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Abstract 
A surrogate-based method for efficient multi-objective antenna optimization is presented. Our 
technique exploits response surface approximation (RSA) model constructed from sampled low-
fidelity antenna model (here, obtained through coarse-discretization EM simulation). The RSA model 
enables fast determination of the best available trade-offs between conflicting design goals. A low-cost 
RSA model construction is possible through initial reduction of the design space. Optimization of the 
RSA model has been carried out using a multi-objective evolutionary algorithm (MOEA). Additional 
response correction techniques have been subsequently applied to improve selected designs at the 
high-fidelity EM antenna model level. The refined designs constitute the final Pareto set 
representation. The proposed approach has been validated using an ultra-wideband (UWB) monocone 
and a planar Yagi-Uda antenna. 
 
Keywords: Antenna design, EM-driven design, surrogate-based optimization, multi-objective optimization 

1 Introduction 
Design and optimization of contemporary antennas is a challenging and multifaceted task. A realistic 

setup of modern antenna comprises not only the driven element with its feeding circuit but also connectors, 
housing and/or measurement fixtures. The only way to ensure accurate evaluation of a structure in such a 
configuration is through high-fidelity electromagnetic (EM) analysis. For reliability reasons, also the 
antenna design process has to be based on EM simulations. This is a time consuming process, which is 
usually carried out by means of computationally expensive, repetitive parameter sweeps.  

Strict performance requirements for contemporary antennas create the necessity of simultaneous 
account for many (often conflicting) goals including not only the minimization of reflection 
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characteristics within the frequency band of interest, but also reduction of antenna footprint (Jungsuek 
and Sarabandi, 2013), minimization of side-lobe level (Sharaqa and Dib, 2013), cross polarization 
(Afshinmanesh, et al. 2008), or maximization of gain (Cao et al., 2012), to name just a few. 
Simultaneous accounting for many objectives is significantly more challenging than single-objective 
optimization. In particular, if the designer priorities are not clearly defined, multi-objective 
optimization becomes a necessity (Kuwahara, 2005; Yang, et al. 2008). The aim of multi-objective 
optimization is to seek for trade-off solutions between non-commensurable goals forming a so-called 
Pareto optimal set (Deb, 2001). Only if the design preferences can be articulated a priori, the problem 
can be scalarized using, e.g., weighted sum or Chebyshev method (Deb, 2001). This is, however, an 
experience driven process which leads to different Pareto optimal-sets depending on a particular 
scalarization setup (Eichfelder, 2008). 

One of the most popular approaches for generating a Pareto set is to utilize population-based 
metaheuristics with the emphasis on genetic algorithms (GA) (Koulouridis et al., 2007; Ding and 
Wang, 2013) and particle swarm optimizers (PSO) (Jin and Rahmat-Samii, 2010; Afshinmanesh, et al. 
2008). The most important advantage of these methods is the ability to process and outcome the entire 
set of solutions in a single simulation run. Nevertheless, this benefit comes at the expense of 
tremendous cost of thousands or even tens of thousands of objective evaluations (Kuwahara, 2005; 
Afshinmanesh, et al. 2008), which prohibits direct use of population-based metaheuristics together 
with EM simulators as evaluation tools, unless multi CPU resources provided by supercomputers or 
GPU-based simulations together with multiple CAD software licenses are available (Hannien, 2012). 

The difficulty related to high computational cost of EM-simulation-driven optimization may be 
alleviated by incorporation of sensitivity data (Nair and Webb, 2003), however, fast determination of 
derivatives through adjoint sensitivity techniques is not yet widely available in commercial EM 
simulation tools. On the other hand, surrogate based optimization (SBO) techniques including 
manifold mapping (Koziel et al., 2013), shape preserving response prediction (Koziel et al., 2012), or 
space mapping (Bandler et al., 2004), are very promising approaches for solving such expensive EM-
driven design problems. In SBO, direct optimization of computationally expensive antenna model is 
replaced by an iterative correction and re-optimization of its less accurate, yet fast low-fidelity model. 
In case of antennas, the low-fidelity model is usually obtained from coarse-discretization EM 
simulations of the high-fidelity model of a structure of interest. SBO methods proved to be very 
efficient design tools capable of yielding desired solutions at the cost of a few simulations of high-
fidelity antenna model. Moreover, the design cost may be further reduced by incorporation of response 
surface approximation (RSA) models together with SBO techniques. However, most of the SBO 
approaches have so far been applied in the context of single-objective antenna design (Koziel and 
Ogurtsov, 2011). 

In case of multi-objective optimization, especially when the algorithms of choice are population-
based metaheuristics, a direct use of EM simulation tools is prohibitive. A workaround might be to use 
RSA models that replace EM evaluations in the process of seeking for Pareto optimal set. Nonetheless, 
the cost of RSA model setup (specifically acquiring the training data) grows exponentially with a 
number of designable parameters, which becomes impractical for large design spaces or if large 
number of design variables is involved. In practice, feasible construction of RSA model is limited to 
problems with a few parameters. 

In (Koziel and Ogurtsov, 2013), a surrogate-based multi-objective optimization method combining 
coarse-discretization EM simulations and RSA models has been proposed. The technique allows for 
finding a representation of a Pareto optimal set at a low computational cost, however with restriction 
of up to a few designable parameters. The dimensionality issue was partially addressed in (Koziel and 
Ogurtsov, 2013) by the use of structure decomposition. On the other hand, the applicability of the 
approach (Koziel and Ogurtsov, 2013) is limited because decomposition cannot be used for majority 
of antenna structures. 
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In this work, we discuss a simple technique for design space reduction that aims at extending the 
range of applicability of the approach presented in (Koziel and Ogurtsov, 2013). The proposed method 
is based on identifying extreme points of the Pareto optimal set obtained through separate single-
objective optimizations of the antenna structure with respect to individual design goals of interest, one 
at a time. The reduced space is defined by the hypercube determined by these extreme nodes and it is 
considerably (by orders of magnitude volume-wise) smaller than the initial one. This allows for 
feasible construction of the RSA surrogate even for larger number of design variables. Our approach is 
illustrated using two examples: a 3-variable UWB monocone antenna optimized with respect to 
reflection and overall size and 8-variable planar Yagi-Uda antenna, where objectives are minimization 
of reflection and maximization of the antenna gain within the frequency band of interest. 

2 Methodology 
In this section, we describe the proposed multi-objective optimization procedure. In particular, we 

formulate the multi-objective antenna design problem and outline the optimization approach. The 
optimization algorithm is validated in Section 3 using two design examples. 

2.1 Multi-objective antenna design problem 
We denote by Rf(x) a response vector of an accurate high-fidelity model of antenna under 

consideration. Rf may represent an antenna reflection, gain, etc. A vector x represents designable 
parameters, specifically, geometry dimensions.  

Let Fk(x), k = 1, …, Nobj, be a kth design objective. A common objective is minimization of 
antenna reflection within a frequency band of interest; however some geometrical objectives, i.e., 
minimization of the antenna size defined in practically meaningful way (maximal lateral size, overall 
occupied area, or antenna volume) may be also of interest. Objectives related to gain, or radiation 
pattern may be defined in a similar way. 

If Nobj > 1 then any two designs x(1) and x(2) for which Fk(x(1)) < Fk(x(2)) and Fl(x(2)) < Fl(x(1)) for at 
least one pair k ≠ l, are not commensurable, i.e., none is better than the other in the multi-objective 
sense. We define the Pareto dominance relation  ≺ (Deb, 2001) saying that for the two designs x and y, 
we have x ≺ y (x dominates y) if Fk(x) < Fk(y) for all k = 1, …, Nobj. The goal of multi-objective 
optimization if to find a representation of a Pareto optimal set XP of the design space X, such that for 
any x ∈ XP, there is no y ∈ X for which y ≺ x (Deb, 2001). 

2.2 Optimization algorithm 
The high-fidelity model Rf is computationally too expensive to be directly optimized in a multi-

objective sense. In order to speed up the design process, a fast coarse-mesh surrogate model Rcd is utilized. 
The Rcd model is usually 10 to 50 times faster than Rf, which is still too expensive for efficient multi-
objective optimization. Therefore, another auxiliary response surface approximation (RSA) model Rs is 
prepared (here, using kriging interpolation (Simpson et al., 2001)) with the training data set consisting of 
sampled Rcd model data. We use Latin Hypercube Sampling (Beachkofski and Grandhi, 2002) as a design 
of experiments technique. The kriging model Rs is very smooth, fast and easy to optimize. However, the 
cost of acquiring the training data may be very high, particularly if the design space dimension is large. In 
order to make the RSA model setup feasible, it is critically important to perform an initial design space 
reduction. The proposed reduction approach is explained in detail in Section 2.3. 

The main optimization engine used to identify a set of Pareto optimal solution is a multi-objective 
evolutionary algorithm (MOEA) with fitness sharing, mating restrictions and Pareto dominance 
tournament selection (Deb, 2001). MOEA-optimized RSA model Rs becomes the initial 
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approximation of the Pareto set. In the next step, K designs selected from that initial set, i.e., xs
(k), k = 

1, …, K, are refined using surrogate-based optimization to find a Pareto front representation at the 
high-fidelity EM model level. Without loss of generality, we consider here two design objectives F1 
and F2. The chosen xs

(k) solutions are refined using output space mapping (OSM) algorithm of the 
following form (Koziel et al., 2008): 

 
( )( . )

2 2

( . 1) ( . ) ( . )
1

, ( ) ( )
arg min ( ) [ ( ) ( )]

k i
s

k i k i k i
f s f s s sF F

F+

≤
= + −

x x x
x R x R x R x           (1) 

 
The goal of design space refinement is to minimize F1 for each design xf

(k) without altering 
objective F2. The correction of surrogate model Rs using the OSM term Rf(xs

(k.i)) – Rs(xs
(k.i)) (here, 

xf
(k.0) = xs

(k)) ensures that it coincides with Rf at the beginning of each iteration. Usually only 2 to 3 
iterations of (1) are required to find desired high-fidelity model design xf

(k). The OSM procedure is 
repeated for all K chosen samples, resulting in the Pareto set composed of refined high-fidelity 
solutions. The block diagram of the design flow is shown in Fig. 1. 

It should be stressed out that the high-fidelity model Rf is not evaluated until the design refinement 
stage. One should also emphasize that the cost of finding the Pareto optimal set composed of high-fidelity 
models is only about three evaluations of the high-fidelity model per design. The construction of a kriging 
interpolation model is performed using a DACE toolbox (Lophaven et al., 2002). More detailed 
explanations of antenna optimization using MOEA can be found in (Koziel and Ogurtsov, 2013). 

2.3 Design space reduction 
In design problems related to modern antennas, the initial ranges for geometry parameters are usually 

rather wide to ensure that the optimum design (or, in case of multi-objective optimization, the Pareto 
optimal set) resides within the prescribed frontiers. Generation of the RSA model in such a large design 
space especially when multi-parameter designs are considered is virtually impractical. Therefore, the 
initial solution space reduction is crucial for successful RSA-driven antenna optimization. 

The Pareto optimal set usually resides in a very small fraction of the initial design space. 
Moreover, in the context of multi-objective antenna optimization only fragment of the Pareto optimal 
set representing the designs with reflection coefficient |S11| ≤ –10 dB within the frequency band of 
interest is considered important. The illustration example of the Pareto optimal set in the 3-
dimensional solution space is shown in Fig. 2. 
 

 
Figure 1: The design flow of the proposed algorithm. 

START

Reduce design space

Refine selected designs
using SBO

END

Acquire  dataRcd

Construct kriging model Rs

Optimize  using MOEARs
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(a)         (b) 

Figure 2: (a) Visualization of the Pareto optimal set (○) in 3-dimensional solution space. The portion of the 
design space that contains the part of the Pareto set we are interested in (red cuboid, where F1 ≤ –10) is only a 
small fraction of the initial space. (b) the Pareto set of interest (□) versus the entire design space mapped to the 

feature space (×). 
 
In the proposed approach, boundaries of the solution space are reduced using the following 

procedure. Let l and u be the initially defined lower/upper bounds for the design parameters. Consider 
 

( )*( ) argmin ( )k
cd k cdF

≤ ≤
=

l x u
x R x         (2) 

 
where k = 1, …, Nobj, is considered as optimum design of the low-fidelity model obtained with respect 
to kth objective. Vectors xcd

*(k) determine the extreme points of the Pareto optimal set. The bounds of 
the reduced design space are then defined as (see Fig. 2 for conceptual illustration):  l* = min{xcd

*(1), 
…, xcd

*(Nobj)}, u* = min{xcd
*(1), …, xcd

*(Nobj) }. 
In practice, the reduced design space is a very small fraction of the initial one, which makes the 

creation of the RSA model computationally feasible. One should note that no guarantee that the 
refined design space contains the entire Pareto optimal set being of interest is given, however, the 
majority of it is usually accounted for (together with the two aforementioned extreme points). 

3 Case study 
In this section, the proposed design space reduction for RSA-driven multi-objective optimization is 

demonstrated using two design examples: a 3-variable UWB monocone and an 8-variable narrow-
band, planar Yagi-Uda antenna. 

3.1 UWB monocone antenna 
Consider a UWB monocone antenna shown in Fig. 3(a). The structure is feed through a 50 Ω 

coaxial input (Teflon filling, r0 = 0.635 mm). Here, no extra circuitry is used for matching. The design 
specification imposed on the reflection response of the monocone is |S11| ≤ –10 dB within 3.1 to 10.6 
GHz. Design variables are x = [z1 z2 r1]T (sizes in mm), where z1 is the extension of the coax pin, z2 is 
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the length of the cone section, and r1 is the size of the radial line section as shown in Fig. 3(b). The 
ground plane is modeled with infinite lateral extends.  

Both the high-fidelity model of the antenna (~1,000,000 mesh cells, average evaluation time of 4 
min), and the coarse-discretization model Rcd (~19,000 mesh cells, average simulation time of 20 s) 
are simulated in CST Microwave Studio (CST, 2013). The design space is defined by 0 ≤ z1 ≤ 4, 2 ≤ z2 
≤ 15, 4 ≤ r1 ≤ 20, and a linear constraint z1 + z2 ≤ r1 – 0.25. The antenna size defined here is the 
maximal dimension out of vertical and lateral ones: A(x) = max{2r2, z1 + z2 + r2 }, where r2 = (r1

2 – 
(z1 + z2)2)1/2 is the radius of the hemisphere terminating the conical section. Two design objectives are 
considered: (i) minimization of |S11| within the frequency band of interest (objective F1(x)) and (ii) 
reduction of the antenna size (objective F2(x)). 

The initial solution space is defined by the following lower/upper bounds: l = [0 2 4]T and u = [4 
15 20]T. A methodology from Section 2.3 is used for the determination of lower/upper bounds of the 
refined design space: l* = [0 12.4 14]T and u* = [0.4 13.2 19.7]T, resulting in reduction of the design 
space of interest by a factor of 456 (volume-wise). We utilized pattern search (Kolda et al., 2003) as 
single-objective optimization engine. 

The kriging interpolation model is created within the refined design space using only 50 Rcd 
samples obtained using Latin Hypercube Sampling. The average relative error of the Rs model is only 
3.5%. One should emphasize that the initial design space reduction is crucial for the generation of a 
reliable kriging model using such a small number of Rcd samples. Average error of the model 
constructed using the same amount of 50 Rcd samples within initial design space is around 37% which 
is too high for the model to be used in the optimization process. The comparison of the model errors is 
shown in Fig. 4.  

Subsequently, the initial Pareto optimal set has been found by optimizing the surrogate model 
using MOEA. Then, a set of 10 design samples selected from the initial Pareto set has been refined as 
described in Section 2.2. The results indicate that the minimum size of the considered antenna that still 
fulfills the requirements upon reflection is 19.8 mm, while the minimum reflection coefficient is  
–18.65 dB (size is 28.3 mm). Moreover, the minimum size of the antenna, which satisfies 
requirements upon reflection, is over 30% smaller than the structure optimized with respect to |S11|. 
Figure 5 shows the low-fidelity model solutions obtained within the refined design space and the 
Pareto sets of the low- and high-fidelity models.  

The total optimization cost, including two single-objective optimizations (96 evaluations of the 
coarse-mesh Rcd model), construction of the kriging interpolation model within the refined design 
space (50 Rcd evaluations), as well as the refinement step (30 Rf simulations) corresponds to only 41 
evaluations of the high-fidelity model (~3 hours). The aggregated cost is negligible comparing to 
direct multi-objective optimizations, which needs around few thousands Rf model evaluations 
(estimated on the basis of Rs evaluations during MOEA optimization). 

 

       
                                                    (a)                          (b) 

Figure 3: UWB monocone: (a) 3D view; (b) the cut view [20]. 
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Figure 4: Relative error of a kriging interpolation model constructed using 50 LHS samples in the initial design 

space (○) and in the refined design space (□). 

 
Figure 5: UWB monocone antenna: (a) solution space; (b) Pareto optimal set obtained for low- (○) and high-

fidelity (□) model. 

3.2 Planar Yagi-Uda antenna 
The second example is a planar Yagi-Uda antenna shown in Fig. 6, which comprises a driven 

element fed by a microstrip-to-cps transition, a director and a balun (Qian et al., 1998). The input 
impedance is 50 Ω. The substrate is Rogers RT6010 (εr = 10.2, tanδ = 0.0023, h = 0.635 mm). The 
antenna contains eight variables: x = [s1 s2 v1 v2 u1 u2 u3 u4]T. Parameters w1 = 0.6,  w2 = 1.2, w3 = 0.3 
and w4 = 0.3 remain fixed. The design objectives are to minimize the reflection coefficient and 
maximize the mean gain in the 10 to 11 GHz frequency range. Both the high-fidelity model Rf and the 
coarse-mesh model Rcd are simulated in CST Microwave Studio (CST, 2013) with evaluation time of 
18 min (~1,512,000 mesh cells) and 110 s (~86,000 mesh cells), respectively. The initial lower/upper 
bounds are l = [3.5 2.5 8 4 3 4.5 1.5 1]T, and u = [4.5 4.5 10 5.5 4.5 5.5 2.5 2]T. 

Design space reduction resulted in the refined lower/upper bounds of l* = [4.1 3.63 8.11 4.27 3.6 4.68 
2.17 1.51]T, u* = [4.33 4.39 8.9 5.2 3.8 4.85 2.2 1.55]T, which gives 6-orders smaller design space (volume-
wise). The kriging interpolation model has been constructed using 300 Rcd samples. The average error of 
the model prepared in the refined design space is 0.1% for F1 and 4% for F2, whereas the average error of 
the model generated in the initial solution space is 1% for F1 and 20% for F2, making it unusable for multi-
objective optimization. The comparison of the model errors is shown in Fig. 7. 

15 samples selected from the initial Pareto optimal set were refined in only 2 iterations (per design) 
using the methodology of Section 2.2 (see Fig. 8). The obtained results indicate minimum antenna 
reflection of –18.3 dB (5.6 dB average in-band gain), and maximum 6.5 dB mean gain for –10 dB in-
band reflection. 

10 20 30 40 50
0

0.5

1

Samples

Re
la

tiv
e 

Er
ro

r

15 18 21 24 27 30
-20

-16

-12

-8

F2 (Occupied Area) [mm]
(a)

F 1 (m
ax

(|S
11

|))
[d

B]

15 18 21 24 27 30
-20

-16

-12

-8

F2 (Occupied Area) [mm]
(b)

F 1 (m
ax

(|S
11

|))
[d

B]

Low-Cost EM-Simulation-Driven Multi-Objective ... A. Bekasiewicz, S. Koziel and L. Leifsson

796

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

 

 
Figure 6: Geometry of eight-variable, planar Yagi-Uda antenna. 

 
Figure 7: Relative error of the kriging interpolation model constructed using 300 LHS samples in the initial 

design space (○) and in the refined design space (□): (a) objective F2; (b) objective F1. 
 

 
Figure 8: Planar Yagi-Uda antenna: (a) the entire design domain mapped to the feature space; (b) Pareto optimal 

set obtained for the low- (○) and the high-fidelity (□) model. 
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The overall computational cost of the optimization process, including the design space reduction 
(160 Rcd evaluations), generation of 300 Rcd samples for RSA model, and MOEA optimization, 
together with the refinement of the selected samples (~ 34 Rf evaluations) corresponds to about 80 
high-fidelity model simulations. The final optimization cost (~24 hours) is only a fraction of the cost 
of a direct multi-objective optimization being well over few thousands (estimated based on the number 
of Rs evaluations during MOEA-based Pareto set identification). 

4 Conclusions 
In this work, a technique for design space reduction in the context of multi-objective optimization 

of antenna structures using variable-fidelity EM simulations and RSA-based surrogate is presented. A 
fast generation of a reliable RSA model is possible even for larger number of designable parameters of 
the antenna of interest. The proposed method is validated using a UWB monocone, and a planar Yagi-
Uda antenna. The Pareto optimal set is obtained at a cost of a few dozen of high-fidelity EM antenna 
simulations, which is a significant speedup compared to direct multi-objective optimization of the 
high-fidelity antenna model. 

References 
 Afshinmanesh, F., Marandi, A., Shahabadi, M. (2008) Design of a Single-Feed Dual-Band Dual-

Polarized Printed Microstrip Antenna Using a Boolean Particle Swarm Optimization. IEEE Trans. 
Antennas Prop., 56, 1845-1852. 

Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., 
Søndergaard, J. (2004) Space mapping: the state of the art. IEEE Trans. Microwave Theory Tech., 52, 
337-361. 

Beachkofski, B., Grandhi, R. (2002) Improved distributed hypercube sampling. American Institute 
of Aeronautics and Astronautics. Paper AIAA 2002—1274. 

Cao, W., Zhang, B., Liu, A., Yu, T., Guo, D., Wei, Y. (2012) Broadband High-Gain Periodic 
Endfire Antenna by Using I-Shaped Resonator (ISR) Structures. IEEE Antennas Wireless Prop. Lett., 
11, 1470-1473. 

CST Microwave Studio (2013). Computer Simulation Technology AG, Bad Nauheimer Str. 19, D-
64289 Darmstadt, Germany. 

Deb., K. (2001) Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons. 
Ding, D., Wang, G. (2013) Modified Multiobjective Evolutionary Algorithm Based on 

Decomposition for Antenna Design. IEEE Trans. Antennas Prop., 61, 5301-5307. 
Eichfelder, G. (2008) Adaptive Scalarization Methods in Multiobjective Optimization. SIAM 

Journal on Opt., 19, 1694-1718. 
Hannien, I. (2012) Optimization of a Reflector Antenna System. Computer Simulation Technology 

AG whitepaper, 1-4. 
Jin, N., Rahmat-Samii, Y. (2010) Hybrid Real-Binary Particle Swarm Optimization (HPSO) in 

Engineering Electromagnetics. IEEE Trans. Antennas Prop., 58, 3786-3794. 
Jungsuek, O., Sarabandi, K. (2013) A Topology-Based Miniaturization of Circularly Polarized 

Patch Antennas. IEEE Trans. Antennas Prop., 61, 1422-1426. 
Kolda, T.G., Lewis, R.M., Torczon, V. (2003) Optimization by direct search: new perspectives on 

some classical and modern methods. SIAM Review, 45, 385-482. 
Koulouridis, S., Psychoudakis, D., Volakis, J. (2007) Multiobjective Optimal Antenna Design 

Based on Volumetric Material Optimization. IEEE Trans. Antennas Prop., 55, 594-603. 

Low-Cost EM-Simulation-Driven Multi-Objective ... A. Bekasiewicz, S. Koziel and L. Leifsson

798

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

 

Koziel, S., Ogurtsov, S. (2011) Rapid design optimization of antennas using space mapping and 
response surface approximation models. Int. J. RF & Microwave CAE, 21, 611-621. 

Koziel, S., Ogurtsov, S. (2013) Multi-Objective Design of Antennas Using Variable-Fidelity 
Simulations and Surrogate Models. IEEE Trans. Antennas Prop., 61, 5931-5939. 

Koziel, S., Cheng, Q.S., Bandler, J.W. (2008) Space mapping. IEEE Microwave Magazine, 9, 105-
122. 

Koziel, S., Ogurtsov, S., Szczepanski, S. (2012) Rapid antenna design optimization using shape-
preserving response prediction. Bulletin of the Polish Academy of Sciences. Technical Sciences, 60, 
143-149. 

Koziel, S., Leifsson, L., Ogurtsov, S. (2013) Reliable EM-driven microwave design optimization 
using manifold mapping and adjoint sensitivity. Microwave Opt. Tech. Lett., 55, 809-813. 

Kuwahara, Y. (2005) Multiobjective optimization design of Yagi-Uda antenna. IEEE Trans. 
Antennas Prop., 53, 1984-1992. 

Lophaven, S.N., Nielsen, H.B., Søndergaard, J. (2002) DACE: a Matlab kriging toolbox. Technical 
University of Denmark. 

Nair D., Webb, J.P. (2003) Optimization of microwave devices using 3-D finite elements and the 
design sensitivity of the frequency response. IEEE Trans. Magnetics, 39, 1325-1328. 

Qian, Y., Deal, W.R., Kaneda, N., Itoh, T. (1998) Microstrip-fed quasi-Yagi antenna with 
broadband characteristics. Electronics Letters, 34, 2194-2196. 

Sharaqa, A., Dib, N. (2013) Position-only side lobe reduction of a uniformly excited elliptical 
antenna array using evolutionary algorithms. IET Microwaves, Antennas Prop., 7, 452-457. 

Simpson, T.W., Peplinski, J., Koch, P.N., Allen, J.K., (2001) Metamodels for computer-based 
engineering design: survey and recommendations. Engineering with Computers, 17, 129-150. 

Yang, X.-S., Ng, K.-T., Yeung, S.H., Man, K.F. (2008) Jumping Genes Multiobjective 
Optimization Scheme for Planar Monopole Ultrawideband Antenna. IEEE Trans. Antennas Prop., 56, 
3659-3666. 

 
 

Low-Cost EM-Simulation-Driven Multi-Objective ... A. Bekasiewicz, S. Koziel and L. Leifsson

799

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

