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Electric-field-induced magnetic quadrupole moment in the ground state of the relativistic
hydrogenlike atom: Application of the Sturmian expansion of the generalized
Dirac-Coulomb Green function
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We consider a Dirac one-electron atom placed in a weak, static, uniform electric field. We show that, to the
first order in the strength of the perturbing field, the only magnetic multipole moment induced in the ground
state of the atom is the quadrupole one. The tensorial structure of that moment is resolved. Using the Sturmian
expansion of the generalized Dirac-Coulomb Green function [Szmytkowski, J. Phys. B 30, 825 (1997)30,
2747(E) (1997)], we derive a closed-form expression for an £1 — M2 cross-susceptibility of the atom in the

ground state.
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I. INTRODUCTION

Some years ago, we undertook a research program with
the goal to carry out systematic analytical calculations of
various parameters characterizing a response of a relativistic
hydrogenlike atom to external electric and magnetic fields.
The main tool used in these calculations has been a Sturmian
series representation of the Dirac-Coulomb Green function
found by one of us in Ref. [1]. Thus far, our calculations have
been restricted to the case when the atom is in its ground state.
We have succeeded to find expressions for the atomic static
and dynamic electric dipole polarizabilities [1-3], the induced
magnetic anapole moment [4], the dipole magnetizability [5],
the electric and magnetic dipole shielding factors [6,7], and,
most recently, the electric quadrupole moment induced in
the electronic cloud of the atom by a weak, static, uniform
magnetic field [8]. In the present work, which is a natural
extension of the research reported in Ref. [8], we present
calculations of the magnetic quadrupole moment induced in
the ground state of the Dirac one-electron atom by a weak,
time-independent, uniform electric field. We are not aware of
any previous calculations of that quantity.

The plan of the paper is as follows. In Sec. II, we recall
basic relevant facts concerning the ground state of the Dirac
one-electron atom perturbed by a weak, static, uniform electric
field. In Sec. III, an analysis of atomic magnetic multipole
moments is carried out. We show that in an unperturbed
state the only nonvanishing magnetic multipole moment is
the dipole one, while the electric field induces the magnetic
quadrupole moment only. In Sec. IV, first, we resolve a
structure of the induced quadrupole moment tensor, and then
we calculate an atomic E1 — M2 cross-susceptibility.

II. PRELIMINARIES

It has been already stated in the introduction that the system
to be studied in this work is the Dirac one-electron atom
placed in a weak, time-independent, uniform electric field F.
In what follows, we shall be assuming that the atomic nucleus
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is motionless, pointlike and spinless, and that its electric charge
is +Ze. Before the field has been switched on, the atom was in
its ground state. The external electric field is assumed to be so
weak that the probability that the field ionization of the atom
occurs is negligibly small.

The time-independent Dirac equation for the atomic elec-
tron is then
2

[—icﬁro—i—,Bch— +eF-r—E:|\IJ(r)=O,

2.1)

(Ameg)r

where ¢ and § are the standard Dirac matrices. To the lowest
order in the perturbing field, the energy eigenvalue is

E~E® 4+ ED, (2.2)

Here
EQ = mc?y,, (2.3)

with
Ve = VK2 —(aZ)? 2.4)

(a, not to be confused with the Dirac matrix e, is the Sommer-
feld fine-structure constant), is the ground-state energy level of
the isolated atom, whereas the first-order correction to energy

appears to vanish:
ED =0. (2.5)

To the same order in the perturbation, the electronic wave
function is

U(r) =~ vO>r) + v, (2.6)
with the unperturbed component given by
vO(r) = al/qu}(/))z(r) + a,l/zlll(_of/z(r), (2.7)
the coefficients a./, being subjected to the constraint
larol® + la1o® = 1. (2.8)

The two basis states appearing in Eq. (2.7), orthonormal in the
sense of

, 1
/R 2 d’r \p/gw(r)\pg?)(r) = 8w (u,u = ii)’ (2.9)
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POWQ_,(n, 1
( (92t )) (M _ i_>’ 010

0V(rQ . (n,) 2
where Q,,(n,) are the spherical spinors [9] with the quanti-

zation axis chosen along the electric field direction, while the
radial functions are

Z 1 2Zr\"
PO = - |2 () e
ao F(Z)/]"F]) ap
1— 2Zr\"
Q(O)(r) —Vl< r) e Zrlao (2.11b)
ap 'Ry + 1)

It is easy to verify that the radial functions (2.11) are
normalized to unity in the sense of

are given by

v () =

/ T ar (PO + 10V = 1 2.12)

0
Since the perturbation eF - r does not couple the two states
\Ilfl ,2(r), the coefficients a4/, in Eq. (2.7) remain unde-
termined except for being forced to obey the normalization
constraint (2.8). The correction W(V(r) is of the form
1 1
WO(r) = arp W) +asi pWt) (), (2.13)

where the coefficients a.,, are the same as in Eq. (2.7), while
the functions \IJ(i 1/2(r) solve the inhomogeneous equation

[ —icha -V + pmc* — - E(O)} ‘I’ftl)(r)

(47’[60)7‘
—[eF -r— EPTwO(r) (u = :I:%) (2.14)

(with E( = 0) and are subjected to the orthogonality con-
straints

1
PrveuDem =0 (pp =+=). (215
R Iz 1% 2
Explicitly the functions W' 1 /2(r) are given by

= 1
w(r) = — / & GO e - PO (M _ i_>,
R? 2

(2.16)

where G©(r,r’) is the generalized Dirac-Coulomb Green
function associated with the ground-state energy level (2.3)
of the isolated atom.

III. MAGNETIC MULTIPOLE MOMENTS OF THE ATOM
IN THE ELECTRIC FIELD

A. Decomposition of the atomic multipole magnetic moments
into the permanent and the first-order induced components

For a given electric current distribution of density j(r),
spherical components of the magnetic 2”-pole moment tensor

PHYSICAL REVIEW A 89, 012501 (2014)

due to that current are defined as!

4
= ArrtYy(n)V-
My L+1,/2L+1fR3 F e Y ()Y L X (),

3.

where Y. (n,) is the normalized spherical harmonic. (As
various phase conventions for the spherical harmonics are used
in the literature, we emphasize that in this paper we adopt the
Condon-Shortley phase convention; Ref. [11], Chap. 5.) It is
easy to see that Eq. (3.1) can be rewritten as

i 4
Miy=——./ f Arrty DA - j(r),
LM L+iV2L+1 Jw rr Y u(n,) Jj(r)

3.2)

with
A=—irxV. (3.3)

For the purposes of the present paper, the representation of
M m given by Eq. (3.2) is superior to the one in Eq. (3.1).

In the case under consideration when the system is the Dirac
one-electron atom in the static, uniform, and weak electric
field, characterized briefly in the preceding section, the current
density is

J(r) = —ec¥ (ra¥(r), (3.4)
provided the wave function W (r) is normalized to unity:
/ Prvieve) =1. (3.5)
R3
Equations (3.4) and (2.6), together with the orthogonality

constraint (2.15), imply that to the first order in the perturbing
electric field the current j(r) can be approximated as

Jr) = jOw + jOw), (3.6)
where
FOr) = —ec ¥ VN (PawOr) (3.7)
and
JjPr) = —2ecRe [W VN (r)a vV (r)] (3.8)

are the unperturbed and the first-order induced current distri-
butions, respectively. The decomposition (3.6) gives rise to the
analogous splitting

Moy = My + M), (3.9)
of components of the multipole moment into the unperturbed

[ 4x

MO 3 .(0)
d Ly DA -

My = I+1Var 1/ rroYou(n)A - j7(r)

(3.10)

I'There is not a unique definition of the magnetic multipole moments
in the physical literature. In some definitions the factor /47 /(2L + 1)
is omitted, in other the harmonic Y, 5 (n,) is replaced by its complex
conjugate [in Ref. [10], Sec. 16.5, both these deviations from the
definition (3.1) occur simultaneously].

012501-2
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and the first-order induced

i 4
| Brrly DA - jD
L+1V2L+1/Rz rroYim(n)A - jr)

@3.11)

1 _
My =

constituents.

B. Analysis of permanent multipole magnetic moments
of the atom
At first, we shall focus our interest on the unperturbed
moment /\/l(,f))‘,, given in Eq. (3.10). In view of Egs. (3.7) and
(2.7), it can be written as

0 * 0
MO = D> aaeMD, (3.12)
Mo p'=x1/2
with
MO oL [ Am ec/ &*r rtY () A
e L+1V2L+1 " Jps
0 0
(O (n)]. (3.13)

Now, recalling the definition (3.3) and exploiting the fact that
the matrix o is Hermitian, we have

A [ (r)ew )]
= —Ja- AVON] WO + VO e - AV ().
(3.14)

The expression on the right-hand side of the above equation
can be simplified with the aid of Eq. (2.10) and of the identity
[Ref. [9], Eq. (3.2.3)]

0 - AQ,(n) = —(k + D p(n,).
This casts Eq. (3.14) into
A [ v ()]

(3.15)

= —2ir2POM QMR (n)2-1,0(n,)

+ Qtlﬂ(nr)ﬂlu’(nr)]-

Hence, it follows that

ec[(2 Y Q1w
L 1 2L 1 1l LM 1w

Q1 Yo 2)] f dr r' PO QO (),
0

(3.17)

(3.16)

) —
Moy =

where the shorthand bracket notation

(QK;L|YLMQK’M’> = % dan Qiu(nr)YLM(nr)QK’p_’(nr)
4
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and therefore Eq. (3.17) can be rewritten in the form

4 4

MO =
LM, pupe L+1V2L +1

X /OO dr rLP(O)(r)Q(O)(r).

0

ec(Quu|Yem2yy)

(3.21)

In view of Egs. (2.11a) and (2.11b), the radial integral in the
above equation is elementary. In turn, the angular integral can
be evaluated from the general formula

S i)
2L—|—1 Kkl L LMSak’n!

1 ’ 1
k=1 L =1
— (_)/L+1/22 /|KK',| (' |l 2 0 | |_1 2)
2

1 -1
x ('K'_Mz w 2) Ne.Ll),  (322)

3

where (,fl“a o rfu) denotes the Wigner’s 3j coefficient and

~__ |1 for I+ L 41 even
H(I’L’l)—{o for I+ L +1' odd, (3.23)
with
I=|kc+3]—3 (3.24)

and similarly for /. The result is
4
2L +1

(1YL 2_1,0)

1
=3 3L1(\/§5M15M,1/25w,71/2 — 8m08,,1728,1)2

+ 8008, —1/20,0,—172 — \/ESM,715M,71/23,L/,1/2)~
(3.25)
Inserting this into Eq. (3.21), evaluating the radial integral
with the aid of Eqgs. (2.11) and plugging the final expression

for Mf])w e nto the double sum on the right-hand side of
Eq. (3.12) yields

MO =MD, (3.26)
with |
MO = —30n+ Dug(aipl? = la_ipl?),  (3.27a)
V2
M(l(?ztl = iT(Zyl + I)MBail/za;F]/z, (327b)

where up = eh/2m is the Bohr magneton. We have thus

proved that in the ground state of the unperturbed atom the only

nonvanishing magnetic multipole moment is the dipole one; its

spherical components are given by Egs. (3.27a) and (3.27b).
If the coefficients a.,, are parametrized as

aypn = ei(x_d))/z COS(ﬂ/Z), a_ip = ei(X+¢)/2 Sil‘l(ﬁ/Z)

(3.18) O0O<x.¢p<2m,0<0 <m), (3.28)
has been used for the angular integrals. Exploiting the identity  then Eqs. (3.27) become
[Ref. [9], Eq. (3.1.3)]
n -0, (n)=—Q_,,(n,), (3.19) M(l%) = _2y13+ 1,uB cos 7, (3.29a)
it is easy to prove that 2
©) ntl g
==+ . 3.29b
(Q el Yin o) = (e Vi), (3.20) Miz = £ 7= upesin (3-:295)
012501-3
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Switching to the Cartesian components

1

M) = ﬁ(/\/tﬁ‘f{ =MD, (3.302)
i

M) = E(Mﬁ‘?)_l + M), (3.30b)

M = MY, (3.30c)

we arrive at the well-known result that the magnetic dipole
moment vector of the unperturbed atom can be written as

2 1
MO = —%%v, 3.31)
v being the unit vector
v = sin ¥ cos ¢ n, + sin ¥} sing ny + cos ¥ n;. (3.32)

i 4 2 F/ d3r/ d’r
ec
L+13Q2L+1) R3 R3

v -
Moty =

PHYSICAL REVIEW A 89, 012501 (2014)

C. Analysis of the first-order induced multipole
magnetic moments

Next we proceed to the analysis of the first-order induced
magnetic multipole moments. Insertion of Egs. (3.8), (2.7),

and (2.13) into Eq. (3.11) yields /\/l( as the sum
MBi= Y aaeMBye  333)
wopw'==%1/2
where
MOy =M+ MM L (334)
with
') _ 3., L
MLM,MJ,’ = IV +1 ec de rroYiu(n)A
O e w (). (3.35)

A further use of Eq. (2.16) casts Eq. (3.35) into the more
explicit one

To tackle the integral on the right-hand side of Eq. (3.36), we exploit the identity

A [P a0 r )] =

—[e- AlIJ(O)(r)]

rh Y m)A - (8NGO )] Vo)W (). (3.36)
GOr.r)+ ¥V (e - AGO(r. 1), (3.37)

akin to the one in Eq. (3.14), and the following partial-wave expansion of the generalized Dirac-Coulomb Green function:

00 lk|—1/2

GOr,r'

/
k = —oom=—|k|+1/2

(k #0)

With some labor, this yields

L ne)eF Yk +1)
L+130L+n | oeh e

x RENQ1, 1Y Quem ) (Quem | V10— 1,0

i
Mot =
(3.39)

where we define

R = f dr / dr' (0O  POW)r* GO
0

4neo DS 1 &80 )R (1) ()
180 Q)R () ZO ()R ()R (1)

—ig,(rr )szm(nr)sz_m<n;>>  aas)

(
yields
dr(—k + 1)

m (Qlu | YLM Qlcm) (QKm |Y10§2*114'>

V2
=5 8L25k,72(“/§8M18m,71/25u,1/28u’,71/2
- “/E‘SMO(Sm,l/Z(Sy_,l/ZS;L’,I/Z
+ \/58M08m,—1/23p.,71/28p,’,71/2

- ﬁ8M,718m,1/28u,71/28/4’,1/2)- (3.42)

PO
(Q(O)(r/)> (3.40)  Inserting Eq. (3.42) into Eq. (3.39) and combining the result
with Egs. (3.33) and (3.34) yields M(Lll)w in the form
with M(LII)V, = M(l) 812, (3.43)
50 N 50 where
= (r,r") (r,r")
G(O)(V’r/) — gK (++) gK (+-) (3.41)
) 893 () 8(K0?——>(r ) m_ 4 21 2 2
Myg = E(47T€o)cR_2F(|a1/2| —la—ipl"), (3.44a)
being the radial generalized Dirac-Coulomb Green function 1 2 J6
associated with the combined angular momentum and parity M(z )il =+ ——(nep)cR? Fa, 12051/2, (3.44b)
symmetry «. The angular integrals appearing in Eq. (3.39) X
can be taken with the aid of the formula in Eq. (3.22); this M(z )ﬂ (3.44c¢)
012501-4
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In this way, we have shown that the only magnetic 2°-pole
moment induced in the atom by a weak, static, uniform electric
field is the quadrupole (L = 2) one, spherical components
of Mgl,‘),, being given by Eqgs. (3.44a)—(3.44c). A detailed
analysis of the induced magnetic quadrupole moment will be
carried out in the next section.

J

PHYSICAL REVIEW A 89, 012501 (2014)

IV. EVALUATION OF THE FIRST-ORDER INDUCED
MAGNETIC QUADRUPOLE MOMENT

The knowledge of the spherical components of the induced
magnetic quadrupole moment tensor M(zl) enables one to
express that tensor in a coordinate-free form. To achieve this,

we use the fact that the Cartesian components of M(zl) are
defined as

1
My =~ f &r Griry =)V - [rx jO®] .)€ fxy.z) @.1)
]RS
or, equivalently, as
1 . .
My = gi/R; &r@riry —r?5pA - jUr) ) € fxy.z). (4.2)

Making use of Egs. (3.11) and (4.2), and of the explicit forms of the spherical harmonics Y,y(n,) with M =0, £ 1, 2, the
matrix representation of M(zl) in the Cartesian basis, written in terms of the spherical components, is found to be

LM+ ML, + M)
WA, - M)
S, - mg)

M _
M, =

Wi, - M)
MY - [ M) i ) [ @)

S, — )

With the aid of Egs. (3.44a)—(3.44c), this can be simplified to the form

) |€ll/2|2 - |Cl—1/2|2
M = E(4;160)(,~1'e312F 0

. /3 (D (1) Q)]
l\/g(lel + M) Moo
0 -3 Re(ai"/za_l/z)

lai ol — la_1I* —31Im(aj,a-1/2) . 4.4

—3Re(ajpa-12) —3Im(aj,a-1,) —2(laip)* — la—121%)

Plugging here the expressions (3.28) for a4;;, and
combining the result with Eq. (3.32), we see that the
sought coordinate-free representation of M(zl) is

MY = @reg)capiom[20F + Fv) — (v - F)I], (4.5)
where Z is the unit dyadic. The proportionality factor
api-m2 = — R, (4.6)

expressed here in terms of the radial integral RV, is
the electric-dipole-to-magnetic-quadrupole (E1 — M?2)
cross-susceptibility of the atom.

The point concerning the geometric properties of the tensor
M(zl) being now clarified, we proceed to the calculation of
the cross-susceptibility agi— p». This requires the integral
R?!, is evaluated. To accomplish the goal, we use as a tool
the following Sturmian expansion of the radial generalized
Dirac-Coulomb Green function for the ground state of the
atom:

[ee]

~ 1 SO (r)
GO(r,r) = .
P2 V1

x (O SO TO))  (k #-1), (A7)

nekn Kk

[
found by one of us in Ref. [1]. Here

SO (1) = (1 + y)(n, |+ 2y0)In,|!
nyK ZZNn,,K(Nn,K - K)F(|nr| + ZVK)

2Zr\ " 27
y < r> e~ Zrlao |:Lﬁylk)l ( V)
ag " aop

— N, 2Z
e ) (—rﬂ (4.82)
|+ 2y " ap
and
TOG) = (I = yDdn.| + 2y |!
! ZZNn,-K(Nn,K - K)F(|I’l,«| + ZVK)
Ye
9 <2Zr) o~ Zrla [L(ﬁ)@l <ZZr)
ao 4 ap
— Ny« 27
_ K—le(leK) <_r):| (4.8b)
n.|+ 2y ™ ap

[with L@ (p) denoting the generalized Laguerre polynomial

[12]; we define L(fl)(p) = (] are the radial Dirac-Coulomb
Sturmian functions associated with the hydrogenic ground-
state energy level, while

o _ In,| + Ve + Nn,x

n,K J/ + 1 ’ (4'9)
1

012501-5
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with

Nue = £V + v0)? + @Z? = £V 10,12 + 200 |y, + €2 (4.10)

being the “apparent principal quantum number” (notice that it can assume positive as well as negative values); the following sign
convention applies to the definition (4.10): the plus sign should be chosen for n, > 0 and the minus sign for n, < 0; forn, =0
one chooses the plus sign if ¥ < 0 and the minus sign if ¥k > 0. Combining Egs. (4.6), (3.40), and (4.7), we obtain

4 & 1 *©
OE1>M2 = — Z (O)——l/(; dr Vz[Q(O)(r)Sr(S?—z(V) + P(O)(r)T,f?,)_z(r)]

15 n,=—00 lun,,72
* 0 0 0
x [ T LPOesY e+ 00T ] @.10)
0

The two radial integrals appearing in Eq. (4.11) can be taken with the aids of Eqgs. (2.11a), (2.11b), (4.8a), (4.8b), and (4.9), the
integral formula [Ref. [13], Eq. (7.414.11)]

&0 r nr — r DI'(y — 1
/ dx xye_fof‘)(x) = (y+ Dl +a—y) =(-)" r+ DIy —a+ D) (Rey > —1) 4.12)
0 n!'l'(a —y) n'ly —a—n+1)
and the trivial but extremely useful identity
i =vi+3 (4.13)
This yields
oo
/ dr r’[QOM)SY () + POT ()]
0
3
e (a_o> s+ +3) V2(Ny, 2 + DT (| + 72 — 11 = 2) “14)
2Z) T2 =1 —=2) Jaoln, !Ny, 2(Np, —2 +2)L(In,[ + 2y + DTy + 1) '
and

[o.¢]
|l POms e+ 000n L]

0
_ _(ﬂ)zr()/z+y1 +2) (Nu,,2 + D01, | + 2 =71 = 2)
22) T2 = = 1) 2a0ln, "Ny, 2Ny, + DT, [+ 22 + DECyr + 1)
x [(n 42 =i = 24 Ny, 2)2y1 — 1) + 3], (4.15)

Consequently, the cross-susceptibility «g_, pr2 can be written as

o0

aag i+ DG+ +3) 3 P(nl+y2 =0 —2)
Z4 1204y + D@2y + D2 (2 — y1 = 2) In T (In, | +2y2 + 1)
o Mo 2+ 2(n |l +v2 =1 =24+ Ny, )2y — ) +3

Ny, —2 nl+y2—v1— 1+ Ny 2 '

To express a2 in terms of known special functions, in the above series we collect together terms with the same absolute
value of the summation index #,. Proceeding in this way, we obtain

QE1->M2 =
n,=—00

(4.16)

a1 = 20 M2+ 71 +3) = P, +y -7 —2)
El->M2 — —/—
Z* 60(4y1 + DI Qy1 + DI2(ya — 1 = 2) “= n My +y2 — )T (0 + 22+ 1)
x [(2yE +2y1 = 3)(n, + 72— v1) = 311 — D). 4.17)

Now, it is known from the theory of the generalized hypergeometric functions , F, [14,15] that

L1 +a)l(1+a) _ T@l@) (al,az; ) @.18)
pr n\T(n + b) r'(b) b
and
i L1 +a)l(+ @)l +a) _ D@l @)@ <a1,a2,a3. )
= 1), (4.19)
n!l'(n +b)I'(n + by) Cb)T(by) b1,by

n=0

012501-6
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Consequently, with some algebra Eq. (4.17) can be cast in the form

aag 2y, +y1 +3)

UEI>M2 = —1
FIZM2 = 74 604y, + DI 2y1 + DT Q2ys + 1)

Y =2 Y —2, e —
—(71—2)(V2+71)3Fz(y2 i v2 v v2 y1;1>:|-

|:(2)/12 + 2y —3)2F (Vz

—)/1—2,7/2—)/1—2.1>

The , F; function can be eliminated from Eq. (4.20) with the aid of the Gauss identity [Ref. [13], Eq. (9.122.1)]

<a1,a2_ ) IBkb —a —az)
2 Fy )=
I'b—a)l'(b —ay)

b 9
yielding

oe_ag Iy +5)
Z* 60(4y1 + DI 2y + 1)

QEl->M2 =

W=D+ v +3)

[ny +2p -3

2y, + 1 ’
v—y+1,2m+1 (4.20)
[Re(h — a — az) > O], 4.21)
M=Vi—2,»m=—vi—2, =W
F | . 4.22
2( m—p+12m+1 )} (422)

Fey +5re2y, +1

Other equivalent representations of ag— p» can be deduced from Eq. (4.22) using recurrence relations involving contiguous 3 F

functions. For instance, exploiting the identity

LGOI —ai —ay)

a

F a,a,as _ a4
2\ + 1) T T4 — a3 T(b— a)T (b — ay)

3
a —as

ai,a; + 1,a3.
F2< as+1.b ) [Re(b —a; — ap) > 0] (4.23)

(for its derivation, with a; and a, interchanged, see Ref. [4], Appendix D), we arrive at the expression

FEI=M = T 40T (2y)

-2, n-n—-1Lr—y.
><3F2< v—vi+1,2mn+1 ’1>i|'

The 3 F, function appearing in Eq. (4.24) is the same one which
enters the expression for the magnetic-field-induced electric
quadrupole moment given in Ref. [8], Eq. (4.20).

In the nonrelativistic limit one has

c—> 00 c—> 0

y— 1, y» — 2, 4.25)
so that either of Eqs. (4.22) or (4.24) reduces to
c—00 9 aag
OEl>M2 — 574" (4.26)

aag D2y +5) [1 =+ T+ + 2T (s + 1 +3)

nlQy +35I'2y, +1)

(4.24)

(

It has been verified by us that the limit on the right-hand side
of Eq. (4.26) agrees with the expression for the E1 — M2
cross-susceptibility of the one-electron atom in the ground
state obtained within the framework of the Schrodinger-Pauli
approximation.
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