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4Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 80-952 Gdańsk, Poland

(Received 15 February 2013; published 7 June 2013)

We study the evolution of quantum correlations, quantified by the geometric discord, of two excitonic quantum-
dot qubits under the influence of the phonon environment. We show that the decay of these correlations differs
substantially from the decay of entanglement. Instead of displaying sudden-death-type behavior, the geometric
discord shows a tendency to undergo transitions between different types of decay, is sensitive to nonlocal phase
factors, and may already be enhanced by weak environment-mediated interactions. Hence, two-qubit quantum
correlations are more robust under decoherence processes, while showing a richer and more complex spectrum
of behavior under unitary and nonunitary evolution.
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I. INTRODUCTION

The study of quantum correlations in open quantum systems
has, for a long time, been limited to the study of entanglement
due to the fact that straightforward methods of calculating
the amount of correlations in a mixed two-qubit system
have only been available for some entanglement measures,
such as the concurrence [1,2] or negativity [3,4]. Although
entanglement itself is a very important resource for a number
of applications [5], including quantum computation, quantum
cryptography, and teleportation, separability (the lack of
entanglement) does not automatically exclude the presence
of quantum correlations [6]. This is, in particular, the reason
why quantum computation models relying on mixed, separable
(not entangled) states [7–9] are possible.

The quantum discord [10,11] is a measure of quantum
correlations (see, however, Refs. [11,12] for Holevo-type and
thermodynamic-based measures) which captures correlations
beyond entanglement; it is defined as the difference of two
classically equivalent formulas for mutual information and
is non-negative. Due to the null volume of the set of zero-
discord states [13], discord measures are not expected to
undergo sudden death, which is characteristic for entanglement
evolutions [14–16]. The geometric measure of the discord
describes the amount of correlations in a quantum system by
finding the minimal Hilbert-Schmidt distance to the set of
zero-discord states [17]. Recently, a lower [17] and an upper
[18] bound on the geometric discord which can be calculated
from a two-qubit density matrix have been found, which
substantially simplifies the problem of studying the evolution
of the quantum discord and opens the path for a qualitative and
quantitative description of the decay of quantum correlations
in realistic open quantum systems.

In this paper we study the evolution of the lower and upper
bounds of the geometric discord of two exciton quantum-dot
(QD) qubits interacting with an open phonon environment
in order to capture the physical aspects of decoherence
effects on quantum correlations. The interactions present in
the system and the resulting dynamics are well understood.
The experimentally observed evolution on picosecond time
scales [19,20] can be described by pure dephasing within

the independent boson model [20,21]. Super-Ohmic phonon
spectral densities [22,23] (resulting from the actual form
of the carrier-phonon coupling and the phonon density of
states [24]) are responsible for characteristic features of the
dephasing, which is nonexponential and always only partial.
Furthermore, a finite distance between the QDs leads to a
time-delayed interference of phonon wave packets traveling
from the two QDs, which induces an environment-mediated
interaction between the dots (and a small enhancement of
the density matrix coherences) in addition to the exciton-
exciton interaction present in the system. The fact that the
complex evolution of this ensemble can be credibly described
theoretically in combination with experimental accessibility to
a wide range of pure initial states (which are optically excited
on femtosecond time scales) make this system ideal for the
examination of the quantum-information properties of open
quantum systems.

II. THE SYSTEM AND ITS EVOLUTION

The specific system under study consists of two QDs
stacked on top of each other and interacting with a phonon
reservoir. The single-qubit states |0〉 and |1〉 correspond to an
empty QD and an exciton excited in the dot, respectively. The
system is described by the Hamiltonian

H = ε1(|1〉〈1| ⊗ I) + ε2(I ⊗ |1〉〈1|) + �ε(|1〉〈1| ⊗ |1〉〈1|)
+ (|1〉〈1| ⊗ I)

∑
k

f
(1)
k (b†k + b−k)

+ (I ⊗ |1〉〈1|)
∑

k

f
(2)
k (b†k + b−k) +

∑
k

ωkb
†
kbk, (1)

where I is the unit operator, ε1,2 are the transition energies
in the two subsystems, �ε is the biexcitonic shift due to the
interaction between the subsystems, f (1,2)

k are system-reservoir

coupling constants, bk,b
†
k are bosonic operators of the reservoir

modes, and ωk are the corresponding energies (we put h̄ = 1).
Exciton wave functions are modeled by anisotropic Gaus-

sians with the extension l⊥ in the xy plane and lz along z for the
electron and hole in both dots. The coupling constants for the
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deformation potential coupling between confined charges and
longitudinal phonon modes have the form f

(1,2)
k = fke

±ikzd/2,
where d is the distance between the dots and

fk =
√

k

2�V c
(σe − σh)e−l2

z k2
z /4e−l2

e k2
⊥/4,

where V is the normalization volume of the bosonic reservoir,
k⊥,z are momentum components in the xy plane and along the
z axis, σe,h are deformation potential constants for electrons
and holes, c is the speed of longitudinal sound, and � is the
crystal density. In our calculations we put σe = 8 eV, σh =
−1 eV, c = 5.1 nm/ps, � = 5360 kg/m3 (corresponding to
GaAs), l⊥ = 5 nm, and lz = 1 nm. The distance between the
dots is taken to be equal to d = 6 nm unless stated otherwise.

The Hamiltonian (1) can be diagonalized exactly using the
Weyl operator method [24,25], and we find the evolution of
the double-QD subsystem following Ref. [26]. Since local
unitary transformations do not change the amount of quantum
correlations in the system, we can use the density matrix
ρ̃(t) = e−iHLtρ(t)eiHLt , with HL = E1(|1〉〈1| ⊗ I) + E2(I ⊗
|1〉〈1|), where Ei = εi − ∑

k |fk|2/ωk instead of ρ(t) in the
study of the geometric discord. Assuming a separable initial
system-reservoir state with the phonon reservoir at thermal
equilibrium, we find the evolution of the elements of the
density matrix ρ̃(t) by tracing out the phonon degrees of
freedom. These are equal to

[ρ̃(t)]ii = [ρ̃0]ii , [ρ̃(t)]ij = [ρ̃0]ij e
−iAij (t)+Bij (t), (2)

with

A01(t) = A02 =
∑

|gk|2 sin ωkt, (3a)

A03(t) = 4
∑

|gk|2 cos2(kzd/2) sin ωkt − �Et, (3b)

A12(t) = 0, (3c)

A13(t) = A23 = A03 − A01, (3d)

B01(t) = B02 = B13 = B23

=
∑

|gk|2(cos ωkt − 1)(2nk + 1), (3e)

B03(t) = 4
∑

|gk|2 cos2(kzd/2)(cos ωkt − 1)

× (2nk + 1), (3f)

B12(t) = 4B01 − B03, (3g)

where nk is the Bose distribution, gk = fk/ωk, �E = �ε −
2 Re

∑
k ωk|gk|2eikzd , and the indices i,j = 0,1,2,3 corre-

spond to the two-qubit states |00〉, |01〉, |10〉, and |11〉,
respectively. For long times, the factors cos ωkt and sin ωkt be-
come quickly oscillating functions of k, and their contribution
averages to zero. Consequently, the phase-damping factors Bij

decrease from their initial value of zero to a certain asymptotic
value depending on the material parameters, system geometry,
and temperature, while the phase shift factors Aij affect the
system evolution at small times and then average out to zero.
As a result, the off-diagonal elements of the density matrix are
reduced, and the phase information is partly erased.

III. GEOMETRIC QUANTUM DISCORD

Here, we are interested in the symmetric geometric discord
[17], which may also be expressed in the form of a purity
deficit (see Ref. [18]),

DS(ρAB) = min
MA⊗MB

{
Tr

[
ρ2

AB

]− Tr[(MA ⊗ MB)ρAB]
}
. (4)

Specifically, the discord is formulated as a purity (quadratic
Renyi entropy) deficit under global versus product local
(MA ⊗ MB) von Neumann measurements. In the case of two
qubits, the lower bound on the discord is given by [17]

D′
S = 1

4 max(Tr[Kx] − kx, Tr[Ky] − ky), (5)

where kx is the maximum eigenvalue of the matrix Kx =
|x〉〈x| + T T T and ky is the maximum eigenvalue of the
matrix Ky = |y〉〈y| + T T T . Here, |x〉 and |y〉 denote local
Bloch vectors with components xi = Tr[ρAB(σi ⊗ I)] and
yi = Tr[ρAB(I ⊗ σi)], and the elements of the correlation
matrix T are given by Ti,j = Tr[ρAB(σi ⊗ σj )] (stemming
from the standard Bloch representation of a two-qubit density
matrix ρAB). The upper bound is given by [18]

D′′
S = 1

4 min(Tr[Kx] − kx + Tr[Ly] − ly,

Tr[Ky] − ky + Tr[Lx] − lx), (6)

where lx and ly are the maximal eigenvalues of the matrices
Lx = |x〉〈x| + T |k̂y〉〈k̂y |T T and Ly = |y〉〈y| + T T |k̂x〉〈k̂x |T ,
respectively, while |k̂x〉 and |k̂y〉 are the normalized eigenvec-
tors corresponding to the eigenvalue kx of matrix Kx and ky of
matrix Ky . In the case of symmetric two-qubit states, meaning
ρAB = ρBA, no minimization or maximization is needed in
Eqs. (5) and (6).

The upper and lower bounds often coincide, yielding the
true value of the geometric discord. This is specifically the
case for pure states, Bell diagonal states, and states with
vanishing local Bloch vectors, |x〉 = |y〉 = 0 [18]. Hence, it is
straightforward to show that the geometric discord is equal to
1/2 for all maximally entangled two-qubit states [27],

|ψ〉 = √
a|00〉 +

√
beiα|10〉 +

√
beiβ |01〉 − √

aei(α+β)|11〉,
(7)

with 2a + 2b = 1. Furthermore, the discord of the Bell states
(a = 0 or b = 0) under phonon-induced partial pure dephasing
is equal to DS(t) = 2|ρij (t)|2 = 1/2 exp[2Bij (t)], where ij =
12 for a = 0 and 03 for b = 0, and the appropriate forms
of Bij (t) are given by Eqs. (3g) and (3f), which, up to a
normalization, yields the square of the concurrence.

IV. RESULTS

Let us first study the evolution of the mixed X state,

ρ =

⎛
⎜⎜⎜⎝

a 0 0 ag03(t)

0 b bg12(t) 0

0 bg∗
12(t) b 0

ag∗
03(t) 0 0 a

⎞
⎟⎟⎟⎠ , (8)

which is significantly simpler (although hardly accessible
experimentally) but already carries some of the properties of
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FIG. 1. (Color online) Evolution of the X-state geometric discord
at T = 77 K for (a) d = ∞ and (b) d = 6 nm; the solid red line
shows |a − b| = 0.3, the dotted pink line shows |a − b| = 0.15, and
the dashed blue line shows |a − b| = 0.

the discord evolution of a pure initial state with all coher-
ences present. The entanglement of such a state, measured
by the concurrence, is equal to C(t) = max{0,b|g12(t)| −
a,a|g03(t)| − b} and is prone to sudden death. The geo-
metric discord is given by DS(t) = [a|g03(t)| − b|g12(t)|]2 +
(a − b)2 if |a − b| < a|g03(t)| + b|g12(t)| and by DS(t) =
2a2|g03(t)|2 + 2b2|g12(t)|2 if |a − b| > a|g03(t)| + b|g12(t)|
(for long times, if a 
= b). Hence, the discord will not undergo
sudden-death-like behavior, but if a 
= b, it will display a
transition between two types of decay (there is no simple
relation between the transition point and the point of entan-
glement sudden death). The transition point coincides with the
transition point between quantum and classical decoherence
indicated in Ref. [28].

This is illustrated in Fig. 1, where the geometric discord of
state (8), with gij (t) = exp[−iAij (t) + Bij (t)], is plotted as a
function of time for different values of |a − b|. Figure 1(a)
corresponds to infinitely distant dots, for which g12(t) =
g03(t), and the transition which is induced by the smooth
partial pure dephasing process is clearly visible. The time at
which the transition occurs is longer for less correlated states
(for which |a − b| is smaller), which can be easily understood
since the transition condition |a − b| = a|g03(t)| + b|g12(t)|
simplifies in this case to g03(t) = − ln(2|a − b|), while g03(t)
is a nondecreasing function of time for infinitely distant dots.
Hence, the decoherence of every X state is governed by the
same function, but to reach the transition point this function
has to grow more if the state is initially less correlated, which
takes a longer time (while for the fully correlated Bell states,
the transition time is t = 0). In Fig. 1(b), a similar evolution
of the dots separated by the distance d = 6 nm is shown,
which additionally displays an enhancement of the geometric
discord after a finite time. This effect is due to a positive
interference between phonon wave packets traveling from
the two dots. Note that the process is sufficient to induce
quantum correlations in an initially uncorrelated state with
a = b (which remains uncorrelated if d = ∞). The curves
in both plots correspond to 77 K, which leads to strong
phonon-induced decoherence and consequently to a small
amount of coherence left in the system after the pure dephasing
process is complete. This allows for the decoherence process to
reveal all the characteristics of quantum correlation decay since
at appropriately low temperatures the weaker decoherence
would not be enough to cause a transition between the two
types of correlation decay.

 0
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FIG. 2. (Color online) (top) Evolution of the geometric discord
bounds at d = 6 nm for the pure initial state (7) with a = 1/

√
2.

(a) Zero biexcitonic shift, �E = 0, for which the upper and lower
bounds coincide and give the true value of the geometric discord.
Curves are shown for 3, 20, and 77 K. (b) Nonzero biexcitonic shift,
�E = 6 ps−1, at 77 K; the red solid line shows the lower bound,
the blue dashed line is the upper bound, and the pink dotted line
shows �E = 0. (bottom) Lower bound values Di corresponding to
the three eigenvalues of the matrix Kx (the minimum of which yields
the geometric discord lower bound) (c) at different temperatures for
zero biexcitonic shift and (d) at 77 K for �E = 6 ps−1.

The next step is to study the evolution of the lower and
upper geometric discord bounds for an initial state (7) with all
nonzero coherences (a 
= 0 and b 
= 0) under phonon-induced
partial pure dephasing. For simplicity the studied state is
taken with a = b = 1/4 (the local phases α and β do not
change the values of the geometric discord or either of its
bounds). In Fig. 2(a) the evolutions of the geometric discord
are plotted at different temperatures for zero biexcitonic shift
(the upper and lower bounds are equal in this case). The 3 K
curve shows a distinct point where the discord is not smooth,
resembling the evolution of the X state (8), which is absent
at higher temperatures. To understand this, the evolutions of
Di = Tr[Kx] − ki , where ki are the three eigenvalues of the
matrix Kx (the minimum of Di yields the true lower bound of
the geometric discord), for 3 and 77 K are plotted in Fig. 2(c).
At 3 K a crossing of two Di curves is observed which is caused
by the positive interference of phonon wave packets, which is
responsible for the enhancement of the geometric discord for
the X state of Eq. (8).

Figure 2(b) shows the evolution of the lower (red solid
line) and upper (blue dashed line) bounds on the geometric
discord for the same initial state at 77 K when the biexcitonic
shift is nonzero. The biexcitonic shift in the absence of any
decoherence processes causes a coherent oscillation between
the initial, maximally entangled state and the separable state
|ψsep〉 = 1/2(|0〉 + |1〉) ⊗ (|0〉 + |1〉) [reached when �Et =
(2n + 1)π , where n is a natural number]. Under phonon-
induced pure dephasing, the oscillations of entanglement are
damped and display prolonged periods when the entangle-
ment is zero (which is only possible when the damping
process can lead to sudden death of entanglement) and are
otherwise smooth while their amplitude is limited by the
entanglement decay displayed by the zero-biexcitonic-shift
evolution [26]. The oscillations of the geometric discord,

062308-3

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


ROSZAK, MAZUREK, AND HORODECKI PHYSICAL REVIEW A 87, 062308 (2013)

which without decoherence would mimic entanglement os-
cillations, are substantially different. First, the discord does
not display sudden-death-type behavior and approaches states
with �Et = (2n + 1)π smoothly, reaching zero only at t =
(2n + 1)π/�E, if interphonon interference does not induce
extra coherence in the system (at short times and/or long
distances between the dots). This confirms the notion that since
the set of zero-discord (only classically correlated) states has
zero volume, decoherence processes will never lead to the
sudden and permanent vanishing of the quantum discord [13].

Furthermore, the evolution of the quantum discord induced
by the biexcitonic shift leads to the situation where the value
of the geometric discord is greater than the corresponding
zero-biexcitonic-shift value. This can be clearly seen in the
inset of Fig. 2(b), where both the lower and upper bounds
of the geometric discord exceed the zero-biexcitonic-shift
curve (pink dotted line). This behavior is nonmonotonous
and symmetric (for constant decoherence) with respect to
the maximally entangled points given by �Et = 2nπ (for
which the nonzero-biexcitonic-shift and zero-biexcitonic-shift
lines have to coincide). This shows that the dependence of
the discord on quantum phase relations is nontrivial and that
nonlocal phase correlations may lead to an enhancement of
quantum correlations in mixed states depending on the actual
value of the phase factor. The fact that the lower and upper
bounds on the geometric discord are different in this case is in
agreement with predictions made in Ref. [18]. We surmise that
the discontinuity of the upper bound and the sharp features of
the lower bound of the discord are an artifact of the procedure
of their generation from the density matrix, while the actual
curve of the geometric discord is continuous and smooth.
Figure 2(d) shows the evolutions of the lower bound values Di

corresponding to the three eigenvalues of the matrix Kx , the
minimum of which yields the actual lower bound, to illustrate
the origin of the irregular shape of the lower bound of the
geometric discord.

V. CONCLUSION

We have studied the evolution of the geometric discord of a
two-QD qubit system under decoherence caused by the phonon
environment, giving the lower and upper bounds on the discord
where it was impossible to find its true value. We have shown
that the discord does not display sudden-death-type behavior
but reveals a number of characteristic features (which are not
displayed by entanglement) under the influence of phonons
which cause a continuous and smooth partial pure dephasing
process. First, the evolution of the geometric discord often
displays a transition between different types of decay, which
is particularly evident for initial entangled X states and has
also been observed for maximally entangled pure states with
all coherences present. The study of the evolution of the
discord in these pure initial states showed the importance of
nonlocal phase correlations; a shift in the phase can lead to the
enhancement of quantum correlations in a mixed two-qubit
state. Furthermore, the positive interference of phonon wave
packets originating from the two dots (interaction through a
common reservoir), which is weak in the system and cannot
generate entanglement between separable states, does lead
to the appearance of quantum correlations described by the
discord. Hence, the study of the quantum discord in this
realistic scenario shows, among other things, that quantum
correlations are a common occurrence in mixed separable
states.
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