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In this work an architecture of the pipelined signed residue divider for the small number 
range is presented. Its operation is based on reciprocal calculation and multiplication by the 
dividend. The divisor in the signed binary form is used to compute the approximated 
reciprocal in the residue form by the table look-up. In order to limit the look-up table 
address an algoritm based on segmentation of the divisor into two segments is used. The 
approximate reciprocal transformed to residue representation  with the proper sign  is stored 
in look-up tables. During operation  it is multiplied by the dividend in the residue form and 
subsequently scaled. The pipelined realization of the divider in the FPGA environment is 
also shown.  

 

1. INTRODUCTION 
 

In the digital signal processing the division is usually performed when the 
quotient of two signals has to be determined, for example, in computation of the 
phase shift before arctangent calculation. The residue arithmetic [1, 2, 3] is a tool 
that can be used for realization of DSP algorithms due to its decompositional 
properties with respect to addition, subtraction and especially to multiplication 
because multiplication in one large integer ring can be replaced by a set of 
multiplications performed in small integer rings in parallel. The other important 
feature is the possibility to decompose the complex multiplication of Gaussian 
numbers  in similar manner as that for integers using derivative systems such as 
the MQRNS (Modified Quadratic Residue Number System) [4]. However, other 
operations in residue arithmetic such as reverse conversion, sign detection, 
magnitude comparison, scaling and division are difficult. The division of residue 
numbers can  be carried out by converting them to a weighted system, performing 
division and converting back to the residue form. However, division of residue 
numbers partly or fully in residue arithmetic can be more effective. The algorithms 
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of residue division belong mainly to a group of subtractive [5, 6, 7] or 
multiplicative [8, 9, 10] algorithms. The multiplicative algorithms compute, using 
the Mixed-Radix Conversion (MRC) [1], the reciprocal of the divisor which is 
subsequently multiplied by the dividend. Also two algorithms were presented [11, 
12], where the MRC, sign detection, overflow detection are not needed but in the 
former the conversion of the divisor and dividend to the binary system is 
necessary. They have better time-hardware complexity, however, they are iterative 
what makes them not suitable for pipelined processing. The algorithm based on 
iterative reciprocal computation was given in [13]. In this work an architecture  of 
the pipelined residue divider of signed number is shown. The implementation uses 
a non-iterative residue multiplicative division algorithm. The approximate 
reciprocal of the divisor is computed by the look-up with the use of the algorithm  
from [14] based on segmentation of the divisor in the binary form in two segments 
that address the look-up tables. In this way the size of look-up tables is reduced. 
The algorithm has fixed division time. It is assumed that the architecture will use 
6-bit look-up tables available in the Xilinx FPGA. The algorithm permits to 
implement the division for signed 12-bit numbers with the maximum division 
error smaller than 2. 
 

2. THE RESIDUE NUMBER SYSTEM(RNS) 
 

The RNS with the base { }pmmmB ,..,, 21= , where jm , j=1,2,..,p, are named 

moduli and the number range ∏
=

=
p

j

j
mM

1

, allows to represent the nonnegative 

integer N  from [ ]1-,0 M  by the digit vector ( ) ( )pmmm
nnnNNN

p

....,,,...,, 21
21

= , 

where 
jmN   is the least nonnegative residue from division of N  by 

jm , 

pj ,...,3,2,1= . This representation is one-to-one correspondence if the moduli are 

pairwise relatively prime. In such a case there is a unique mapping given by the 
Chinese Remainder Theorem [1-2]. The main advantage of the RNS is due to the 
fact that addition, subtraction and multiplication of two RNS numbers can be 
performed independently on the corresponding pairs of residues. For the numbers 
with the sign denoted as X , if M  is even, NX =  for 2/MN < , and 

MNX −= , if 2/MN ≥ . If M  is odd, NX =  for 2/)1( −< MN  , and 

MNX −= , if 2/)1( −≥ MN . As the multiplication of signed numbers is 

used in the method of division presented below, we shall illustrate it  with an 
example. 
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Example 1. Multiplication of signed numbers in residue arithmetic. 
Let B={32,31,29,27,25,23), we have M=446623200  and let  

}12 ,10 ,8 ,6 ,4 ,3{351 ↔=z  

}22 ,5 ,11 ,17 ,23 ,26{44662313070702 ↔=−→−= Mz  

We want to obtain the product 21 zzP ⋅= .By performing the multiplications 

in the individual rings we obtain the residues of P 

( ) ( )11,0,7,15,30,142212,510,118,176,234,263
232527293132

=⋅⋅⋅⋅⋅⋅=P

 These residues are the residues of the number M-2450=46620750, that 
represents the product P in the M ring. 
 

3. DIVISION ALGORITHM 
 

In the residue division algorithm we have to find an integer Q
~

 that 

approximates YXQ /= with the maximum acceptable division error, max
divε . The 

reciprocal of the divisor has to be determined with such accuracy that after 
multiplication by dividend X, the resulting division error is smaller than the 
assumed maximum acceptable error. The additional requirement imposed on the 
algorithm may be the use of small tables for the reciprocal computation. In the 
algorithm initially m-bit divisor ( 12≤m ) is decomposed  into m-k bit segment and 
k-bit segment with k not exceeding 7 bits. For computation of the divisor by look-
up such segmentation allows to use smaller look-up tables than in the case when 
the look-up table is addressed with the full representation of the divisor. The 
reciprocal R can be decomposed into two parts in the following manner 

)(

111

baa

b

abaY
R

+⋅
−=

+
== .       (1) 

The transformation of (1) into the form that allows to use small look-up tables 
was presented  in [14] along the reciprocal computation algorithm. In the following 
a short review is provided. It is seen that the computation of ))(/(1 baa +⋅  

requires m-bit address, in order to replace it with  a2log -bit address we may try 

to replace b by a suitably chosen constant, K that leads to 

)()( Kaa

b

baa

b

+⋅
≅

+⋅
,         (2) 

and in effect we obtain the following reciprocal approximation 

)(

1~

Kaa

b

a
R

+⋅
−= ,         (3) D
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where  kYa 2/=  and kYb
2

= . We see that 1/a can be computed by the look-up 

using m-k bits. For 0>a we replace b  by K that approximates b in ]12 ,0[ −k . 
Remark that for a=0, 1/b can be looked up using k-bits. 

The reciprocal approximation error resulting from using  K instead of b is 
expressed as [14] 

)()(

)(
),,(

~

Kabaa

bKb
KbaRR

+⋅+⋅
−⋅

==− ε .      (4) 

As K has to approximate b, it should belong to ] ,0[ kb , where 12 −= kbk  is 

the end of the interval. It is evident that  ε(a, b, K) is maximal with respect to a 

when minaa =  and with respect to b when b = bk or for certain maxbb = . Using (4) 

and a = amin , the maximum division error for the maximum dividend, maxX  can be 

written as  

maxmin X)K,b,a(
max

div
⋅ε=ε  .         (5) 

The extreme of (4) with respect to  maxb  is obtained as  

)(max Kaaab +⋅+−=          (6) 

Using this maxb , we want to equalize the division error, for kb  and maxb  

( ) ( )KbaKba k ,,  ,,  minmaxmin εε =−        (7) 

(7) using (4) can be written in the following form 
( ) ( )

k

kk

ba

Kbb

ba

Kbb

+
−⋅

=
+

−⋅
−

max

maxmax         (8) 

Inserting (6) into (8), we obtain the equation for K  that allows to determine K 
that provides the fulfilment of (8) 

044  )4
42

()
44

1(
2
min

4

min

3
2

2
min

3

min

2
2

2
min

2

min

=+⋅−⋅−⋅⋅+
⋅

−
⋅

+⋅
⋅

+
⋅

+
a

b

a

b
bKb

a

b

a

b
K

a

b

a

b kk
kk

kkkk  (9) 

Sample  solutions of (9) are given in Example 2. 
 

Example 2. Assume the length of the divisor Y equal to m=12 bits  and the lengths 

of a and b equal  to 6 bits. We have 64min =a  and 63=kb . The coefficients of the 

quadratic equation (9) are 81.8=A , 84.131=B , 0.27658−=C . Moreover, we 

have 05.21max =b  and the optimum 07.49=K . In effect we obtain for 

1122max −=X  and for maxb , the maximum division error equal to 

92.3),( maxmax =⋅ XbKε  and for kb  to 92.3),( max −=⋅ XbK kε . 
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 In order to reduce this error we may increase the length of a to 7 bits and 

shorten b to 5 bits. We then have 128min =a  and 31=kb . The coefficients of (9) 

are 2.2=A , 74.131=B , 6.4718−=C , and the optimum 21.25=K  and 

03.12max =b . In effect we have for maxX  , 236.0),( maxmax =⋅ XbKε  and 

236.0),( max −=⋅ XbK kε . 

 
4. HARDWARE REALIZATION 

 
Now we shall consider the realization of the divider with the use of residue 

arithmetic. Such realization requires the transformation of the approximated 
reciprocal values to integers. This transformation is done by the multiplication by a 

constant sK  and rounding off the result. After transforming of (3) to integers we 

get 









⋅
+⋅

⋅−






 ⋅≅







 ⋅ sss K

Kaa
bK

a
K

Y )(

111
      (10) 

where {}⋅  denotes rounding off to nearest integer. sK  in (10) should give the 

appropriate dynamic number range to represent the both terms and  provide for the 
allowable error value that arises after multiplication of the round-off error of the 
second term by b. The maximum value of this error should not cause the 

unacceptable division error.  The upper bound of this error is reached  for maxb and 

maxX  and maximal value of a , camax  for which the compensation of the reciprocal 

approximation error is still needed. It is easy to verify that for the considered 

number range of division  of  122  , we have 8
max 2=ca . The error of the second 

term of (10) has to fulfill the following condition 

ss

cc

s

cc

KK
Kaa

K
Kaa

b ⋅<


















⋅
+⋅

−⋅
+⋅

⋅ 5.0
)(

1

)(

1

maxmaxmaxmax

max .  (11) 

Representing the second term in (11) as rKaa ε++⋅ ))((1 where rε  is the 

rounding error, we obtain the bound on rε  to limit the error of transformation to 

integers to 0.5 

maxmax

s
r

Xb

K.

⋅

⋅
<ε

50
,          (12) 

moreover, sK  has to fulfill the condition 

 )(2 maxmax KaaK ccs +⋅⋅>  ,        (13) 
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For example, for 256max =ca  we have 84.156195>sK , that gives after 

inserting into (12) 30720.r <ε . We may avoid the round-off error, by assumming 

sK  as the multiple of the 48.7236)( minmin =+⋅ Kaa , for example, 159202.56, 

that slighly extends the error bound. However, there can be additional requirements 

imposed on sK , because certain   values may facilitate the design of the scaling 

circuit that performs scaling after division. 
 

Example 3. Realization of division for three divisor values 127, 191 and 319 with 
a=64, 128, 256, respectively, and maximum  of b=63, for which the highest level 
of error compensation is needed and  the error due to round-off of the second term 
in (10) may reach its maximum. 
 

First  we shall we consider 1271 =Y . We have a=64 and b=63. 

48.7236)07.4964(64)( =+⋅=+⋅ Kaa , and we will adopt  159712=sK . 

Such choice of 7232932 ⋅⋅⋅=sK  results from the requirements  of scaling after 

division, scaling becomes more simple when the scaling factor is a product of the 
moduli of the RNS base. 

Using (10) we get 

{ } { } 111007.22635.2495
48.7236

159712
63

64

1597121

1

=⋅−=






⋅−







=









⋅ sK
Y

 

We obtain the approximate quotient  as 

{ } 2846.28
159712

40951110
/

1~
max

1

1 ==
⋅

=⋅








⋅= ss KXK
Y

Q  

whereas 34.32
1

max
1 ==

Y

X
Q . 

In the second case we shall consider a in the middle of  its interval. 
1932 =Y . We have a=128 and b=63. 

Here 96.22664)07.49128(128)( =+⋅=+⋅ Kaa .We get 

{ } { } 80704.7635.1247
96.22664

159712
63

128

1597121

2

=⋅−=






⋅−







=









⋅ sK
Y

 

We obtain the approximate quotient  as 

{ } 2169.20
159712

4095807
/

1~
max

2
2 ==







 ⋅

=








⋅








⋅= ss KXK
Y
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whereas 39.21
2

max
2 ==

Y

X
Q . 

Finally we consider the division for 3193 =Y , where a=256, that means that it  

reaches the end point of interval in which the reciprocal approximation error is 
compensated. We have a=256 and b=63. Here  

92.78097)07.49256(256)( =+⋅=+⋅ Kaa . 

{ } { } 49804.26387.623
92.78097

159712
63

256

1597121

3

=⋅−=






⋅−







=









⋅ sK
Y

 

We obtain the approximate quotient  as 

{ } 1376.12
159712

4095498
/

1~
max

3

3 ==
⋅

=⋅








⋅= ss KXK
Y

Q  

whereas 83.12
3

max ==
Y

X
Q . 

We can estimate the required number range by (14). 




















+⋅
⋅−








⋅=

)(

1

maxmax

max

min Kaa

K
bK

a
M

cc

s
s       (14) 

In our case we have 64min =a ,  63=maxb , 159712=sK  and 03.49=K . 

The dynamic range of the first term in (14) is equal to 2495.5 and of the second 
term 441. Finally we may estimate the require dynamic range as  

    24510219072409552495 22 ==⋅= .log.(logM D bits.  

We see that after scaling the binary size of quotient obtained from this residue 
channel will not exceed 7 bits. 

The RNS base has been chosen as { }21,32 , 29 ,31 ,32 =B  with M=13894944. 

and, given above, 1597127233132 =⋅⋅⋅=sK . 

For the RNS  architecture we assume that 20472048 ≤≤− X , and has the 

residue representation ( )54321 x,x,x,x,xX ↔ , where 
jmj Xx = , j=1,2,...,5. and 

Y  is represented in 12-bit signed binary form. 

mmm

sm

m

s
m

s K
)Ka(a

bK
a

KQ
~























⋅
+⋅

⋅−






 ⋅=⋅

11
      (15) 

In Fig.1 an architecture that implements (15) is depicted.   
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Fig. 1. The architecture of the residue divider 

 

The dividend X is represented at the input as ( )
61

,...,,
2 mmm

XXX  . The 

scaling converter scales Y to the range ]12,2[ 1111 −−  and outputs 12-bit binary 

word where the most significant bit is the sign bit, the next 5 bits form operand a 
and six least significant bits represent operand b. For each residue channel the same 

configuration of components are used. ROM1 mod im  compute 
im

s

a

k









,  ROM2 

mod im  compute  

i
m

sK
Kaa 








⋅
+⋅ )(

1
 and ROM3 mod im  compute 

im
b ,. In the 

next stage the multiplication is performed (MULT1 mod im ) and in the following 

stage the subtraction is performed (BA mod im ). In the final stage the obtained 

residues are scaled by sK . If a=0 the ROM4 im mod  are applied that compute 

im

s

b

K









and ROM5 detects the sign. The outputs of these circuits are multiplexed 

with these obtained from (15). In this simplified divider architecture there is no 
divisor zero detection. 
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 The architecture has been implemented in the Xilinx environment using the 
device from the Virtex-6 family. Below the synthesis report is shown. The 
pipelining rate of 2.74 ns has been attained. It is possible to obtain 1.52 ns that 
corresponds to 658.610 MHz. The pipelining rate is greater because of reduction of 
the number of pipeline stages. 
 

Selected Device : 6vcx240tff784-2  
 

Slice Logic Utilization: 
 

 Number of slice registers:   443  out of  301440  
 Number of slice LUTs:    908  out of  150720  
 Number used as logic:    834  out of  150720  
 Number used as memory:   74  out of  58400  
 Number used as SRL:    74 
 

Timing Summary: 
 

Minimum period: 2.747 ns (maximum frequency: 363.980MHz) 
Minimum input arrival time before clock: 0.550ns 
Maximum output required time after clock: 0.659ns 

 
5. CONCLUSIONS 

 
 The paper presents the implementation of the pipelined residue divider for 12-
bit number range in the Xilinx FPGA environment. The divider makes use of the 
multiplicative division algorithm with the two-term reciprocal approximation. The 
residue error belongs to ]92.3,92.3[− , however for two's complement coding the 

error is halved. The divider architecture uses 5-bit moduli so that easy 
implementation is possible as in this environment  6-bit LUTs are available. The 
architecture use neither large memories nor multipliers.  
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