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1. Introduction

Let G = (V, E) be a connected undirected graph with vertex set V and edge set E. Given two vertices u, v € V, the notation
u ~ v means that u and v are adjacent. The neighborhood of a vertex v € V in G is the set Ng(v) = {u €V : u~ v}.Fora
setX C V, the open neighborhood Ng(X) is defined to be | J,., N¢(v) and the closed neighborhood Ng[X] = Nc(X) U X.

The degree dg(v) of a vertex v is the number of edges incident to v, dg(v) = |Ng(v)|. The minimum and maximum
degrees among all vertices of G are denoted by §(G) and A(G), respectively. The distance dg(u, v) = d(u, v) between two
vertices u and v in a connected graph G is the length of a shortest (u — v) pathin G.

Aset D C Visadominating set of Gif Ng[D] = V. The domination number of G, denoted y (G), is the minimum cardinality
of a dominating set in G. Any dominating set of cardinality y (G) is called a y-set. For unexplained terms and symbols see [7].

The bondage number b(G) of a nonempty graph G with E # @ is the minimum cardinality among all sets of edges E' C E
for which y (G —E’) > y(G). The domination number of every spanning subgraph of a nonempty graph G is at least as great
as v (G), hence the bondage number of a nonempty graph is well defined. Bondage number was introduced by Fink et al. [3]
in 1990. However, the early research on the bondage number can be found in Bauer et al. [1]. In [1,3] it was shown that every
tree has bondage number equal to 1 or 2. Hartnell and Rall [5] proved that for the cartesian product G, = K,0OK,,, n > 1, we
have b(G,) = %A. Teschner [14,13,12] also studied the bondage number; for instance, in [ 13] he showed that b(G) < %A (G
holds for any graph G satisfying y (G) < 3.Moreover, the bondage number of planar graphs was described in [2,4,10]. Carlson
and Develin [2] showed that the corona G = H o Kj satisfies b(G) = §(H) + 1. In [9] Kang et al. proved for discrete torus
C,0C,4 that b(C,0C4) = 4 for any n > 4. Also, some relationships between the connectivity and the bondage number of
graphs were studied in [11]. In [8], the exact values of bondage number of Cartesian product of two paths P, and P, have
been determined for m < 4. For more results on bondage number of a graph we suggest the survey [15].
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The following two lemmas show general bounds for the bondage number of a graph.

Lemma 1 ([5]). If u and v are a pair of adjacent vertices of a graph G, then
b(G) < d(u) +d(v) —1—|Nu) NN(©)|.

Lemma 2 ([1,6]). If u and v are two vertices of a graph G such that d(u, v) < 2, then
b(G) <d(u) +d(v) — 1.

2. Bondage number of P,, X P,,,

Let G and H be two graphs with the sets of vertices Vi = {vy, vz, ..., vy} and Vo = {uq, u,, ..., uy}, respectively. The
strong product of G and H is the graph GX H formed by the verticesV = {(v;, ;) : 1 <i<n, 1 <j < m}and two vertices
(vi, uj) and (v, uy) are adjacent in GX H if and only if (v; = vg and y; ~ wj), (v; ~ vy and u; = uy) or (v; ~ v and u; ~ ;). In
this section we will study the bondage number of the strong product of two paths P, and P;, of order at least two. We begin
by giving some observations and lemmas which will be useful into obtaining the bondage number of P, X P,,, for n, m > 2.

We will say that a graph G without isolated vertices satisfies the property & if it has a dominating set of minimum
cardinality S = {uq, up, ..., ux}, k = y(G), such that N[u;] N N[u;] = ¥ foreveryi,j € {1,...,k},i # j. Now, let § be the
class of all graphs satisfying property &. Notice that for instance every path graph belongs to §.

Observation 1. Let {vq, v,, ..., v,} be the set of vertices of a path P,, of order n. Then
(i) If n = 3t, then there is only one dominating set S of minimum cardinality in Py; it satisfies property & and itis S =
{v2, vs, ..., vn_1}
(ii) If n = 3t + 1, then there is only one dominating set S of minimum cardinality in P, satisfying property & and it is
S={v1,v4,v7,..., Up_3, Up}.
(iii) If n = 3t + 2, then there are only two dominating sets S and S’ of minimum cardinality in P, satisfying property $# and they
areS = {vy, vs, ..., Up_3, Ut and S' = {vq, v, V7, ..., Up_1}.

The following result from [16] is useful into studying the bondage number of P, X P,,,.
Lemma 3 ([16]). Forany n, m > 2,

y(Pos P =y Py =[] [5].

Theorem 4. For any n, m > 2,

1< b(P,®Py) < 5.

Proof. Since n, m > 2, we have that there are always two adjacent vertices u, v in P, X P, such that d(u) = 3,d(v) <5
and |[N(u) N N(v)| = 2. So, the result follows by Lemma 1. ®

Similarly to the case of Cartesian product, hereafter we will study the bondage number of P, X P,, by making some cases.

Theorem 5. If (n = 3t and m = 3r) or (n = 3t and m = 3r + 2), then
b(P, X Py) = 1.

Proof. Notice that if n = 3t and m = 3r, then by Observation 1(i) there exists only one dominating set of minimum
cardinality in P, and only one dominating set of minimum cardinality in P,,, and they satisfy the property #. Thus, there
exists only one dominating set S, of minimum cardinality in P, X P,; and it also satisfies the property £. So, every vertex
outside of S is dominated by only one vertex from S. Therefore, by deleting any edge e of P, X P, between a vertex of S and
other vertex outside of S, we obtain that the domination number of P, X P,, — {e} is greater than the domination number of
Py X Pp,.

On the other hand, let V; = {uy, uy, ..., uy}and Vo = {vq, vy, ..., vy} be the set of vertices of P, and P,,, respectively.
Since n = 3t, by Observation 1(i), we have that there is only one dominating set of minimum cardinality in P, and it is
S1 = {uy, us, ..., u,_1}. Moreover, since m = 3r + 2 we have that every dominating set S, of minimum cardinality in Py,
satisfies either

eV €S and Uz, U3 ¢52,
e Orvy; €5, and V1, U3 ¢52
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So, every dominating set S of minimum cardinality in P,, X P, contains either the vertex (u,, v1) (in which case, (u3, v;)
is only dominated by (u;, v1)) or the vertex (u;, v;) (in which case, (u;, v1) is only dominated by (u;, v;)) and also S does
not contain the vertex (uy, v3), neither any vertex of type (uy, vj) or (us, vj), with j,I € {1,..., m}. Thus, if we delete the
edge ¢ = (uy, v1)(uy, vy) we obtain that any dominating set of minimum cardinality in P, X Py, is not a dominating set in
P, ® P, — {€'}. Therefore, y (P, X Py, — {€'}) > y(P, X Py,). A

Theorem 6. If n = 3t and m = 3r + 1, then

b(P, X Pp) = 2.
Proof. Let Vi = {uy, uy, ..., u,} and Vo = {vq, vy, ..., vy} be the set of vertices of P, and P,,, respectively. If n = 3t, then
by Observation 1(i) we have that there is only one dominating set S; of minimum cardinality in Py, it satisfies property &
and itis Sy = {uy, us, ..., u,_1}. Also, every dominating set of minimum cardinality in P, contains either the vertex v, or

the vertex v,.

Thus, in P, X P,,, we have that for every dominating set S of minimum cardinality it is satisfied either for (u,, v{) € S or
(uz, v2) € S. Notice that no vertex of type (us, vj) or (us3, v;) is contained in S, withj, I € {1, ..., m}. Now, since the vertex
(u1, vq) is only dominated by the vertices (u,, v{) or (uy, v) by deleting the edges (u», v1)(u1, v1) and (uy, v2) (U, v1) we
have that

Y (Pn ® Py — {(uz, v1)(uy, v1), (U2, v2)(uq, v1)}) > Y (P X Pp).

Thus, b(P, X Pp,) < 2.

On the other hand, since n = 3t we have that every vertex belonging to any dominating set S of minimum cardinality
in P, ® Py, has the form (u;, v;) where u; € S; and S; is the only dominating set of minimum cardinality in P,. Hence, S is
formed by t subsets A;, [ € {2,5,...,n — 4, n — 1}, such that A, is a dominating set of minimum cardinality in the suitable
copy of P, in P, X P,;; and A; dominates all the vertices of {u;_1, uj, u;11} x Pp, in the graph P, X P,,. Notice that the vertices
of {u;_1, uj, u11} x Py are only dominated by such a set A; and also, every dominating set of minimum cardinality in P,
dominates the vertices of {u;_q, uj, uj11} X Pp,.

Since m = 3r 4+ 1 we have that y (P,) = y(Pm—1) + 1. So, if we delete any edge e of P,, and B is a dominating set of
minimum cardinality in P, then we can obtain another dominating set B’ of minimum cardinality in P,, — {e} such that
|B'| = |B|.

Now, let (u;, vj) € S.Thus, (u;, vj) € Ajforsomel € {2,5, ..., n—4, n—1}, Ajis adominating set of minimum cardinality
in the suitable copy of P, in P, X P,;; and A; dominates all the vertices of {u;_1, u;, uj11} X Py, in the graph P, X Pp,. So, if we
delete any edge incident to (u;, v;), then there exists another set A; such that it is a dominating set of minimum cardinality
in P, and |A;| = |A]|. As a consequence, A] dominates all the vertices of {u;_1, u;, uj41} X P, and the set S’ = S —A;+A] is also
a dominating set of minimum cardinality in P, X P,, with |S| = |S’|. Therefore, b(P, ® P,;) > 2 and the result follows. =

The following simple observation will be useful in proving the next Theorem.

Observation 2. Let us denote by {uq, u,, ..., usy1} and {vq, vo, ..., v342} the sets of vertices of the paths P, = P31 and
Py, = P39, respectively. For every vertex u; (1 < i < 3t + 1) thereis a y-set D, in P, which contains u; and for every vertex
vj (1 <j < 3r + 2), where j # 0(mod 3), there is a y-set Dy, in Py, such that v; € Dy, Moreover, one of each two consecutive
vertices v;, vy 1, where i = 1(mod 3), belongs to Dy,.

Theorem 7. If n = 3t + 1 and m = 3r + 2, then
b(P, ® Py,) = 3.

Proof. Let (u, v) be a vertex of degree three in P, X P,,, and let ey, e,, e3 denote edges incident with (u, v). We remove edges
ey, €3, es3 from P, X P,,. Hence, every dominating set of minimum cardinality in P, X P,, — {eq, e, e3} contains the vertex
(u, v). Thus,

y(Pn® Py — {e1, €2,e3}) > y(Py® (Py — {v})) + 1
Y (P3t41 X P3ryq) + 1
=({t+Dr+1)+1.

On the other hand, by Lemma 3 we have that y (P, X P;;) = (t + 1)(r + 1). So, we obtain that b(P, X P,,) < 3.

On the other side, we show that removing any two edges does not change the domination number. Let us denote by
{uq, uy, ..., u3erq} and {vq, v, ..., v342} the sets of vertices of the paths P, = P5;; 1 and P, = P55, respectively and let
Hi = P, X {v}, where 1 < k < m (Hy = P,). Wedenote C = {(u;,vj)), 1 <i<3t+1, 1 <j<3r+2,j# 0(mod 3)}.
From Observation 2, for every vertex in C there is a y-set in P, K P, containing this vertex. Now, we remove two edges e,
and e,. Obviously it is enough to consider the cases that e; = ab and e, = xy have at least one end-vertex in C (without loss
of generality, leta € C and x € C). Let us denote by D,,,, D,, and D y-sets in Py, P, and P, X P,,, — {e1, ey}, respectively. We
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use the notation a = (u%, v9), b = (P, v?), x = (U*, v¥),y = (W, v*). The set D) = {uq, ug, ..., Uy_3, Uy} is one of y-sets
of P,. Let us denote v = v, for 1 < k < mand v* = v, for 1 < | < m. Without loss of generality, we can assume that
d(vy, v?) < d(vq, v*) (it means k < I). In the following cases we show that y (P, X P, — {eq, e2}) = |D| = y (P, X P,,) which
implies that b(P, X P;;) > 3.

Case 1.1f b,y € V — C, then m > 5. We have the following subcases.

Subcase 1.1.1f | = 2(mod 3), then we denote a common neighbor of a and b in C by ¢ = (u°, v°) € C, where v = v* = vy.
We can construct Dy, such that v and v, belong to D,,. We choose D,, satisfying u¢ € D,,. Thus D = D,; X Dy,.

Subcase 1.2.1f | = 1(mod 3), then we have the following subcases.

Subcase 1.2.1. If k # I, then we denote a common neighbor of a and b in C by ¢ = (u¢, v°) € C, where v* = v* = v, and
we denote by z = (u*, v*) € C, where v* = v* = v;, a common neighbor of x and y in C. We can construct Dy, such that v*
and v* belong to D,,. We choose DS, and D7 satisfying that u® € DS, and v? € D%. Thus, D = (D), X D;y) — (D}, x {v}) U (D5, x
{v}) = (D, x {v*}) U (D}, x {v*}).

Subcase 1.2.2.If k = I, then we choose Dy, such that vy_, € Dy,. Hence D = D), X Dy,.

Case2.1fb € Cand y € V — C, then we denote a common neighbor of a and b by ¢ = (u¢, v) € Candbyz = (u?,v*) € C
a common neighbor of x and y, where v* = v* = v,. So, we have the following subcases.

Subcase 2.1.1If | = 2(mod 3), then we construct Dy, such that v¢, vj,5 € Dy, and D, that u® € D, (by Observation 2). Finally,
D = D, X Dy,

Subcase 2.2.1f | = 1(mod 3), then we construct D, such that v, v* € D,,. We choose Df, and D% such that u° € D and
u? € DZ. Thus D = (D), x D) — (D), x {v*}) U (D% x {v*}) — (D}, x {v°}) U (D§, x {v)).

Case 3.1fb € V — C and y € C, then by symmetry it is similar to Case 2.

Case 4.1f b,y € C, then the vertex v? either lies on a path Py, between vs, and v3(,41) for some integer p,1 < p < r
or v* € {v1, v2, Um—1, Um}. In the first case we can choose Dy, such that vs,_1, vx and v3p11)+1 belong to Dy, otherwise
Uk, U3 € Dy, Or vy, vm_3 € Dy Let k' be such that k ## k' and 3p < k' < 3(p + 1). So, we consider the next subcases.

Subcase 4.1. If v*v* & E(Py) and v* # v*, then we denote by ¢ € C a common neighbor of a and b, and also x and y have
common neighbor z € C. Similarly like in Subcase 1.2.1 we construct D containing c and z.

Subcase 4.2. If v* = v* or v®v* € E(Py,), then we consider the following cases.

Subcase 4.2.1. If e; and e, are adjacent, then we denote by w = (u*, v*) € C a common neighbor a, b, x and y and we
construct D such that w € D in the following way: we choose D;’ and D;, such that u” € D}’ and v* € D). Then we take
D = DY x D¥.

Subcase 4.2.2. If e; and e, are not adjacent, then let A = {u®, u®, u*, v’} C V(P,). We consider the following cases:

Subcase 422.1.1fu* = u® = y;and ¥ = ¥ = u;, then we consider the following items,

e ifi=1andj =2 (i=n— 1,j = n), then we choose D, such that u, uz € D, (uy,_3, Uys—1 € Dy) and D = D, X Dp,.

e ifi=1andj> 3 (j=n,i <n— 2),then we choose D, such that u,, uj_; € D, (Ujy1, Up—1 € Dy) and D = D;; X Dy,.

e ifi > 1andj < n, then there exists D, such that [{u;_1, uit1}NDy| = 1and [{uj_1, uj+1}NDy| = 1(in particular viy1 € Dy
forj=i+4+2)and D = D,, X Dy,.

Subcase 42.22 If u® = u® = u; and v* # v, then let us say u* = uj and v’ = ;1. Now, if a, b, x and y have a common
neighbor w € C we construct D such that w € C similarly as in Subcase 4.2.1. Else, we choose such a set D, containing a
neighbor of u®. So, we construct D' = D, x D, and; ifx € D’ (ory € D’), then we exchange it with (u*, vy) (for y with
(1, vy)). After these modifications we obtain D from D'.

Subcase 4.2.2.3 If u® # u’ and u* = ¥, then it is similar to Subcase 4.2.2.2.

Subcase 4.2.2.4 If u® # u® and u* # 1, then we consider three subcases:

o |Al = 2and A = {u;, ujy1}. Ifu; € A (u, € A) we can construct D, such that uy, us € Dy, (up—3, U, € Dy). Else,
Ui_1, Uiy € Dy. Thus, we take D = D, X Dp,.

e |A| = 3and A = {u;, Uiy, Uiy2}. So, we choose D, such that u;, ujy3 € D, fori < n—3andD, = D, fori = n — 3. We
construct D' = D, x D,, and; if x € D', then we exchange it with (u*, vy). We do the same for a, b and y. After these
modifications we obtain D from D'.

o If |JA| = 4, then we denote vertices x and y such that u* = u; and ¥ = u;;;. Then we choose D, which contains u“.
We construct D' = D, x Dy, and; if a € D', then we exchange it with (u“, vy). We do the same for x and y. After these
modifications we obtain D fromD’. W

Observation 3. Let G be a graph. If there are t disjoint dominating sets of minimum cardinality in G, then b(G) > (%]

Theorem 8. If n = 3t + 2 and m = 3r + 2, then b(P, X P,,) = 2.
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Fig. 1. The vertices {(u;, vj), (Ui, vir1), (Uir1, v)), (Uit1, vir1)}-

U Uiyg

Vv 1

L
5

Fig. 2. The graph H.

Proof. Since n = 3t + 2 and m = 3r + 2, by Observation 1(iii) there are two disjoint dominating sets of minimum
cardinality in each path P, and P,,. Thus, there are four disjoint dominating sets of minimum cardinality in P, X P,. Hence,
by Observation 3 we have that b(P, K Py,) > 2.

On the other hand, since n = 3t 4+ 2 and m = 3r + 2, by Lemma 3 we have that y (P, X P,;) = (t + 1)(r + 1). Hence, any
dominating set S of minimum cardinality in P, X Py, leads to a vertex partition IT = {A;, Ay, ..., A¢+1)¢+1) ) Of the graph
P, X P, with |[A;NS| = 1,foreveryi € {1, ..., (t+ 1)(r + 1)}. Moreover, there exist two vertices u;, u;1 in P,, two vertices
Vj, Vj+1 in Py, (see Fig. 1) and a set A; € IT such that A; = {(w;, vj), (Wi, vjr1), (Uig1, vj), (Wit1, vjr1)}, only one of the vertices
of the set A; belongs to S and such a vertex also dominates the rest of vertices in A;, which are not dominated by any other
vertex in S. Thus, by deleting the edges e = (u;, vj) (U1, Vj+1) and f = (i1, vj) (U, vj+1), we have that the set S is not a
dominating set of P, X P,,, — {e, f}.

Let us suppose there exists a set S’ with |S’| = |S|, such that S’ is a dominating set in P, X P, — {e, f}. Let {x, xo} be the
set of vertices of the path P, and let H be the graph obtained from the graphs P, X P, and P, K P, by identifying the vertices
(ui, x1), (Ui, X2), (Uiy1, X1) and (uir1, X2) of P, ® P, with the vertices (x1, v;), (X1, vj41), (X2, vj) and (xa, vjy1) of P, X P,
respectively (See Fig. 2). Notice that y(H) =t +r1r + 1.

Since n = 3t + 2 and m = 3r + 2, we have

YPr®Py) =yPra2®Pp)+yH) =tr+t+r+1.
Hence, as y(H — {e, f}) =t 4+ r + 2 we obtain that

y(Pn® P —{e,f}) = y(Pn2 ®Ppn_) +y(H —{e,f})
tr+t+r+2
>tr+t4+r+1
= y(Pa X Pp),

which is a contradiction. Hence, there is no such a dominating set S’ with |S| = |S’| such that S’ dominates P, ® P,, — {e, f}.
Therefore, the result follows. B
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Fig. 3. The components C; and C;, of Pg X Ps.

Finally, for the case n = 3t + 1 and m = 3r + 1, by Observation 3 and Theorem 4 we obtain the following bounds for the
bondage number of P, X Py,.

Theorem 9. If n = 3t + 1and m = 3r + 1, then
2 <b(P,®P,) <5.

Nevertheless we strongly think that in this case b(P, X P;;) = 5.

3. Bondage number of P,, x P,,

Let G and H be graphs with the sets of vertices V; = {v1, vy, ..., vy} and Vo = {uq, uy, ..., uy}, respectively. The direct
product of G and H is the graph G x H formed by the vertices V = {(v;,u;) : 1 <1i <n, 1 <j < mj} and two vertices
(vi, u) and (v, uy) are adjacent in G x H if and only if v; ~ v, and u; ~ u;. In this section we will study the bondage number
of the direct product of two paths of order at least two.

Notice that any direct product of two paths contains at least two vertices at distance two such that one of them has degree
one and the other one has degree two. So, Lemma 2 leads to b(P, x Py,) < 2.

Theorem 10. For any paths P, and Py,

(i) If n < 4orm < 4, then b(P, x Pp) = 1.
(ii) If n > 4and m > 4, then b(P, x Pp) < 2.

Proof. (i) If n < 3 or m < 3, then there exist two vertices in P, x Py, at distance two such that they have degree equal to
one. Thus, by Lemma 2 we obtain that b(P, x Py,) = 1.1fn = m = 4, then y (P4 x P;) = 4 and it is easy to verify that
removing of any pendant edge leads to a graph G’ with y (G') = 5, which implies b(P4 x P;) = 1.

(ii) On the contrary, if n > 4 and m > 4, then there are two vertices in P, x P, at distance two such that one of them has
degree one and the other one has degree two. Thus, by Lemma 2 we obtain that b(P, x P;) <2. H

Notice that there are values of n, m > 4 such that b(P, x P,) = 2. The graph Pg x Ps is an example, which has two
isomorphic connected components C; and G, (see Fig. 3, where the vertices in white represents dominating sets of minimum
cardinality in each component) having domination number equal to five. Thus, y (Ps x Ps) = 10. Notice that by deleting
any edge e from C; or C; we can obtain a dominating set of cardinality five in C; — e or C; — e. Therefore, we have that
b(PG X Ps) =2.
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