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Thermal self-action of acoustic beam in a molecular gas with excited internal degrees of
molecules’ freedom, is studied. This kind of thermal self-action differs from that in a
Newtonian fluid. Heating or cooling of a medium takes place due to transfer of internal
vibrational energy. Equilibrium and non-equilibrium gases, which may be acoustically
active, are considered. A beam in an acoustically active gas is self-focusing unlike a beam
in a standard viscous gas. The self-action effects relating to wave beams containing shock
fronts, are discussed. Stationary and non-stationary kinds of self-action are considered.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

In a Newtonian fluid, where the sound velocity c enlarges with increasing temperature T, an acoustic beam is defocused,
while in a fluid with negative thermal coefficient d ¼ ð@c=@TÞp=c0 < 0, it is focused (c denotes the infinitely small-signal
sound speed in a fluid, and c0 is its value at the unperturbed pressure and temperature, p0 and T0). The first theoretical results
were reviewed in Ref. [1], and the first experiments confirming the theory, were described in Ref. [2,3]. Considerable
attention was paid to the thermal self-action of quasi-harmonic sound waves because many interesting results obtained
in nonlinear optics have their counterparts in acoustics [4,5]. The comprehensive review by Rudenko and Sapozhnikov [6]
concentrates on the self-action of beams containing shock fronts in media with quadratic and cubic nonlinearities. As usual,
thermal self-action is caused by variation of the background temperature of a fluid due to Newtonian absorption of the wave
energy. The scale of thermal inhomogeneities is much larger than the acoustic wavelength, and they form slowly, with
characteristic time of formation much larger than the wave period.

This study is devoted to the non-Newtonian kind of self-action of sound beams in a gas where internal degrees of freedom
are excited. In contrast to Newtonian fluids, acoustic heating in the thermodynamically excited gases occurs due to transfer
of acoustic energy into that of internal degrees of molecule’s freedom. In the non-equilibrium gas, sound may enhance under
some conditions. The nonlinear effects of sound also may reveal anomalous features. Apart from acoustic cooling, the mean
flow induced in the field of sound, is directed oppositely to the direction of beam propagation. An anomalous behavior of
sound and relative nonlinear phenomena are specific not only in vibrationally excited gases, but in all media, where
thermodynamic equilibrium is disturbed, such as non-isothermal plasma, chemically active fluids, suspensions of micropar-
ticles in a gas, the interstellar gas and upper atmosphere [7–16].
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A number of problems relating to the nonlinear effects and rate processes in gases with internal relaxation, have been
studied previously. The attention was also paid to acoustic waves with discontinuities [17–19]. It was discovered in Ref.
[20], that the nonlinear exchange of energy between sound and the thermal mode may lead to cooling instead of heating
in the non-equilibrium gas, if the standard attenuation is small. The possibility of non-stationary self-focusing of sound
beams in a vibrationally excited molecular gas was discovered by Molevich in Ref. [21], but effects associated with
propagation of the shock wave over it were not considered there.

The method worked out by the author is fruitful in derivation of instantaneous dynamic equations for sound and non-
wave modes accounting for their interaction. It has been applied in studies of streaming and heating in Newtonian fluids,
as well as in studies of nonlinear phenomena of sound in non-equilibrium media like chemically reacting and relaxing gases
[22–24]. In this study, we consider propagation of an axially symmetric sound beam over a relaxing gas in the geometrical
approach. That allows to neglect diffraction. The statement of problem actually consists of two parts, one to describe the
sound field itself, and second to account for variations of temperature in the field of sound and their influence on a sound
beam. The simplified system of equations includes the analogue of the Khokhlov–Zabolotskaya equation supplemented
by the term responsible for the vibrational relaxation, and an equation which describes slow dynamics of the entropy mode.
The last equation was derived by the author in [25]. The mathematical content of further solution is very close to that one
which has been developed by Rudenko et al. in studies of self-action of sound beams in a Newtonian fluid [6].

We consider a gas whose steady but non-equilibrium state is maintained by pumping energy into the vibrational degrees
of freedom by power I (I refers to a unit mass). The relaxation equation for the vibrational energy E per unit mass has the
form:
dE
dt
¼ �E� EeqðTÞ

sR
þ I: ð1Þ
The equilibrium value of the vibrational energy at given temperature T is denoted by EeqðTÞ, and sRðq; TÞ marks the
vibrational relaxation time. The quantity EeqðTÞ equals in the case of a system of harmonic oscillators:
EeqðTÞ ¼
�hX

m expð�hX=kBTÞ � 1ð Þ ; ð2Þ
where m is the mass of a molecule, �hX is the magnitude of the vibrational quantum, kB is the Boltzmann constant. Eq. (2) is
valid over the temperatures, where one can neglect anharmonic effects, i.e., below the characteristic temperatures, which are
fairly high for most molecules [8,10].
2. The governing equations and starting points

The system of equations describing thermal self-action in an axially symmetric flow of a vibrationally relaxing gas, take
the form
@

@s
@p
@x
� dT

c0

@p
@s
� e

c3
0q0

p
@p
@s
� Bp

� �
¼ c0

2
D?p: ð3Þ

@T
@t
� v

q0Cp
D?T ¼ �BT0ðc� 1Þ

c3
0q2

0

hp2i: ð4Þ
Here, x and r are cylindrical coordinates, the x axis coincides with the axis of a beam, c0 ¼
ffiffiffiffiffiffiffi
cRT0
l

q
¼

ffiffiffiffiffiffi
cp0
q0

q
denotes the

infinitely small-signal sound speed in a perfect uniform gas (c is the adiabatic index for high-frequency processes with
frequency x much larger than 1=sR), s ¼ t � x=c0 is the retarded time in the reference frame which moves with the sound
speed c0; p is acoustic pressure, D? is the Laplacian with respect to the radial coordinate, e ¼ ðcþ 1Þ=2 is the parameter of
nonlinearity, the angular brackets denote averaging over fast acoustic oscillations. The quantity B was derived in Ref. [20]:
B ¼ �ðc� 1Þ2T0

2c3
0

Cv

sR
þ E� Eeq

s2
R

@sR

@T
þ q
ðc� 1ÞT

@sR

@q

� �� �
0

: ð5Þ
It is evaluated at unperturbed p0; T0 and Cv ¼ dEeq=dT [26]. Eq. (3) describes an acoustic pressure in a beam which prop-
agates in the positive direction of axis x. In contrast to the well-known Khokhlov–Zabolotskaya–Kuznetsov [KZK] equation
[27], Eq. (3) describes modulation of the wave velocity due to variation in temperature T; it includes also the term respon-
sible for damping (or amplification) of sound different form that in the Newtonian fluids. This term is proportional to B which
may take negative or positive values (if a non-equilibrium medium is acoustically active). Eq. (3) is derived under the same
conditions, as the KZK equation. It is the leading-order equation for acoustic pressure which is imposed be a function of
lx;

ffiffiffiffilp y;
ffiffiffiffilp z; s, where l is a small parameter responsible for a beam’s divergence.

An acoustic source of the thermal mode in Eq. (4) follows from the general expression which was derived by the author
in [25] in the case of periodic sound after averaging it over the sound period. Both Eqs. (3) and (4) are valid for the
high-frequency sound, xsR � 1, and its slow attenuation (or amplification) during a period, jBjc0=x� 1.
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The non-equilibrium excitation is possible in principle due to negative @sR
@T þ

q
ðc�1ÞT

@sR
@q . The relaxation time in the most

important cases may be thought as a function of temperature accordingly to Landau and Teller with some positive constants
~A and ~B; sRðTÞ ¼ ~A expð~BT�1=3Þ [8,28,29]. There exists the threshold quantity of pumping magnitude I starting from which the
excitation is non-equilibrium, since E� Eeq � IsR.

The coupled system of Eqs. (3) and (4) allows to describe both harmonic waves and strongly distorted ones with a broad
spectrum. In the cases where the acoustic nonlinearity is important, an acoustic pressure may be found in the form which
follows from the theory of geometrical acoustics [6],
p ¼ pðx; r; h ¼ s� wðx; rÞ=c0Þ: ð6Þ
This leads to equations for unknown eikonal w and p,
@p
@x
� e

c3
0q0

p
@p
@h
� Bpþ @w

@r
@p
@r
þ D?w

2
p ¼ 0; ð7Þ

@w
@x
þ 1

2
@w
@r

� �2

þ dT ¼ 0: ð8Þ
Eqs. (7) and (8) in the new variables P ¼ expð�BxÞp; W ¼ expð�BxÞw=B; X ¼ expðBxÞ � 1, may be readily rearranged into
the set
@P
@X
� e

Bc3
0q0

P
@P
@h
þ @W
@r

@P
@r
þ D?W

2
P ¼ 0; ð9Þ

BðX þ 1Þ @
@X
ðBðX þ 1ÞWÞ þ 1

2
@W
@r

� �2

B2ðX þ 1Þ2 þ dT ¼ 0: ð10Þ
Eq. (9) is analogous to the purely nonlinear equation, it differs from it by the last two terms responsible for variation in the
cross-section of the ray tubes. Note that in spite of that B may take positive or negative values, the nonlinear distortions
occurs similarly in the both cases in view of that the product XB is always positive. The second equation from the set,
Eq. (10) determines distortion of the rays due to variations in temperature. For the validity of approximation of geometrical
acoustics, the diffraction should be insignificant over the length of self-focusing. That is true for enough powerful beams.
The characteristic length of diffraction is xd ¼ pa2

0=k, where a0 and k are characteristic initial transversal dimension of a beam
and its wavelength. Assuming, that in the saw-tooth wave
PðX; rÞ ¼ AðX; rÞ �
�xh

p � 1; �p < hx < 0;
�xh

p þ 1; 0 < hx < p

(
; ð11Þ
Eqs. (4) and (9) transform into
@A
@X
þ ex

Bpc3
0q0

A2 þ @W
@r

@A
@r
þ D?W

2
A ¼ 0; ð12Þ

@T
@t
� v

q0CP
D?T ¼ �BT0ðc� 1Þ

c3
0q2

0

hP2iðX þ 1Þ2 ¼ �BT0ðc� 1Þ
3c3

0q2
0

A2ðX þ 1Þ2: ð13Þ
Eq. (12) can be solved by assuming the parabolic wave front,
WðX; r; tÞ ¼ W0ðX; tÞ þ
r2

2
@

@X
ln FðX; tÞ: ð14Þ
With account for (14), the exact solution of nonlinear Eq. (12) is [6]
A ¼ P0

F
U

r
aF

� �
1þ 1

Xs
U

r
aF

� �Z X

0

dX 0

FðX0; tÞ

� ��1

; ð15Þ
where P0 is the initial amplitude on the beam axis, and function U describes the initial transverse distribution,
AðX ¼ 0; rÞ ¼ P0U r

a0

� �
,

Xs ¼
q0c3

0Bp
P0ex

¼ B~xs; ð16Þ
where ~xs is the distance of shock formation in a planar wave which propagates in an equilibrium gas with B ¼ 0. It is remark-
able that Xs may take positive (B > 0) or negative values (B < 0), but xs ¼ 1

B lnð1þ XsÞ (if exists in real numbers; this quantity
is derived in [30]) should be always positive for a beam progressing in the positive direction of axis Ox. The discontinuity
does not form at all if Xs < �1. That may happen for enough large negative B correspondent to strong attenuation. In the
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acoustically active media, when B is positive, the discontinuity always forms. In accordance to Eq. (10), evolution of eikonal
W is described by equation
1
F

@2F

@X2 þ
1

X þ 1
@F
@X

 !
¼ dT2

B2ðX þ 1Þ2
; ð17Þ
where T2ðX; tÞ is the coefficient in the transverse-coordinate expansion of the temperature,
T ¼ T0 �
r2

2
T2 þ . . . ð18Þ
Eqs. (13) and (17) with amplitude in the form (15) describe evolution of F. The paraxial approximation, which allows to
consider temperature as series in powers of r (Eq. (18)), will considerably simplify solution of the system.

3. Thermal self-action of a sound beam

3.1. Stationary regime

If t is much larger than t0, where
t0 ¼
q0Cpa2

0

12v ð19Þ
is the characteristic time of temperature establishment, the temporal derivative in the heat transport Eq. (13) may be put
zero. We should establish the initial distribution of pressure across the beam. In the most practical applications, a beam
is Gaussian with UðnÞ ¼ expð�n2Þ. Expanding A in series in powers of r, one can derive from Eqs. (13) and (17) the equation
for unknown function of one variable, FðXÞ,
F
d2F

dX2 þ
1

X þ 1
dF
dX

 !
1þ 1

Xs

Z X

0

dX0

FðX0Þ

� �2

¼ � T0ðc� 1ÞCPdP2
0

6vc3
0q0B

: ð20Þ
The boundary conditions are
FjX¼0 ¼ 1;
dF
dX

				
X¼0
¼ 1

BR
; ð21Þ
where R is the wavefront curvature at the boundary X ¼ 0. In this study, we consider an ideal in equilibrium gas with positive
d; d ¼ 1=2T0. By use of dimensionless variable z ¼ x

x0
, where
x0 ¼
12vc3

0q0

ðc� 1ÞCPP2
0

ð22Þ
is some characteristic length depending on thermodynamical properties of the gas and initial magnitude of the saw-tooth
wave, Eq. (20) readily rearranges into
F
d2F

dz2 1þ P
Xs

Z z

0

expðPz0Þdz0

F

� �2

¼ �P expð2PzÞ; ð23Þ
where
P ¼ Bx0 ¼
12Bvc3

0q0

ðc� 1ÞCPP2
0

: ð24Þ
Note that P and Xs are both positive (in the case of acoustically active gas) or negative (otherwise). The normalized ampli-
tude at the axis of a beam, r ¼ 0, equals
pA

P0
¼ AðzÞ expðPzÞ

P0
¼ expðPzÞ

F
1þ P

Xs

Z z

0

expðPz0Þdz0

F

� ��1

: ð25Þ
The width of a beam may be evaluated as a distance from axis where the amplitude becomes e times smaller than that at
the axis, Aðr ¼ a; zÞ ¼ Aðr ¼ 0; zÞ=e. It follows from Eq. (15), that
a
a0
¼ F ln eþ ðe� 1ÞP

Xs

Z z

0

expðPz0Þdz0

F

� �1
2

: ð26Þ
Eq. (23) was solved numerically. Thermodynamically equilibrium gas is always defocusing, and non-equilibrium gas, if it is
acoustically active (B > 0), it becomes focusing. In the domain of strong nonlinear absorption, where the distortion of rays
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takes place, the distance from the rays to the axis of beam propagation varies insignificantly. The so-called approximation of
‘‘thin lens’’, and F may be approximately equated to 1. Eq. (23) takes the form
Fig. 1.
equilib
@2F
@z2 1þ expðPzÞ � 1

Xs

� �2

¼ �P expð2PzÞ: ð27Þ
The ratio of P and Xs,
P
Xs
¼ 12vex

pðc� 1ÞCPP0
; ð28Þ
is determined by thermodynamical properties of a gas, initial magnitude of pressure in a saw-tooth wave, and frequency of
sound. We may estimate this ratio for a typical laser mixture CO2 : N2 : He ¼ 1 : 2 : 3 at normal conditions
p0 ¼ 1 atm ¼ 101325 Pa; T ¼ 300 K. The density of this mixture correspondent to its molar mass, l ¼ 0; 019 kg �mol�1, is
q0 ¼ 0;76 kg �m�3; v ¼ 0;07 W �m�1 � K�1[20], c0 ¼ 422 m � s�1; CP ¼ 1780 J � kg�1 K�1; c ¼ 1;33; e ¼ 1;17. The depen-
dence of the relaxation time sR on temperature and density is as follows,
sR ¼ 10�7 l
q

0;22 expð�62;75T�1=3Þ þ 0;99 expð�75;46T�1=3Þ þ 0;55 � 10�2
ffiffiffi
T
p

expð�58;82T�1=3Þ
� ��1

; ð29Þ
where sR is measured in seconds, l in kg �mol�1
;T in Kelvins, q in kg �m�3 [29]. That gives approximately

sR ¼ 5 � 10�5 s; T
sR

@sR
@T ¼ �3;4, q

ðc�1ÞsR

@sR
@q ¼ �3 and P

Xs
� 5 � 10�9 s �x=M, where M ¼ P0=p0 is the effective acoustic number at

the entrance in the medium, x ¼ 0. The value of B depends on the pumping intensity I in accordance to Eq.(5); the threshold
quantity is Ith � q0 ¼ 1;5 � 106 W �m�3 [18]. For I � q0 ¼ 5;3 � 108 W �m�3, B ¼ 3;3 m�1.Along with x ¼ 106 Hz; M ¼ 10�3 that
gives Xs ¼ 5 and P ¼ 26.The diffraction length at this frequency and ten centimeter transducer, xd, equals 12 m, and
x0 ¼ 8 m. That provides large xd as compared with the focal length, xf � 2 m, and hence validity of approximation of the

geometrical acoustics. If I � q0 ¼ 1;1 � 108W �m�3, B ¼ 0;66 m�1. In this case, forx ¼ 106 Hz and M ¼ 10�2; Xs ¼ 0;1;
P ¼ 0;05; x0 ¼ 0;08 m, and xd ¼ 12 m is also greater then the focal length xf � 1 m, as it is clear from Fig. 1. Fig. 1 shows
the characteristic dimensionless width and amplitude of acoustic pressure in a beam with initial planar front, 1=R ¼ 0 for
some quantities of P and Xs during propagation over the equilibrium and non-equilibrium gas.
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The characteristic width of a beam (solid lines) and amplitude of acoustic pressure (dotted lines) at the axis of a beam with initially planar front in
rium or acoustic active gas.
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The most simple estimations may be done if Xs ¼ 1, and F � 1. In this case, Eq. (24) with account for initial conditions (21)
is readily integrated (we consider initially planar beam with 1=R ¼ 0):
Fig. 2.
differen
F ¼ 1�P
z2

2
: ð30Þ
That allows to evaluate approximately the dimensionless focal distance zf ; x0 � zf ¼
ffiffiffiffiffiffiffiffi
2P
p

=B. If P < 0, the characteristic
distance of beam’s broadening equals x0 � zf ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
�2P
p

=B. For the mixture CO2 : N2 : He ¼ 1 : 2 : 3 at normal conditions,

the condition Xs ¼ 1 yields B=ðMxÞ � 7 � 10�4 s=m and may be satisfied, for example, by quantities
x ¼ 106 s�1; M ¼ 10�3; B ¼ 0;7 m�1. Since the ratio x0 � zf =xd should be less than unit, it means
96c0c2v
a4

0Bðc� 1ÞCPq0M2x2
< 1: ð31Þ
The listed above quantities of x; M and B result in the initial size of transducer a0 > 0;05 m. The nonlinear length of
focusing, x0 � zf , equals 4,7 m. The condition Xs ¼ 1 may be also satisfied, for example, by quantities
x ¼ 5 � 106 s�1; M ¼ 10�2; B ¼ 0;33 m�1, and in this case the nonlinear length of focusing equals 0,7 m. It is useful to com-
pare results with the focal length in the case of the wave without discontinuities, which was obtained by Molevich in the
limit BR� 1ðB > 0) in Ref. [21]:
Xf ¼ lnð1þ BRÞ=B: ð32Þ
It gives R ¼ 0;79 m in the case of B ¼ 0;33 m�1 and Xf ¼ 0;7 m. The considered focusing of shock waves corresponds to
the initially planar beam with 1=R ¼ 0, so that, it is much more effective than that of waves without discontinuities. To be
focused at the same distance, a beam without discontinuities requires additional focusing at the transducer.

3.2. Non-stationary self-focusing

We now consider the case of non-stationary self-focusing where heat conductivity is small and the diffusion term in the
Eq. (13) can be neglected. That takes place at initial stage, t K t0. In this case,
@T
@t
¼ �BT0ðc� 1Þ

3c3
0q2

0

A2ðX þ 1Þ2: ð33Þ
Using Eqs. (17) and (18) performing the expansion of A in the transverse coordinate in the vicinity of a beam axis, one gets
the equation for FðX; tÞ:
@

@t
F�1 @2F

@X2 þ
1

X þ 1
@F
@X

 ! !
¼ � 2ðc� 1ÞP2

0

3Bc3
0q2

0a2
0F4 1þ 1

Xs

R X
0

dX0

FðX0 Þ

� �2 ; ð34Þ
which in dimensionless variables takes the form
@

@h
F�1 @

2F
@~z2

 !
¼ �

~P expð2 ~P~zÞ

F4 1þ ~P
Xs

R ~z
0

expð ~P~z0Þ
Fðz0 Þ d~z0

� �2 ; ð35Þ
where h ¼ t=t0,
1
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The characteristic width of a beam (solid lines) and amplitude of acoustic pressure (dotted lines) at the axis of a beam with initially planar front at
t times h.
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~P ¼ B ~x0 ¼
18Bvc3

0q0

ðc� 1ÞCpP2
0

¼ 3
2

P; ~z ¼ x
~x0
: ð36Þ
Eq. (35) is solved numerically under conditions
Fð~z ¼ 0; hÞ ¼ Fð~z; h ¼ 0Þ ¼ 1;
@F
@~z
ð~z ¼ 0; hÞ ¼

~x0

R
: ð37Þ
If B ¼ 0;66 m�1; x ¼ 2 � 105 s�1; M ¼ 10�2; ~P ¼ 0;08; Xs ¼ 0;5; ~x0 ¼ 0;12 m, and xd ¼ 2;4 m for ten centimeter trans-
ducer, a0 ¼ 0;1 m. The second series represent B ¼ 3;3 m�1; x ¼ 106 s�1; M ¼ 10�3; ~P ¼ 39; Xs ¼ 5; ~x0 ¼ 12 m, and
xd ¼ 12 m; a0 ¼ 0;1 m. For the considered typical laser mixture and ten centimeter transducer, t0 ¼ 16 s.

4. Concluding remarks

Similar inertial self-action can occur by means of formation of hydrodynamic streams in a medium (‘‘acoustic streaming’’)
due to the radiation pressure of an intense shock wave. This mechanism in a Newtonian fluid always leads to additional
divergence because the drift caused by streaming makes the wave velocity increase in the central part of a beam, where
the ultrasound intensity is higher and hence streaming is stronger. So that, the sound beam is divergent in a Newtonian
gas due to both non-acoustic motions, the entropy mode, which forms a thermal lens, and the vortex mode, which is respon-
sible for a bulk motion of a gas. In the media with unusual thermodynamic properties, like a gas with excited internal
degrees of molecules freedom, streamlines may be directed oppositely as compared with a Newtonian fluid. This may
enhance unusual focusing properties of a gas. In this study, we assumed that self-action occurs in a static medium. The
effects associated with the occurrence of flows in saw-tooth wave fields and the hydrodynamic convection nonlinearity
in Newtonian fluids were discussed in Ref. [31].

Figs. 1 and 2 reveal some important features of sound beams propagating over acoustically active gas. The width of a
beam always decreases (in some cases somewhat increasing in the beginning), but amplitude of acoustic pressure may
increase or decrease along the axis of a beam. That reflects two contrary mechanisms, one increase in the magnitude of
sound, and second, its nonlinear attenuation, which becomes stronger with increase in magnitude of perturbations. Nonlin-
earity competes with the self-focusing of the wave front, and acoustic pressure decreases. The nonlinear broadening of a
beam can be explained by flattening of the transverse beam profile due to stronger absorption near the axis (the so-called
isotropization of the directional distribution). In the non-stationary regime, the thermal lens becomes stronger with time
and the focal point moves towards the transducer. Near the nonlinear focus xf , the width of a beam vanishes and amplitude
infinitely grows. In this region, the description becomes inadequate because it does not take into account the diffraction
divergence. These features of sound beams with discontinuities are very similar to those in majority of Newtonian liquids,
which are defocusing due to positive d and absorption of the sound energy [6]. Account for pumping I in the zero-order
hydrodynamic equations would lead to dependence of the background density and pressure on spatial coordinates. Eqs.
(3) and (4) are derived in the case, where the gradients of the background parameters are weak and they depend exclusively
on the transversal coordinate r [32]. For large intensity of pumping, nor definitions of modes, nor Eqs. (3) and (4) are longer
valid. The mathematical content also becomes fairly difficult [33]. Some features of wave propagation, like size of the domain
stability of waves, look different, if spatial heterogeneity were taken into account [34]. The standard Newtonian attenuation
of a gas is not considered in this study.

The conclusions of this study are readily applied to media with similar relaxation which may have different physical
reasons. Among them, we may list fluids with Maxwell relaxation at high frequencies. At low frequencies, they behave as
Newtonian. The system of initial equations which describes acoustic pressure of high-frequency sound in these media, looks
similar to Eqs. (3) and (4) with some different coefficient standing by acoustic source.

Whereas the mathematical method used in this study, originates from that which has been used by Rudenko and co-
authors, it is useful to underline the difference of the initial equations and further evaluations. Rudenko and co-authors
investigated thermal self-action of the shock waves in Newtonian fluids, the equations which they use relate to pure atten-
uation of the shock wave when bx

q0c2
0

tends to zero (b is the total Newtonian attenuation). Eq. (3) includes attenuation different
from Newtonian, and Eq. (4) includes the acoustic source different from Newtonian: it is proportional to the mean square
acoustic pressure, not to its mean squared temporal derivative. The results depend on B of the essence, in contrast to the
pure nonlinear attenuation of shock waves in Newtonian fluids. Molevich starts from the system of conservation equations
and seek solutions in the form of series of perturbations. That is valid in the case of weak nonlinearity and strong dispersion
which takes place in the majority of problems relating to optic waves and may be applied in studies of beams without dis-
continuities. If the waveform is strongly nonlinearly distorted, the higher harmonics are effectively generated and do inter-
act, and the whole waveform should be considered. In acoustically active media, nonlinearity is strong due to growing
magnitude of acoustic pressure in the course of propagation, and discontinuities rapidly form in a weakly diffracting beam.
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