the scaler occupies only a small portion of the available resources of 
the given device.  

 

4. CONCLUSIONS 
  

The paper presents an approach to scaling of signed residue numbers based on 

the use of mixed-radix conversion. The signed residue number is converted to the 

mixed-radix system, in parallel with the computation of the MRS  highest 

coefficient, the sign detection is performed. The scaling factor is a product of 
moduli of the RNS base, that simplifies scaling. Scaling is performed by the 

division of the individual terms of the MRS, conversion of the individual quotients 

to the RNS, and modulo addition in every residue channel. The proper residue of 
the scaling result is obtained by multiplexing of the residue received for 

nonnegative and negative numbers. The scaler architecture utilizes the small 

ROMs simulated by LUTs in the Xilinx Virtex-6 architecture. The presented 
architecture makes use of the 4-moduli base and small scaling factor but it can be 

easily extended to more practical 6- or 7 moduli RNS base.  
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