www.ietdl.org

Published in IET Information Security IET Journals

Received on 9th November 2012
Revised on 1st March 2013
Accepted on 6th May 2013

doi: 10.1049/iet-ifs.2012.0346

ISSN 1751-8709

Operating system security by integrity checking and
recovery using write-protected storage
Jerzy Kaczmarek, Michal R. Wrobel

Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland
E-mail: wrobel @eti.pg.gda.pl!

Abstract: An integrity checking and recovery (ICAR) system is presented here, which protects file system integrity and
automatically restores modified files. The system enables files cryptographic hashes generation and verification, as well as
configuration of security constraints. All of the crucial data, including ICAR system binaries, file backups and hashes
database are stored in a physically write-protected storage to eliminate the threat of unauthorised modification. A buffering
mechanism was designed and implemented in the system to increase operation performance. Additionally, the system supplies
user tools for cryptographic hash generation and security database management. The system is implemented as a kernel
extension, compliant with the Linux security model. Experimental evaluation of the system was performed and showed an

approximate 10% performance degradation in secured file access compared to regular access.

1 Introduction

Computer systems are commonly used to store important
information regarding technical, financial and personal data,
which require effective protection from unauthorised access
or data fraud. Numerous threats for computer system
security may be mentioned, including viruses, Trojan
programs, rootkits and others. Most computer system
attacks are performed using network access and the
likelihood of a security breach is increased if the computer
system is not adequately protected. Methods for system
protection have been designed and applied, including
firewall systems, access control security policies and
intrusion detection systems. However, there are still serious
threats of successful attacks and we can assume that there
will always be a risk of successful intrusions on computer
systems. Therefore, it is necessary to apply additional
methods that detect intrusions to a computer system apart
from methods that attempt to prevent such attacks. Methods
for file modification monitoring are one of the most
effective methods of intrusion detection.

File integrity checking systems [1] utilise the mechanism of
aunique digital fingerprint that is calculated from the contents
of a file. The fingerprint, also known as a checksum, is stored
in a secured database and retrieved to check if an
unauthorised modification to a file has been made.
Algorithms used to calculate files fingerprints are critical for
the effectiveness of the method, as they must ensure that
any file modification will result in a different checksum
value. Additionally, it must be impossible to reconstruct file
contents from its checksum and simultaneously checksum
calculation should be computationally effective.

Algorithms that generate fixed length cryptographic hashes
are most commonly used for file checksum generation. There

122
© The Institution of Engineering and Technology 2014

are cryptographic functions available such as Message Digest
Algorithm, Secure Hash Algorithm and Tiger Message Digest
Algorithm. The algorithms must be resistant to attacks such as
first pre-image attacks, second pre-image attacks and collision
generation [2].

Although the existing integrity checking systems improve
system security [3], they also have weaknesses that may be
used by an intruder to eliminate the protection in certain
situations. Typically, the systems insufficiently protect the
security database and are vulnerable to attacks that modify
its binaries. The weakness concerns both systems that are
run as user applications and systems that are integrated in
the kernel. Additionally, the existing systems do not provide
file backups, which results in the need of additional
administrative work to restore infected files each time an
intrusion occurs.

We propose a novel system that enables file integrity
verification — integrity checking and recovery (ICAR) —
implemented as an in-kernel Linux security modules (LSM)-
based module [4]. Our system overcomes the shortcomings
of existing solutions taking the following main assumptions:

1. Write-protected media is used to store crucial files: system
kernel with ICAR module, backups of the protected files and
cryptographic hashes database.

2. The system supplies a backup of protected files that enable
automated recovery if the files have been modified in an
unauthorised way.

3. ICAR is integrated with operating system kernel using the
LSM mechanism and runs in the kernel space.

Experiments showed that our system is an efficient
mechanism of operating system protection against
unauthorised file modifications.

IET Inf. Secur., 2014, Vol. 8, Iss. 2, pp. 122-131
doi: 10.1049/iet-ifs.2012.0346

mailto:
mailto:
mailto:
mailto:
mailto:

A\ MOST

www.ietdl.org

The rest of the paper is organised as follows. The next executed periodically, so integrity violations are detected
section presents related work and background for our during explicit executions rather than automatically on
research. Section 3 presents the ICAR protection model, occurrence. The Tripwire [5] tool developed in the Purdue
architecture and applied algorithms. System implementation, University in 1992 is one of the first commonly used
installation and configuration are discussed in Section intrusion detection system. Tripwire is a seminal integrity
4. Section 5 presents experimental evaluation. checking system for other user-level tools such as AIDE,

Veracity and Integrit [6]. The tool enables definition of
protected file lists, signature generation, file verification and

2 Background and related work reporting of violations.
It should be noted that user-level integrity checking tools
Most file system integrity checking tools leverage a common are not aimed at intrusion prevention, but rather effective
pattern for operation steps as shown in Fig. 1 [5]. First, the detection of an already occurred security violation. The
integrity checking process reads configuration data to procedure of file integrity checking is triggered either
determine which files should be protected. Then the process periodically or manually by the administrator.
calculates cryptographic hashes of the files and stores the Kernel-level integrity checking tools supply higher
hashes in a database. security than user-level ones. Operating system kernel
During regular system operation, the process checks verifies security constraints during operations, for
integrity by recalculating cryptographic hashes of files example, access privileges when a process requests a file
and comparing them with the values stored in the access. Regular kernel operations may be extended with
database. If a security violation is detected, appropriate integrity checking if a security mechanism is a part of the
security actions are taken. The actions may cover operating system, in particular a procedure for verifying
generation of a report about potential intrusions, file cryptographic hash may be supplied. If hash
notification to the system administrator, file access denial verification indicates that the file has not been modified,
or system shutdown. file access is granted. However, if hash verification fails,
The Linux operating system distinguishes between which might indicate an unauthorised modification, file
user-level code and kernel-level code, which is an important access may be denied.
feature for integrity checking tools. Two kinds of tools are Security systems can be integrated with the kernel in
distinguished in this context: those that run in user space several different ways. Stackable file system [7] consists of
with root privileges and those that run in kernel space. a number of independent functional layers and may be used
User-level code covers regular applications, text and as an efficient solution that enables implementation of file
graphical user interfaces and operating system commands system security in the kernel space. File system
invoked by a user. Kernel-level code covers, among other functionality may be extended by adding an additional layer
things, applications for memory management, process responsible for security. The layer is typically located on
management and file system operations. A typical threat to the top of the stack during file system mounting and
computer system security that occurs at user-level code is a intercepts and controls file access by processes. The
situation in which an error, such as buffer overflow, in an solution enables separation of file system integrity checking
application is used to overtake control of the computer code and kernel code.
system. This kind of threat is virtually impossible to System calls is another approach that may be used to
eliminate because of a large number of applications and implement kernel-level security, as the mechanism enables
their high complexity. programs to request kernel services [8]. In order to
User-level integrity checking tools are run as regular implement a security extension, standard system calls are
applications. Usually, the integrity checking procedure is replaced with custom functions implementing secure file

LIST OF CURRENT CRYPTOGRAPHIC
> HASHES OF PROTECTED FILES

REPORT ABOUT DETECTED

GENERATE CURRENT HASHES
H

OF PROTECTED FILES COMPARISON FILES MODIFICATION

A

CONFIGURATION FILE CONTAINING DATABASE OF
A LIST OF PROTECTED FILES INITIAL CRYPTOGRAPHIC
HASHES

DATA OF THE FILE INTEGRITY CHECKING SYSTEM

Fig. 1 Main components for file system integrity checking tools

IET Inf. Secur., 2014, Vol. 8, Iss. 2, pp. 122-131 123
doi: 10.1049/iet-ifs.2012.0346 © The Institution of Engineering and Technology 2014

http://mostwiedzy.pl

A\ MOST

www.ietdl.org

access. The mechanism, however, has many drawbacks [9]: it
is not race-free, may require code duplication and may be
limited in expressing the security context.

Finally, the LSM project [9] has been developed to supply
an access control framework for the Linux kernel that enables
different control models implemented as loadable kernel
modules. The basic abstraction of the LSM interface is to
mediate access to internal kernel objects. The mechanism
uses hooks that are placed in the kernel code just ahead of
the access. The hooks are used to call LSM functions that
supply information about granting or denying a requested
access. The LSM framework is used, among others in
AppArmor and SELinux [10].

The secure on-the-fly file integrity checker (SOFFIC) [11]
and in-kernel integrity checker and intrusion detection file
system (I°FS) [12] systems are important implementations
of file system integrity checking that leverage kernel-level
access. The SOFFIC system modifies system calls
responsible for file access. It stores the list of protected files
and their initial hashes in regular files, which is the primary
drawback of the system because attackers can easily remove
or change such important data. ’FS system is an in-kernel,
on-access integrity checking system that is designed on a
stackable file system. It is capable of blocking access to
affected files and notifying the administrator. The design
assumes that the file system is the most appropriate location
for security modules because most intrusions cause file
modification. The system implements four databases located
in system kernel space that concern: (i) policy options
associated with files, (ii) checksums of file data, (iii)
metadata checksums and (iv) access counters.

Both SOFFIC and I’FS, similar to Tripwire, are vulnerable
to attacks that modify the database of file hashes or the
operating system kernel. Attacks of this kind may
effectively disable the security mechanism. Our solution
differs in that we leverage the LSM mechanism, which
effectively protects our tool from unauthorised modification
at the kernel level. ICAR supplies a backup mechanism that
enables continuous work despite an intrusion. Additionally,
we use write-protected storage to store cryptographic
hashes, security module and system kernel ensuring that no
modification can be made to them.

Different approach to file integrity checking are used in
some network intrusion detection system [13] and hardware
systems such as intrusion detection on disk [14]. But
despite the good performance, such solutions are more
complicated and expensive than those designed by us.

3 ICAR protection model

The design of a security mechanism requires analysis
concerning scope, time and manner of protection. A
running operating system may be viewed as both files and
running processes that may become a potential target of an
attack and should be protected. The Linux operating system
is a convenient platform for research in the field of security
as it is freely available in both binary and source code. It
can be modified and extended using the open source
approach and existing licenses. Therefore, the system was
chosen as the testbed operating system for design and
implementation work.

Although numerous methods and tools have been supplied
for system protection, it cannot be guaranteed that an intruder
will not violate system security and grant unprivileged access
to system resources. The existing Linux security mechanisms

124
© The Institution of Engineering and Technology 2014

supply a relatively more effective protection for running
processes than for the file system. Therefore, a mechanism
should be designed that protects file contents, especially
considering important configuration and system files.

The proposed security system consists of three layers as
shown in Fig. 2. System layers are as follows:

1. Kernel-level layer — is responsible for the verification of
file system integrity.

2. Data layer — contains critical data for the security
mechanism: database that stores initial cryptographic hashes
and backup copies of protected files.

3. Utility layer — equips the end user with tools that simplify
the administrators work in configuration and management of
the system.

The module of kernel-level layer is loaded into RAM as a
part of operating system kernel during system startup. It is
responsible for calculating file cryptographic hashes that are
further stored by the data layer. Given the known attacks on
the elderly functions [15], it is recommended to use a SHA
256 algorithm or a new one. The layer also contains a
cache that is used by the protection algorithm, described
further in this section, to store the results of file
verifications that have already been performed. The use of
cache increases the speed of the security system as it limits
the necessity of signature calculating for files that have
already been verified.

File hashes stored by the second layer are used by the
kernel-level layer to detect if an unauthorised modification

KERNEL-LEVEL LAYER

module

Cache
[File integrity checking

[} Cryptographic hash
functions

DATA LAYER

1]

Backup copies
of protected files

Initial cryptographic
hashes of protected files
database

UTILITY LAYER

Generate initial
cryptographic
hashes database

Manage
write-protected
storage

Fig. 2 ICAR system layers

IET Inf. Secur., 2014, Vol. 8, Iss. 2, pp. 122-131
doi: 10.1049/iet-ifs.2012.0346

http://mostwiedzy.pl

A\ MOST

has been made to the system. Additionally, file copies are
used to restore the original file contents if unauthorised file
modifications have been detected (as described further in
Section 3.1). Both cryptographic hashes and file copies are
stored in write-protected data storage. The mount point of
the storage is additionally protected by ICAR to prevent
from mounting a fake security database. The kernel-level
layer intercepts mount operations, analogous to intercepting
file read operations, and blocks mount attempts of the
directory with the security database.

Developed helper tools cover applications that enable
selection of protected files, generate initial cryptographic
hashes and files backup, which are stored in the data-layer.
Tools also allow to monitor file system integrity. If
necessary, a system administrator may receive alarm
notifications from the monitoring system. Information about
compromised files and file recovery may simplify
administrators work in detecting intrusions.

3.1 File protection algorithm

Fig. 3 shows the main algorithm for integrity checking used
by ICAR during reading or executing attempt. The
algorithm for integrity checking is activated each time a
process requests a read access to a file. First, the algorithm
reads the security database to check if the accessed file is in
the group of protected files. If there is no information about
the file in the database, it is assumed that the file is not

www.ietdl.org

protected for integrity and access is granted for the
requesting process.

If there is information about the file, which means that the
file is protected for integrity, ICAR verifies if file contents has
been modified since system startup. The check requires
calculating the cryptographic hash from the present contents
and then comparing that against the value of the initial hash
stored in security database. However, despite the fact that
the system uses a relatively effective kernel built-in
cryptographic function, the calculation is time-consuming.

Considering performance issues, ICAR implements a cache
that stores information about positively verified files. If a file
has been checked on a previous access, there is no need to
recalculate the hash of a file as long as the file has not been
modified. Therefore, when a process requests access to a
file that is already in the cache, permission is granted
immediately. Otherwise when the cache does not contain
information about a file, which is protected for integrity, it
is necessary to calculate the cryptographic hash from the
present file contents and compare it against the initial value.
If the verification is successful, the security mechanism
stores the information about the file in the cache for further
use and grants access to the file for the requesting process.

If the calculated hash differs from the initial hash, a
security procedure is activated covering an attempt to
restore the original file content from backup and notifying
the system administrator. In the first step, the mechanism
attempts to restore the original file by copying it from

" System call interception Check the file
[Read file request H (LSM)]—){ protection]

(Check the cache

Is the
file
protected?

[Calculate of hash file

Y

Compare with
a initial hash

Is the
information on
file cached?

YES

NO

Y

Y

Y

to the file
A

Grant access]

Are the
hashes the
same?

YES [

Save the file name w
in the cache J

Restore the original
file contents

Fig. 3 File system protection algorithm

IET Inf. Secur., 2014, Vol. 8, Iss. 2, pp. 122-131
doi: 10.1049/iet-ifs.2012.0346

Has the file
been restored
correctly?

to the file

Deny acces]

125
© The Institution of Engineering and Technology 2014

http://mostwiedzy.pl

A\ MOST

www.ietdl.org

the write-protected storage backup to the hard disk of
the computer system. If file restoration is successful, the
tampered file is replaced with the original one. Then, the
algorithm follows steps for positive file verification granting
access to the file for the requesting process. If, however, file
restoration fails for any reason, file access is denied. The
file is not accessible for users and processes running in the
system for reading and executing.

The security system may take other security actions in
response to a detected unauthorised modification of a file
depending on configuration. The system may log the
information in system logs, alert administrator, block IP
addresses or even shutdown the operating system. System
shutdown may be necessary if file modifications are
detected frequently, which may indicate a considerable
attack on the system.

Fig. 4 shows two helper algorithms. The first is responsible
for cleaning cache during a write operation. Independently
from integrity checking, the system monitors file
modifications and clears cache information about a
file when its modification is detected. The second
algorithm describes how the system protects the mount
point with the ICAR data against unmounting or
remounting operations.

3.2 Cache construction

The structure of the cache is an important issue related to the
performance of the ICAR system. The solution was designed

with the assumption of low memory usage and fast file
verification.

It is sufficient to store a unique identification number of
verified files in the cache. Therefore, even when hundreds
of thousands of files are protected, the size of the buffer
will be in the order of megabytes. This approach also
eliminates the risk of an attack, in which the contents of
verified files is changed using hard links (information about
these files is stored in the cache).

To ensure high search performance, it is necessary to use a
hash table to store the information on previously verified files.
A suitable hash function must be selected to minimise
generation of collisions, as well as an algorithm for dealing
with collisions occurrence.

Additionally, periodic cleaning of the cache is assumed,
which allows reduction of the size of the cache and refresh
its contents. This mechanism may be activated periodically
or when exceeding a predefined limit.

3.3 Security issues of ICAR integration with the
operating system

An effective implementation of the security system requires
resolution of two design issues: a method of data storage
and a method for integration with operating system kernel.
We use a write-protected storage for system kernel, the
integrity checking module, initial cryptographic hashes and
file backups. We ensure write protection using hardware
mechanisms, which eliminates the threat of modification

—— System call interception
[Write file request H (LSM)]‘b[

Check the file
protection

Remove file name
from cache

Is the
file
protected?

.
.

Grant access
to the file

Unmount or re-mount System call interception
directory request (LSM)

Check the mount
point information

(Deny request

Is it ICAR
mount point
requested?

Fig. 4 File system protection algorithm

126
© The Institution of Engineering and Technology 2014

[Allow request J

IET Inf. Secur., 2014, Vol. 8, Iss. 2, pp. 122-131
doi: 10.1049/iet-ifs.2012.0346

http://mostwiedzy.pl

A\ MOST

and guarantees the effectiveness of the solution. In practice, a
LiveCD Linux distribution or write-protected USB flash
memory are most popular mechanisms that can be used in
the developed system.

The system assumes that the kernel and the ICAR system
are the only modules stored in write-protected storage and
other system files may be stored in traditional disks. The
bootup process loads system kernel from the write-protected
storage and then continues with traditional booting using
data from hard disks. If ICAR detects a file modification
during integrity checking, it restores the original file
contents using the backup copy from the secure storage.

ICAR design assumes that the module is integrated with
system kernel, which minimises the threat of its elimination
by an unauthorised user. In practice, different solutions are
available for such integration in Linux, including system
stackable file systems, system calls and LSM. Table 1
shows methods of kernel-module integration and their
selected properties.

We decided to use LSM because it is well suited for
security actions such as verification and filtering of user
operations. LSM supplies a well-defined API, allowing
integration of security modules with system kernel. It is
also resistant to TOCTTOU attacks [16, 17]. ICAR is
implemented as an LSM-hooked module that resides in
Linux system kernel. The use of LSM ensures that our
module will not be removed from the operating system
kernel by an intruder.

An unauthorised modification of cache is a serious threat
that must be prevented. Three groups of attacks on cache
has been identified: malware modules loaded into the
operating system kernel, writing directly to kernel memory
and writing directly through partition device file. All of
these possible attacks can be blocked by the application of
the grsecurity kernel patch.

4 System implementation

The implementation of the ICAR system is an extension for
the Linux operating system and aims at verifying the
effectiveness of the designed mechanism. The cdlinux.pl
Linux distribution was chosen as the runtime environment,
although ICAR may be applied in any Linux distribution.
The cdlinux.pl is a Debian-based distribution developed by
authors since 2001, available from www.cdlinux.pl.

ICAR is implemented in the C language and consists of
two main parts: a kernel module and user-level tools. The
LSM-based kernel module covers over 1.000 lines of code
of kernel module responsible for file protection. The cache
mechanism utilises the Linux inode hash function and
stores its data in slab allocator.

www.ietdl.org

The implementation supplies user-level tools that simplify
setting-up, initialisation and configuration of ICAR.
Additionally, a script was prepared that automates the
creation of the operating system containing the designed
security mechanism. The generated system may be used to
create a LiveCD image or USB memory contents.

ICAR sources are available at http:/www.cdlinux.pl/icar.
The system is available under the GPL license and may be
used by computer system users or other researches for
further studies.

4.1 System installation and configuration

ICAR installation and configuration requires administration
steps similar to installation of other integrity checking
software. Fig. 5 shows the following main steps of I[CAR
installation:

¢ ICAR installation in the operating system, which covers:

o Patching system kernel with the ICAR module.
o Installation of ICAR user-level tools.

o Selection of protected files.

e Generation of initial cryptographic hashes.

e Preparation of write-protected media containing: initial
cryptographic hashes, protected file copies and operating
system kernel with the ICAR module.

o System restart with the new kernel from the write-protected
media.

ICAR installation and configuration requires special
security means as the operating system may be prone to
attacks during reconfiguration of the module. It is
recommended that the target machine is clean and isolated
(run in single-user mode and disconnected from any
network). After taking the security means, the ICAR system
may be installed and configured. If the system has already
been installed, it should be disabled and reconfigured
concerning new file versions or protected file selection. A
configured system may be used as long as the contents and
selection of protected files do not change. Updated system
data is generated and written in a write-protected storage.
The operation requires physical access to the computer (i.e.
it cannot be performed remotely through a network
connection). The restrictions ensure high security of the
configuration process.

Table 1 Methods of kernel-module integration

Stackable filesystem System call interception Linux security model
initialisation mount the file system load kernel module load kernel module
method

required changes implementation of file system layer with

modified read and write functions

programming
language

abstract high level language (FIST)

properties easy to maintain, noticeable performance

overhead

read and write functions implementation

read and write functions

and substitution implementation

C C

inefficient and prone to
time-of-check-to-time-of-use race

standard part of the Linux
kernel

IET Inf. Secur., 2014, Vol. 8, Iss. 2, pp. 122-131
doi: 10.1049/iet-ifs.2012.0346

127
© The Institution of Engineering and Technology 2014

www.cdlinux.pl
www.cdlinux.pl
www.cdlinux.pl
http://www.cdlinux.pl/icar
http://www.cdlinux.pl/icar
http://www.cdlinux.pl/icar
http://www.cdlinux.pl/icar
http://www.cdlinux.pl/icar
http://mostwiedzy.pl

A\ MOST

www.ietdl.org

Patch system kernel with the ICAR module and install ICAR user level tools

Generate database with
initial cryptographic hashes
and backup protected files.

Prepare write-protected
media with ICAR data.

Protected files
backup

initial hashes
database

Restart system with new kernel from write-protected media

1
Select files to protect.
Files selected
for protection
N — ol
2 3
5

Fig. 5 Main steps of security database update process

4.2 Classification of protected files

It is virtually impossible to protect all of the files in a system
because of their size and number. Protection of all files would
inevitably lead to significant performance degradation.
Therefore, it is necessary to select which files should be
protected. The selection results from a security policy that
in turn depends on the value of stored information and
computer system type, such as a desktop machine or a
corporate server.

Significance for security and modification frequency are
the main issues that decide whether a file should be
integrity protected or not. Files stored on a computer system
are classified as operating system files, application files,
system configuration files, user data files and others.
Protection of operating system and application files is
critical for the security of the whole computer system. If an
intruder modifies one of those files, he may easily overtake
operating system control or install malicious software. The
advised security policy assumes that these files should be
verified for integrity and cannot be modified without ICAR
reconfiguration.

Configuration files are the second security group. These
files are less crucial as their unauthorised modification does
not immediately result in a security threat. Additionally,
relatively frequent modifications of these files may be
necessary during regular administrative work. Therefore, the
advised security policy assumes that only selected
configuration files are protected for integrity. Actually,
system administrators decide which configuration files
should be protected from modifications depending on
system purpose and installed software.

Files from other groups, including user data files and
temporary files, are modified frequently and it is not

128
© The Institution of Engineering and Technology 2014

recommended to select them for integrity protection.
Although the files are exposed to attacks, their privileges are
limited, which poses a reduced threat to the operating
system. These files should be backed-up regularly and
appropriate policies should be designed to restore the files if
an intrusion has been detected or the files have been corrupted.

5 Evaluation and performance

We conducted tests on ICAR to evaluate the performance
overhead of the implementation. Two kinds of tests were
performed. The first test involved the single calculation of
MDS5 checksum for files of various sizes, and the second
test involved typical file operations (i.e. size modification of
graphical files, application compilation and conversion of
audio and video files). All tests were performed on a
machine with an Intel Core2 Quad Q6600 2.40 GHz
processor, 3 GB RAM memory and a Samsung HD3221J
320 GB 7200 rpm hard disk. We used the Linux 2.6.28
kernel in the experiments. Data-layer of the ICAR system,
with the initial cryptographic hashes database and backup
of protected files, has been stored on the write-protected
USB flash memory. No additional applications were
running on the machine during the experiments.

System performance was measured in three different
configurations:

e without the ICAR module (NOICAR)
e with ICAR using cache (CACHE)
e with ICAR without cache (NOCACHE)

The abbreviations are used in presented performance
graphs to note results for each system configuration.

IET Inf. Secur., 2014, Vol. 8, Iss. 2, pp. 122-131
doi: 10.1049/iet-ifs.2012.0346

http://mostwiedzy.pl

A\ MOST

Table 2 Methods of kernel-module integration

FILE SIZE, MB NOICAR, s CACHE, s NOCACHE, s
0.100 0.13 0.15 0.26
0.315 0.20 0.25 0.61
0.700 0.31 0.42 1.19
1.000 0.39 0.54 2.39
3.150 1.03 1.39 4.88
7.000 2.21 2.84 10.56
10.000 3.1 3.99 15.01
31.500 9.565 12.32 47.30
70.000 21.00 27.16 104.89
100.000 29.96 38.72 149.09
350.000 94.27 122.06 469.85
700.000 208.82 273.02 1042.37
1000.000 298.18 386.90 1487.99

5.1 Performance by the file size

The first experiment verified the dependence between file size
and file access time. The experiment concerned the worst-case
scenario, in which only protected files were processed. The
experiment was executed on binary files of sizes ranging
from 100kB to 1 GB, for which MD5 checksum was
calculated. We wused the SHA256 algorithm for file
protection. The mdSsum program was chosen as a
representative case, although it may be replaced by any
other program that reads the entire file contents. In order to
increase calculation accuracy, each file was processed in 10
rounds, with each round consisting of 100 calculations.

Table 2 shows the results for MDS5 hash calculation for
defined test files. The results were used in regressive
analysis to determine if there exists a linear dependency
between file size and computation time, which would
indicate system scalability.

Considering the high differences in file sizes, two ranges
were distinguished during the analysis: file sizes of 100 kB
to 7MB, and file sizes of 7MB to 1 GB. A detailed
analysis of results for small files shows some deviation with
Pearson product-moment correlation coefficient of 0.98, as
shown in Fig. 6. The deviation is observed regardless of

12
10 = NOICAR
CACHE
® NOCACHE
Linear (NOICAR)
B - reemies Linear (CACHE)
w ——— Linear (NOCACHE
)
E
= 6
e
=
o
= |
o 4 /’/
[1+] -
U //,
/,//
L] -
2 e
=
/’ _____
D e
0 -

Fig. 6 File operation time for files smaller than 7 MB

IET Inf. Secur., 2014, Vol. 8, Iss. 2, pp. 122-131
doi: 10.1049/iet-ifs.2012.0346

3
File size [MB]

www.ietdl.org

ICAR activation in the operating system. Therefore, it may
be stated that the effect results from the operating system,
not from ICAR processing. The effect may also result from
inaccuracies in measurement of small time intervals.
Despite insignificant deviations for small files, it may be
stated that a linear dependency exists between file size and
MD5 checksum calculation time. Generally, we conclude
that ICAR does not change the scalability of file access
time in the operating system.

Fig. 7 compares checksum calculation time in three
configurations: (i) without ICAR, (ii) with ICAR and the
buffering mechanism (CACHE) and (iii) with ICAR
without the buffering mechanism (NOCACHE). The
analysis of access time shows that the second configuration
(CACHE) results in 30% performance degradation
compared to a clean system (NOICAR). If the cache
mechanism is disabled in ICAR (NOCACHE), file access
time increases approximately 400% compared to the time
without integrity checking. The speedup in case of
buffering results naturally from the fact that the SHA-256
cryptographic hash is calculated once in each test round
(consisting of 100 operations). If the buffering is disabled,
the hash is calculated for each operation. The achieved
results show that the cache mechanism works correctly and
increases system performance.

5.2 Performance by the operation type

In the second experiment, we measured representative file
operations: source code compilation, image file resolution
reduction, audio conversion and video compression. In this
experiment, more complex operations were executed as they
were not limited to reading the file contents as in the first
experiment. Therefore, results supply more representative
measures of ICAR system overhead. During the
experiments, we measured operation performance in the
following configurations: NOICAR, CACHE, NOCACHE,
analogous to plain MDS5 checksum calculation. The
experiments aimed at determining the influence of operation
type on processing time.

-8
y = 1,5325x B
iz -
R?=0,0895 /’,,
I’/
-
/l/
-
/,,/
///
-
//l/
/f
y = 0,4166x
R*=0,9871

¥ =0,3212x
R*=0,9899

4 5 6 7

129
© The Institution of Engineering and Technology 2014

http://mostwiedzy.pl

Downloaded from mostwiedzy.pl

A\ MOST

www.ietdl.org

1600
1400
= NO ICAR
CACHE
1200 . NOCACHE
Linear (NOICAR)
------ Linear (CACHE)
1000 —=—=—Linear (NOCACHE
@,
1]
£ 800
=
S _
w 600 -~
= prad
o -~
[//'.
O 400 /,/
-~
/’/
200 -

0 100 200 300 400

y = 0,2983x
R?=1

500 600 700 800 900 1000

File size [MB]

Fig. 7 File operation time for files smaller than 1 GB

We selected
calculation:

the following data for performance

e Application compilation: a C language application
consisting of approximately 12 000 files, having 332 MB
size in total.

o Image file processing: 20 image files of average size 4 MB,
modification of image resolution.

¢ Audio file processing: 20 audio files of average size 5 MB,
file conversion from the MP3 format to the Ogg Vobis format.
e Video file processing: one 1.4 GB video file compression.

Fig. 8 presents time overhead of the operations for an
operating system in the two configurations. The bar on the
left-hand side compares the processing times for a plain
system (NOICAR) and a system with buffered ICAR
(CACHE/NOICAR). The bar on the right-hand side
compares the processing times between a plain system
(NOICAR) and a system with non-buffered ICAR
(NOCACHE/NOICAR).

The results indicate the effectiveness of the buffering
mechanism, especially in operations that require repeated

112%

B CACHE / NOICAR (%)
O NOCACHE [NOICAR (%)

110% _

108%

106%

104%

102%

100%
Compilation Image

Fig. 8 Time overhead for different operations

130
© The Institution of Engineering and Technology 2014

reading of the same file. The effect is noticeable when
comparing results of image and video processing
performance. Buffering has a negligible influence in video
processing, although the video file is significantly larger
than image files. It results from the fact that image files are
read several times during processing, while video files are
read once only.

The results of compilation tests can be compared with
similar tests carried out by the developers of the I°FS
system [12]. With multiple I’FS policies, ICAR should be
compared with the MW policy — whole-file check-summing
date. Compiling process overhead for I°FS is 2.3%, which
is slightly better than the results for the ICAR system (2.5%).

The performance increase resulting from buffering depends
both on the type of processed files and on implementation
details of processing in utility applications. The presented
results show that the overall performance degradation of file
operations caused by the ICAR system using cache should
not be higher than 6% under normal user workloads, and
30% for the worst-case scenario. This indicates that, in
practice, ICAR operation will not be noticeable by a regular
user.

7

/
B

Audio Video

IET Inf. Secur., 2014, Vol. 8, Iss. 2, pp. 122-131
doi: 10.1049/iet-ifs.2012.0346

http://mostwiedzy.pl

A\ MOST

6 Conclusions and future work

The presented solution increases computer system security by
integrity checking of files that are vital for system operation.
Compared to existing systems, two main innovative solutions
are supplied by ICAR. First, the system supplies a mechanism
that automatically restores the original content of the file from
backup if an unauthorised modification has been detected.
Second, ICAR uses write-protected media to store crucial
files of the security system: cryptographic hashes, file
backups and security binaries. It is proposed to use
commonly available devices, such as CD-ROM disks or
write-protected USB memories, as the write-protected
storage. The use of relatively cheap hardware enables
common application of ICAR with negligible required
expenses.

The performance evaluation of the system showed that
ICAR introduces performance degradation of approximately
10% for typical operations. The results indicate that ICAR
operation should not be noticeable for a regular user. The
system has been thoroughly tested to detect and fix
potential bugs. Final tests and performance evaluation
demonstrated that ICAR is a reliable and stable system.

We plan to improve ICAR administration and configuration
as the main scope of future work. What is required now is the
modification of ICAR security data each time the contents of
protected files change. The operation requires recalculation of
cryptographic hashes, copying of file backups and preparation
of new CD-ROM disks or unlocking of USB memory write
operations. The whole process may include advanced
administrative operations and compliance with security
restrictions. We plan to simplify ICAR administration and
configuration by using the virtualisation technique, which is
in the scope of intensive research. Various
virtualisation-based security systems, such as HyperSpector,
Livewire [18], VMWacher [19] and VMFence [20], have
been designed and implemented in recent years.

Virtualisation distinguishes two software layers: virtual
machine monitor and operating systems layer. Virtual
machine monitor (called also hypervisor) enables access to
hardware resources by many operating systems running
concurrently. When a guest operating system requests a
hardware resource, the request is intercepted and processed
by the hypervisor. Operating systems host regular
applications and access virtual machine resources in the
read-only mode, whereas the hypervisor has full access
rights to its resources. Using virtualisation, ICAR critical
data may be stored in the hypervisor layer, which
guarantees its safety from the operating system point of
view and, simultaneously, simplifies configuration from the
administrator point of view. Hypervisor enables safe data
modification below the operating system, as the later treats
the hypervisor as hardware resources.

Two models were designed for ICAR integration in the
virtual machine architecture. The first model assumes that
the ICAR module resides in system kernel whereas ICAR
critical data (cryptographic hashes and file backups) are
stored outside the protected operating system. The
hypervisor is used to access critical data that is planned to
be stored in a separate virtual machine due to design
assumptions of the architecture. The solution requires
relatively limited extensions of the hypervisor layer. In a
more advanced architecture, the whole ICAR system is
located inside the hypervisor layer. In this solution,

IET Inf. Secur., 2014, Vol. 8, Iss. 2, pp. 122-131
doi: 10.1049/iet-ifs.2012.0346

www.ietdl.org

operating system kernel is not modified and treats the
security module as an extension of the hardware layer. The
security module intercepts disk requests from the operating
system and processes them to identify protected files and
verify their contents. The main benefit of the solution is that
ICAR operation is independent from the protected operating
system, which enables the application of ICAR in different
operating systems such as Linux, Windows, MacOS or others.

7 Acknowledgments

The work was supported in part by the Polish Ministry of
Science and Higher Education under research project
NN519-172-337.

8 References

1 Bace, R., Mell, P.: ‘NIST special publication on intrusion detection
systems’. DTIC Document, 2001
2 Preneel, B.: ‘State-of-the-art ciphers for commercial applications’,
Comput. Secur., 1999, 18, (1), pp. 67-74
3 DeMara, R.F., Rocke, A.J.: ‘Mitigation of network tampering using
dynamic dispatch of mobile agents’, Comput. Secur., 2004, 23, (1),
pp. 31-42
4 Kaczmarek, J., Wrobel, M.: “‘Modern approaches to file system integrity
checking’. IEEE First Int. Conf. Information Technology, 2008
5 Kim, G.H., Spafford, E.H.: ‘The design and implementation of tripwire:
a file system integrity checker’. In: Proc. Second ACM Conf. Computer
and Communications Security, ACM, 1994, pp. 18-29
6 Rocke, AJ., DeMara, RF.. ‘CONFIDANT: Collaborative object
notification framework for insider defense using autonomous network
transactions’, Autonom. Agents Multi-Agent Syst., 2006, 12, (1), pp. 93—-114
7 Zadok, E., Iyer, R., Joukov, N., Sivathanu, G., Wright, C.P.: ‘On
incremental file system development’, ACM Trans. Storage (TOS),
2006, 2, (2), pp. 161-96
8 Borchardt, M., Maziero, C., Jamhour, E.: ‘An architecture for on-the-fly
file integrity checking’. Dependable Computing, 2003, pp. 117-126
9 Wright, C., Cowan, C., Smalley, S., Morris, J., Kroah-Hartman, G.:
‘Linux security modules: General security support for the Linux
kernel’. In: Proc. 11th USENIX Security Symposium, San Francisco,
CA, 2002, vol. 2, p. 44
10 Schreuders, Z.C., McGill, T., Payne, C.: ‘Empowering end users to
confine their own applications: the results of a usability study
comparing SELinux, AppArmor, and FBAC-LSM’, ACM Trans. Inf.
Syst. Secur. (TISSEC), 2011, 14, (2), p. 19
11 da Silveira Serafim, V., Weber, R.F.: ‘Restraining and repairing file
system damage through file integrity control’, Comput. Secur., 2004,
23, (1), pp. 52-62
12 Patil, S., Kashyap, A., Sivathanu, G., Zadok, E.: ‘I3FS: An in-kernel
integrity checker and intrusion detection file system’. In: Proc. 18th
Annual Large Installation System Administration Conf. (LISA04), 2004
13 Ateniese, G., Burns, R., Curtmola, R., Herring, J., Khan, O., Kissner, L.:
‘Remote data checking using provable data possession’, ACM Trans. Inf.
Syst. Secur. (TISSEC), 2011, 14, (1), p. 12
14 Pennington, A.G., Griffin, J.L., Bucy, J.S., Strunk, J.D., Ganger, G.R.:
‘Storage-based intrusion detection’, ACM Trans. Inf. Syst. Secur.
(TISSEC), 2010, 13, (4), p. 30
15 Wang, X., Yu, H.: ‘How to break MD5 and other hash functions’.
Advances in Cryptology-EUROCRYPT 2005, 2005, pp. 561-561
16 Edwards, A., Jaeger, T., Zhang, X.: ‘Maintaining the correctness of the
Linux security modules framework’. In: Ottawa Linux Symposium,
2002, p. 223
17 Bishop, M., Dilger, M.: ‘Checking for race conditions in file accesses’,
Comput. Syst., 1996, 2, (2), pp. 131-152
18 Garfinkel, T., Rosenblum, M.: ‘A virtual machine introspection based
architecture for intrusion detection’. In: Proc. Network and Distributed
Systems Security Symposium, 2003
19 Jiang, X., Wang, X., Xu, D.: ‘Stealthy malware detection and monitoring
through VMM-based out-of-the-box semantic view reconstruction’, ACM
Trans. Inf. Syst. Secur. (TISSEC), 2010, 13, (2), p. 12
20 Jin, H., Xiang, G., Zou, D., Zhao, F., Li, M, Yu, C.. ‘A
guest-transparent file integrity monitoring method in virtualization
environment’, Comput. Math. Appl., 2010, 60, (2), pp. 256-266

131
© The Institution of Engineering and Technology 2014

http://mostwiedzy.pl

	1 Introduction
	2 Background and related work
	3 ICAR protection model
	4 System implementation
	5 Evaluation and performance
	6 Conclusions and future work
	7 Acknowledgments
	8 References

