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Separability in terms of a single entanglement witness
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The separability problem is formulated in terms of a characterization of a single entanglement witness. More
specifically, we show that any (in general multipartite) state � is separable if and only if a specially constructed
entanglement witness W� is weakly optimal, i.e., its expectation value vanishes on at least one product vector.
Interestingly, the witness can always be chosen to be decomposable. Our result changes the conceptual aspect of
the separability problem and raises some questions about the properties of positive maps.
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Introduction. One of the fundamental problems in quantum
information theory concerns detection and characterization
of entanglement. In many instances, questions concerning
detection can be successfully addressed via the theory of
positive maps. There, separability (i.e., the absence of entan-
glement) of � ∈ B(HA ⊗ HB) is equivalent to the statement
that for all positive maps � acting on B(HA), the operator
σ = [� ⊗ id](�), with id denoting the identity map acting on
B(HB), is positive [1,2]. Via Jamiołkowski’s isomorphism [3],
the latter can be reformulated in terms of physical (Hermitian)
operators instead of positive maps [2]. Precisely, the state � is
separable if and only if the following non-negativity condition

〈W 〉� := Tr(W�) � 0 (1)

is satisfied for every Hermitian operator W ∈ B(HA ⊗ HB)
such that (a) 〈α,β|W |α,β〉 � 0 for all product vectors |α,β〉 ≡
|α〉 ⊗ |β〉 ∈ HA ⊗ HB , and (b) there is an entangled state σ ∈
B(HA ⊗ HB) for which 〈W 〉σ < 0.

The importance of this formulation was first recognized
by Terhal [4] (see also Ref. [5]), who coined the term
entanglement witness for these operators. Also, Terhal pointed
out the possibility of experimental entanglement tests via
verification of the condition (1) in a laboratory. Since then
entanglement witnesses have become one of the most popular
tools for entanglement detection, as they allow to identify
entanglement without otherwise difficult to avoid complete
state tomography [6] (for nonlinear and other methods of
entanglement detection see, e.g., Ref. [7] and also the recent re-
views [8,9]). Owing to this, entanglement witnesses have been
a subject of rigorous studies leading to a better understanding
of their properties and numerous methods of construction
(see, e.g., Refs. [8–11]). More importantly, their impressive
experimental implementations have been performed [12].

Despite all the progress, practical characterization of the set
of entanglement witnesses, which would provide precise op-
timization parameters, is still eluding the researches. Usually,
the parameters can only be estimated with limited accuracy
[5,10] and the entanglement witnesses have a structure which
is not easy to handle.

As part of the effort to improve on this unsatisfactory
situation, in this Rapid Communication we simplify the
conceptual aspect of the separability problem at a cost of

the size of the underlying Hilbert space. We consider a
given decomposition of a dA ⊗ dB state � ∈ B(HA ⊗ HB) and
construct an associated entanglement witness W� acting on a
larger product Hilbert space H′ ⊗ H′ with dimH′ � (dAdB)4.
Weak optimality of this witness is then proven to be equivalent
to the separability of �, where we call a witness weakly optimal
if its expectation value vanishes on at least one product vector,
or, in other words, it is tangent to the set of separable states
(see also Refs. [10,13] for the notion of optimality of the
entanglement witnesses).

Our approach has the following conceptual advantage:
Since the witness W� can be explicitly calculated, all the
elements of the possible subsequent tests have well-defined
and clear structures. In particular, the arbitrary multipartite
separability problem is here mapped into the analysis of a
single bipartite entanglement witness (see Fig. 1). Moreover,
our formulation provokes some interesting questions about
the structure of the set of the entanglement witnesses and the
corresponding maps derived from a given quantum state.

In this context, it is worth noticing that the question of strict
positivity of a single entanglement witness on separable states
has an algorithmic solution in terms of the so-called Henkel
forms. The underlying algorithm was constructed more than
three decades ago by Jamiołkowski [14] (see also Ref. [15]).
Even though it is not of practical use here, it is still conceptually
interesting. In particular, this algorithm can decide the witness’
weak optimality in a finite, a priori known number of steps.

Construction and the main result. Our state witness W� is
constructed from the biconcurrence matrix [16], two forms
reflecting its transformation properties and an additional
projection. We begin the construction with a decomposition of
� in terms of subnormalized vectors, so that � = ∑

i |�i〉〈�i |
(eigendecomposition is usually the most obvious although by
no means necessary choice). The decomposition defines the
corresponding biconcurrence matrix B = B(�) [16], whose
elements can most easily be expressed as [17]

Bmμ,nν = 〈
�m

AB

∣∣〈�μ

A′B ′
∣∣P asym

AA′ ⊗ P
asym
BB ′

∣∣�n
AB

〉∣∣�ν
A′B ′

〉
, (2)

with P
asym
XX′ being a projector onto the antisymmetric subspace

of the Hilbert space HX ⊗ HX′ (X = A,B).
The operator B acts on a product Hilbert space H ⊗ H

with the dimension of H depending on the amount of vectors
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FIG. 1. The separability problem originally expressed in terms
of infinitely many entanglement witnesses (left) is here proved to be
equivalent to weak optimality of a single entanglement witness in a
larger Hilbert space (right).

|�i〉 in the above decomposition of �. When one begins with
the eigendecomposition of �, then dimH = dAdB , which is
the maximal number of eigenvectors of �. However, in order
to allow for a separable decomposition (all vectors |�i〉 are
product) whenever it exists, one needs dimH = (dAdB)2 ≡ N

(recall that a separable decomposition of � may require up
to N vectors). Consequently, from now on we will regard
B as an operator acting on the extended space H ⊗ H with
dimH = N . One then notices that B is positive and symmetric
with respect to the transposition of indices m and μ, as well as
n and ν. More importantly, denoting by Pcl = ∑

i |i,i〉〈i,i| the
classically correlated projector acting on H ⊗ H, it follows
from Ref. [16] that B is related to separability of � via the
following theorem.

Theorem 1. The state � ∈ B(HA ⊗ HB) is separable if and
only if the function

B(�) = inf
U

Tr(PclU ⊗ UBU † ⊗ U †), (3)

called biconcurrence function, vanishes. The infimum is taken
over all unitary matrices U acting on H.

As each unitary matrix in the above represents an orthonor-
mal basis, we can straightforwardly rewrite (3) as

B(�) = inf
{|xi 〉}

N∑
i=1

〈xi,xi |B|xi,xi〉 = 0, (4)

where the infimum is taken over all orthonormal bases {|xi〉}
of H. Consequently, Theorem 1 can be alternatively phrased
as follows.

Theorem 2. A bipartite state � is separable if and only if
there exists a set of vectors |xi〉, i = 1 . . . N , for which the
following three forms vanish at the same time: (i) zero form
condition,

G0 =
N∑

i=1

〈xi,xi |B|xi,xi〉 = 0; (5)

(ii) orthogonality condition for the vectors |xi〉,

G1 =
N∑

i,j=1
i �=j

|〈xi |xj 〉|2 = 0; (6)

(iii) normalization condition for the basis {|xi〉},

G2 =
N∑

i=1

‖xi‖4 − 1

N

(
N∑

i=1

‖xi‖2

)2

= 0. (7)

Since in general all G0,G1,G2 are non-negative, these three
conditions can be replaced by a single one: αG0 + βG1 +
γG2 = 0 for any fixed α,β,γ > 0. In other words, a state � is
entangled if and only if the inequality

αG0 + βG1 + γG2 > 0 (8)

holds for any set of vectors {|xi〉} and triple α,β,γ > 0.
To convert this into the property (a) of an entanglement

witness (see above), we need to extend the Hilbert space once
more. Recall that the operator B is defined on H ⊗ H. We
extend each H to H′ = H ⊗ H̃, where H̃ is an auxiliary space
isomorphic to H. One then notices that any vector |u〉 ∈ H ⊗
H̃ can be written in the form

|u〉 =
N∑

i=1

|xi,i〉, (9)

where {|xi〉} is a set of arbitrary vectors from H, while {|i〉} the
standard basis in H̃. This observation allows us to substitute
single vectors in the extended space for the sets of vectors in
the conditions (5)–(7). To this end, let us introduce the swap
operator V = ∑

ij |i〉〈j | ⊗ |j 〉〈i| that, together with Pcl (see

above for the definition), will act on H̃ ⊗ H̃. For the sake of
clarity, we mark this action by a tilde on top of the relevant
operator.

With this notation, we can rewrite the necessary and
sufficient condition for entanglement (8) in terms of a degree-
four form A as

B(�) = min
|u〉∈H⊗H̃

〈u,u|A|u,u〉 > 0. (10)

The minimum is taken over all vectors |u〉 ∈ H ⊗ H̃, while
the operator A acts on (H ⊗ H̃) ⊗ (H ⊗ H̃) and reads

A = αB ⊗ P̃cl + βI ⊗ (Ṽ − P̃cl) + γ I ⊗ (P̃cl − Ĩ /N )

= αA0 + βA1 + γA2. (11)

The parameters α,β,γ > 0 here can be chosen at will, and this
freedom may be utilized for, e.g., optimization of the numerical
separability tests based on condition (10).

Each of the three terms contributing to the operator A

has non-negative expectation values on symmetric product
vectors |u,u〉. Neither the whole operator nor any of its
parts is, however, a witness. On the one hand, the operator
A0 is positive and clearly weakens the witness obtained
using our method (when the constructed witness is so weak
that it is not even weakly optimal, then the corresponding
state � is entangled). On the other hand, the operators A1

and A2 do not represent entanglement witnesses since they
have negative expectation values on some product vectors
|u,v〉 with |u〉 �= |v〉. One can, nevertheless, remove this
disadvantage without affecting the expectation values on
symmetric product vectors |u,u〉 by adding to A a projection on
the antisymmetric subspace P asym = (1/2)(I ⊗ Ĩ − V ⊗ Ṽ )
with large enough weight. Moreover, without affecting the
expectation values 〈u,u|A|u,u〉 in (10), it is possible to
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substitute Y = P symAP sym for the original operator A. When
one has done the latter, then the following lemma gives a
straightforward method to calculate a weight with which P asym

has to be added to an operator A1 or A2 to guarantee its
conversion into an entanglement witness.

Lemma 3. Let X be a Hermitian operator acting on a
product Hilbert space H ⊗ H such that X = P symXP sym

and 〈u,u|X|u,u〉 � 0 for any |u〉 ∈ H. Moreover, let XC =
X + CP asym, where P asym projects onto the antisymmetric
subspace ofH ⊗ H and C is a real constant. Then the following
implications are true: (i) If C � ‖X‖∞, then 〈u,v|XC |u,v〉 �
0 holds for any pair of vectors |u〉,|v〉 ∈ H, and (ii) if
C � 2‖X‖∞, then for any pair of vectors |u〉,|v〉 ∈ H, there
exists |g〉 ∈ H such that

〈u,v|XC |u,v〉 � 〈g,g|XC |g,g〉
� inf

|u〉∈H
〈u,u|X|u,u〉 (=: X ). (12)

Proof. Taking two arbitrary normalized vectors |u〉,|v〉 ∈
H, the symmetry X = P symXP sym implies that

〈u,v|X|u,v〉 = 〈�|X|�〉, (13)

where |�〉 := (|u,v〉 + |v,u〉)/2. Up to an unimportant global
phase factor, the vector |v〉 can be decomposed as |v〉 =
a|u〉 + b|u⊥〉 with a,b being two non-negative numbers such
that a2 + b2 = 1 and |u⊥〉 denoting a vector orthogonal to
|u〉. Consequently, |�〉 = a|u〉|u〉 + b(|u〉|u⊥〉 + |u⊥〉|u〉)/2
and ‖�‖2 = a2 + b2/2. Finally, it is fairly easy to convince
oneself that the Schmidt decomposition of |�〉 reads |�〉 =
x|e,e〉 + y|f,f 〉, where |e〉 = [1/

√
2(1 + a)][(1 + a)|u〉 +

b|u⊥〉] and |f 〉 = [i/
√

2(1 − a)][(1 − a)|u〉 − b|u⊥〉] are or-
thonormal vectors, while x = (1 + a)/2 and y = (1 − a)/2.
All this allows us to write that

〈u,v|X|u,v〉 = 〈�|X|�〉
= x2〈e,e|X|e,e〉 + y2〈f,f |X|f,f 〉

+ 2xy Re(〈e,e|X|f,f 〉)
� x2〈e,e|X|e,e〉 + y2〈f,f |X|f,f 〉

− 2xy|〈e,e|X|f,f 〉|
� x2〈e,e|X|e,e〉 + y2〈f,f |X|f,f 〉 − 2xyC

� − 1
2 (1 − a2)C = − 1

2 (1 − |〈u|v〉|2)C

= −C〈u,v|P asym|u,v〉, (14)

where the first inequality follows from the fact that Re z �
|z| holds for any z ∈ C, while the second and the third
ones from the assumptions that, respectively, C � ‖X‖∞ and
〈u,u|X|u,u〉 � 0 for any |u〉.

Comparison of the first and the last expression in (14) imme-
diately gives 〈u,v|X + CP asym|u,v〉 � 0 for all |u〉,|v〉 ∈ H
and C � ‖X‖∞, proving (i).

In order to prove (ii), we can exploit the second in-
equality in (14). Its right-hand side does not exceed (x2 +
y2)〈ẽ,ẽ|X|ẽ,ẽ〉 − 2xyC, where |ẽ〉 = |e〉 if 〈e,e|X|e,e〉 �
〈f,f |X|f,f 〉, and |ẽ〉 = |f 〉 otherwise. Consequently,

〈u,v|X|u,v〉 � (x2 + y2)〈ẽ,ẽ|X|ẽ,ẽ〉 − 2xyC (15)

which can be rewritten as

〈u,v|X|u,v〉 + 4xyC � (x2 + y2)〈ẽ,ẽ|X|ẽ,ẽ〉 + 2xyC. (16)

Utilizing further the fact that C � 〈ẽ,ẽ|X|ẽ,ẽ〉 on the right-
hand side of (16), we arrive at

〈u,v|X|u,v〉 + 4xyC � (x + y)2〈ẽ,ẽ|X|ẽ,ẽ〉, (17)

which, due to the facts that x + y = 1 and 4xy =
2〈u,v|P asym|u,v〉, simplifies to

〈u,v|X + 2CP asym|u,v〉 � 〈ẽ,ẽ|X|ẽ,ẽ〉. (18)

After replacing 2C by C and using the assumption that C �
2‖X‖∞, this finally gives (12), concluding the proof. �

Let us notice that the property (ii) implies in particular
that XC := inf|u〉,|v〉〈u,v|XC |u,v〉 = X . In other words, if we
choose a sufficiently large C, then the expectation value of XC

in a separable state always upper bounds X .
Our matrix Y satisfies the assumptions of the lemma.

Consequently YC = Y + CP asym (C � 2‖Y‖∞) is a good
candidate for an entanglement witness. In fact, it is a witness,
since it has at least one negative eigenvalue. In this way we
have arrived at the main result of the Rapid Communication.

Theorem 4. A bipartite state � is separable if and only if
its corresponding entanglement witness W� = YC with C >

‖Y‖∞ is weakly optimal. Moreover, if C � 2‖Y‖∞, then the
witness satisfies in addition the condition (12), guaranteeing
that 〈u,v|W�|u,v〉 � B(�) for all |u〉, |v〉.

Proof. First, (i) of Lemma 3 guarantees that for any C �
‖Y‖∞, W� is an entanglement witness. Then, it follows from
the estimation (14) that if C > ‖Y‖∞, 〈u,v|W�|u,v〉 > 0 for
all |u〉 �= |v〉, meaning that the witness W� = YC can be tangent
to the set of separable states only on the symmetric product
vectors |u,u〉. This, in view of Theorem 2 and the discussion
that follows, means that the state � is separable if and only if
the corresponding witness W� is weakly optimal. It should be
noticed that if W� is weakly optimal for some C > ‖Y‖∞ then
it is weakly optimal for any such C. To prove the second part
of the theorem one combines (ii) of Lemma 3 and (10). �

A simple corollary to this theorem provides a direct link
between separable states from B(HA ⊗ HB) and weakly opti-
mal entanglement witnesses acting onH′ ⊗ H′ ∼= CN2 ⊗ CN2

with N = (dAdB)2, namely:
Corollary 5. Every separable state with a pure state product

decomposition of length N generates a corresponding weakly
optimal entanglement witness from B(CN2 ⊗ CN2

).
Clearly, the strongest entanglement witnesses constructed

in this way are those for A0 = 0. Even then, however, the
witness construction based on Lemma 3, although universal,
does not have to produce the most interesting witnesses. To
illustrate this point, we consider the choice β = γ = 1 and put
A0 = 0. The resulting operator (11) is then A12 = I ⊗ Ṽ −
(1/N )I ⊗ Ĩ , while its symmetrization reads Y = (1/2)[I ⊗
Ṽ + V ⊗ Ĩ − (1/N )(I ⊗ Ĩ + V ⊗ Ṽ )]. With a little bit of
work, one can easily check that ‖Y‖∞ = (N + 1)/N . Accord-
ing to Lemma 3, one then needs to add [(N + 1)/N]P asym to Y ,
in order to secure its conversion into an entanglement witness
W sym. Apparently, this is quite unnecessary. Knowing that
for any operator X ∈ B(Cn), ‖X‖Tr � √

n ‖X‖HS (‖·‖Tr and
‖·‖HS stand for, respectively, the trace and the Hilbert-Schmidt
norm), one can easily show that without any symmetrization,
it is enough to add (2/N )P asym to A12 in order to convert it
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into a witness operator W = I ⊗ Ṽ − (1/N)V ⊗ Ṽ . It follows
that W belongs to the class of the so-called decomposable
witnesses (see Ref. [10]). Witnesses as W sym and W may still
have zero expectation values on some product vectors |uv〉
with |u〉 �= |v〉. For that, they do not make any good ground for
entanglement identification in �. To remedy this disadvantage,
it is, however, enough to add P asym with any positive weight to
these witnesses (see the comment after Theorem 4). While this
will not change their expectation values on symmetric product
vectors |uu〉, the new witnesses (let us denote them by W

sym
+

and W+) will become strictly positive on all products |uv〉 with
|u〉 �= |v〉. This is enough to guarantee that after the addition of
the contribution from A0, the resulting witness will be weakly
optimal if and only if the state �, from which A0 (via B) is
derived, is separable [18].

Our method of linking separability of a bipartite state to
weak optimality of a single entanglement witness readily
generalizes for the states shared by many parties. In the latter
case, however, different aspects of separability are described
by different matrices B [19]. Thus, one will end up with
different corresponding operators A0, depending on which
aspect of multipartite entanglement (separability) one would
like to test. Nevertheless, the design and structure of the
state-independent contributions to our witness (A1 and A2)
as well as condition (10), together with (11), will be exactly
as in the bipartite case, irrespectively of the number of parties
sharing the tested state �. Consequently, the design and the
properties of W� for a multipartite � will be exactly the same
as in the bipartite case.

Connection to the theory of positive maps. Via the
Jamiołkowski isomorphism, the relation between bipartite
states and their “state witnesses” directly translates into a

relation between bipartite states and positive but not com-
pletely positive maps. In particular, it is easy to see that in the
isomorphism, operators, which are not weakly optimal, are
mapped onto fully mixing maps. These are the maps which
transform any state into a positive matrix of full rank. We then
have another immediate corollary to Theorem 4.

Corollary 6. A bipartite state � is entangled if and only
if a positive map �� (it can be chosen to be decomposable)
corresponding through the Jamiołkowski isomorphism to the
witness W� is fully mixing.

Indeed, the choice of parameters (β = γ ) produces decom-
posable witnesses and thus decomposable maps.

Conclusion. The separability problem is known to be
computationally hard [20]. Nevertheless, analysis of the
properties of witnesses W� (and maps ��) should be at least in
some cases relatively straightforward. One can then hope that
our approach not only sheds light on the conceptual aspect of
the separability problem, but also may become a starting point
for the development of more efficient numerical separability
tests. Finally, allowing for β �= γ in formula (11) may
lead to nondecomposable witnesses and nondecomposable
maps. This in turn may lead to some questions about the
nature of these witnesses, their possible relation to potential
bound entanglement in �, or their ability to reveal different
geometrical properties of the boundary of the set of separable
states. We leave these questions for further research.
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and M. Piani for fruitful discussions. This work is supported
by Polish Ministry of Science and Education under Grant No.
1 P03B 095 29 and EU project SCALA FP6-2004-IST No.
015714.
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