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It is well known that distribution of displacements through the shell thickness is non-linear, in general.
We introduce a modified polar decomposition of shell deformation gradient and a vector of deviation
from the linear displacement distribution. When strains are assumed to be small, this allows one to pro-
pose an explicit definition of the drilling couples which is proportional to tangential components of the
deviation vector. The consistent second approximation to the complementary energy density of the geo-
metrically non-linear theory of isotropic elastic shells is constructed. From differentiation of the density
we obtain the consistently refined constitutive equations for 2D surface stretch and bending measures.
These equations are then inverted for 2D stress resultants and stress couples. The second-order terms
in these constitutive equations take consistent account of influence of undeformed midsurface curva-
tures. The drilling couples are explicitly expressed by the stress couples, undeformed midsurface curva-
tures, and amplitudes of quadratic part of displacement distribution through the thickness. The drilling
couples are shown to be much smaller than the stress couples, and their influence on the stress and strain
state of the shell is negligible. However, such very small drilling couples have to be admitted in non-lin-
ear analyses of irregular multi-shell structures, e.g. shells with branches, intersections, or technological
junctions. In such shell problems six 2D couple resultants are required to preserve the structure of the
resultant shell theory at the junctions during entire deformation process.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Drilling couples Ma are two-dimensional (2D) stress couple
fields which appear in the resultant non-linear model of a shell.
Such shell model was initiated by Reissner (1974), developed in
a number of papers for example by Chróścielewski et al. (1992,
1997), Ibrahimbegović (1997), Eremeyev and Pietraszkiewicz
(2006, 2011), Pietraszkiewicz (2011), Birsan and Neff (in press),
and summarized in monographs by Libai and Simmonds
(1983,1998), Chróścielewski et al. (2004), and Eremeyev and Zubov
(2008), where further references are given. The explicit original
definition of Ma proposed in Section 3 of this report reveals that
the drilling couples are generated by non-linear part of tangential
displacement distribution through the shell thickness. This is the
reason why Ma do not appear in most popular non-linear shell
models based on kinematic constraints ‘‘material fibers, which
are normal to the undeformed shell base surface, remain straight
during shell deformation’’ or their equivalents as well as in the
Cosserat type models with one deformable director, see for exam-
ple Naghdi (1972), Pietraszkiewicz (1979, 1989), Altenbach and
Zhilin (1988), Simo and Fox (1989), Rubin (2000), Bischoff et al.
(2004), Antman (2005), and Wiśniewski (2010). Also in all classical
linear models of elastic shells the resultant 2D stress couple vector
does not have the normal (drilling) component by definition, due
to identification of deformed and undeformed shell geometries,
see for example Love (1927), Gol’denveizer (1961), Naghdi
(1963), Green and Zerna (1968), or Bas�ar and Krätzig (2001).

In the non-linear resultant 2D shell model the local equilibrium
equations are exact implication of the through-the-thickness inte-
gration of 3D equilibrium equations of non-linear continuum
mechanics. Then the 2D virtual work identity allows one to con-
struct uniquely the 2D shell kinematics consisting of the translation
vector and rotation tensor fields (six independent components) as
well as the corresponding twelve 2D strain measures work-conju-
gate to the twelve 2D resultant stress measures, all defined on the
shell base surface. The resultant shell model naturally includes
three parameters of finite rotation as independent field variables
and two drilling stress couples with corresponding two
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work-conjugate drilling bendings. All these fields become neces-
sary in analyses of irregular shells with folds, branchings and inter-
sections (Chróścielewski et al., 1997; Konopińska and
Pietraszkiewicz, 2007), when connecting shell elements between
themselves (Pietraszkiewicz and Konopińska, 2011) and with
beams, columns and stiffeners, as well as in two-dimensional
formulation of singular phenomena such as phase transition
(Eremeyev and Pietraszkiewicz, 2004, 2011), crack propagation,
dislocations (Eremeyev and Zubov, 2008), wave motion, etc.

Yet, in almost all theoretical papers and numerical finite-ele-
ment analyses of geometrically non-linear shell problems the sim-
plest 2D constitutive equations of the classical linear theory of
plates of Reissner (1944) type with only modest extensions have
been used. Moreover, the constitutive equations for Ma are either
proposed without derivation in the form analogous to that for
shear stress resultants Qa only with bending stiffness D and differ-
ent correcting factor at , or are derived as for higher-order stress
moments also denoted by Ma or Ma3 which meaning is different
from the one of drilling couples as we understand them. In fact,
we are not aware of any explicitly derived constitutive equations
for the drilling couples Ma available in the literature.

In this paper we propose new explicit definition (16)2 of the
drilling couples for shells undergoing small strains. It reveals that
the drilling couples appear as a result of through-the-thickness
integration of tangential stresses cross-multiplied by non-linear
part of displacement distribution in the shell space. This explicit
result becomes possible when we apply after Pietraszkiewicz
et al. (2006) the modified polar decomposition (10) of the shell
deformation gradient and isolate in (9) the intrinsic deformation
vector which describes the non-linear part of displacement distri-
bution through the thickness.

In the resultant shell model 2D strain measures are defined only
on the base surface, without any relation to 3D strain measures of
non-linear elasticity. Thus, it is not possible to found our discussion
here on the 3D strain energy density W as in many publications on
elastic shells. Instead, we are forced here to begin our discussion of
2D constitutive equations from the 3D complementary energy den-
sity Wc .

Various forms of complementary energy in 3D nonlinear elas-
ticity and associated variational principles following from that pro-
posed by Fraeijs de Veubeke (1972) were discussed for example by
Guo (1980), Atluri (1984), Reissner (1987), Ibrahimbegović (1993,
1995) or Wempner (1992). In some analogous 2D shell models
constructed from 3D ones by thickness kinematic constraints or
3D-to-2D degeneration the drilling couples and bendings were
not present, see for example Atluri (1984), Wempner (1986), Simo
and Fox (1989) or Ibrahimbegović (1994). In some other analogous
shell models the drilling couples and bendings were included, but
the constitutive equations for them were taken in the form similar
as for shear stress resultants, see for example Chróścielewski et al.
(1992, 1997), Sansour and Bufler (1995) or Bischoff et al. (2004).
The 2D drilling stress couples and drilling bendings do not appear
by definition in complementary shell models formulated directly
on the base surface, such as in Altenbach and Zhilin (1988), Valid
(1989), Gao and Cheung (1990) or Gałka and Telega (1992).

Brief review of possible forms of Wc in non-linear elasticity gi-
ven in Section 4 indicates that even if W is convex, its dual Wc ob-
tained by the Legendre transformation need not be unique. For an
isotropic elastic material undergoing small strains Koiter (1976)
proved that the complementary energy density Wc ¼WcðTÞ, where
T is the Jaumann stress tensor, is the unique quadratic function
provided rotations of material elements are at most moderate.
But under small strains T ’ S, where S is the 2nd Piola–Kirchhoff
stress tensor. In our discussion the effective part (27) of Wc con-
taining only tangential Suw and transverse shear Su3 stresses acting
on the shell cross section is used.
For isotropic elastic shells undergoing small strains John (1965)
obtained concrete qualitative error estimates for stresses and their
derivatives. In particular, the stresses Su3 were proved to be one or-
der smaller than Suw. To assure the consistent approximation to
Weff

c , distribution of Suw through the thickness should be approxi-
mated up to cubic terms, while for Su3 only quadratic distribution
is appropriate. In Section 6 such cubic approximation (41) of Suw

is constructed by analogy to refined statically and kinematically
admissible stress distributions of the linear Reissner type shell
theory, which were given by Rychter (1988). Applying the system
of error estimates proposed by Koiter (1966, 1980), the through-
the-thickness integration of Weff

c with refined stress distributions
gives the 2D complementary energy density Reff

c in the form of
quadratic polynomial (47) of the 2D resultant stress measures.
Two principal terms of (47) can be viewed as the consistent 1st
approximation to the complementary energy density of the
geometrically non-linear isotropic elastic shell. Such quadratic form
of Reff

c is energetically equivalent to the consistent 1st approxima-
tion to the elastic strain energy density of the shell, which within
the classical linear theory of shells was proposed by Koiter (1960).
The four secondary terms of (47) provide a consistent energetic
refinement of the two principal terms. We call six quadratic terms
of Reff

c the consistent 2nd approximation to the complementary
energy density of the geometrically non-linear isotropic elastic
shells. This consistently refined form of Reff

c is new in the literature.
The corresponding refined constitutive equations (56)–(58) for 2D
strain measures are then obtained by differentiation of Reff

c with
regard to appropriate resultant stress measures.

To make the results more readable, in Section 7 we present
them in orthogonal lines of principal curvatures of the shell base
surface. It is explicitly shown that the 8� 8 matrix of coefficients
in the constitutive equations for physical components of the sur-
face stretches and bendings Eab; Kab can be divided into two matri-
ces 4� 4 for which determinants are calculated. Determinant of
the first matrix 4� 4 is always positive, while of the second one
is positive provided that the principal curvatures R1; R2 of the
undeformed middle surface are not equal. In both cases we are able
to solve the set of linear algebraic equations analytically and pro-
vide the consistently refined constitutive equations for physical
components of the stress resultants and stress couples Nab;Mab in
terms of Eab;Kab and R1;R2.

Finally, in Section 8 we derive the constitutive equations (83)–
(85) for the drilling couples Ma following from their definition
(16)2 , the constitutive equations (52)2 for Mab, and the quadratic
part of displacement distribution through the shell thickness. The
drilling couples are estimated to be very small quantities of
negligible order in analyses of regular shells. However, in case of
irregular multi-shells one has to keep these small resultant fields
in order to preserve the structure of six-field shell theory at the
junctions.

2. Notation and some exact shell relations

A shell is a three-dimensional (3D) solid body identified in a ref-
erence (undeformed) placement with a region B of the physical
space. The shell boundary @B consists of three separable parts:
the upper Mþ and lower M� shell faces, and the lateral shell bound-
ary surface @B�. The position vectors x and y ¼ vðxÞ of any material
particle in the reference and deformed placements, respectively,
can conveniently be represented by

x ¼ xþ nn; y ¼ yðxÞ þ fðx; nÞ: ð1Þ

Here x and y are position vectors of some shell base surface M
and N ¼ vðMÞ in the reference and deformed placements, respec-
tively, n is the distance from M along the unit normal vector n
orienting M such that n 2 ½�h�;hþ�; h ¼ h� þ hþ is the shell
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thickness, f is a deviation vector of y from N, while v and v mean the
3D and 2D deformation functions, respectively. In what follows we
use the convention that fields defined on the shell base surface are
written by italic symbols, except in a few explicitly defined cases.

Geometry of B can be described in normal coordinates
ðha; nÞ; a ¼ 1;2; such that the corresponding base vectors of M
and in B are given by (see Naghdi, 1963; Pietraszkiewicz, 1979)

aa ¼
@x
@ha � x;a; ab � aa ¼ db

a; n ¼ 1
2
eabaa � ab; ba

b ¼ �aa � n;b;

gu ¼
@x
@hu � x;u ¼ la

uaa; gw � gu ¼ dw
u; gw ¼ ðl�1Þwb aabaa; g3 ¼ g3 ¼ n;

la
u ¼ da

u � nba
u; ðl�1Þwb ¼

1
l

dw
b þ nðbw

b � 2Hdw
b Þ

h i
; la

uðl�1Þub ¼ da
b ;

la
uðl�1Þwa ¼ dw

u; l ¼ 1� 2nH þ n2K;

ð2Þ

where eab are contravariant components of the permutation tensor
e on M, ba

b are mixed components of the curvature tensor b of M;

la
u and ðl�1Þwb are geometric shifters, H ¼ 1

2 ba
a is the mean curvature

and K ¼ detðba
bÞ the Gaussian curvature of M.

Within the resultant non-linear theory of shells, formulated in
the referential description and summarized by Libai and Simmonds
(1998) and Chróścielewski et al. (2004), the respective 2D internal
contact stress resultant nm and stress couple mm vectors, defined at
the edge @R of an arbitrary part of the deformed base surface
R ¼ vðPÞ; P � M; but measured per unit length of the undeformed
edge @P having the outward unit normal vector m, are defined by

nm ¼
Z þ

�
Pn�ldn ¼ nama; na ¼

Z þ

�
paldn;

Z þ

�
�
Z þhþ

�h�
;

mm ¼
Z þ

�
f� Pn�ldn ¼ mama; ma ¼

Z þ

�
f� paldn:

ð3Þ

Here P ¼ pu 	 gu þ p3 	 g3 is the Piola stress tensor in the shell
space, n� ¼ gama is the external normal to the reference shell
orthogonal cross section @P� (see Konopińska and Pietraszkiewicz,
2007, (A.13)), pa ¼ da

upu and ma ¼ m � aa. Then the resultant 2D
equilibrium equations satisfied for any part P � M are

naja þ f ¼ 0; maja þ y;a � na þ c ¼ 0; ð4Þ

where ð�Þja is the covariant derivative in the metric of M, while f and
c are the external resultant surface force and couple vectors applied
at N, but measured per unit area of M.

The resultant fields na and ma require a unique 2D shell kine-
matics associated with the shell base surface M. As it was shown
in Libai and Simmonds (1983, 1998), Chróścielewski et al. (1992,
2004), and Eremeyev and Pietraszkiewicz (2006), such 2D kine-
matics consists of the translation vector u and the proper orthogo-
nal (rotation) tensor Q , both describing the gross deformation
(work-averaged through the shell thickness) of the shell cross sec-
tion, such that

y ¼ xþ u; ta ¼ Qaa; t ¼ Qn; ð5Þ

where ta; t are three directors attached to any point of N ¼ vðMÞ.
The vectors na,ma and f ; c can naturally be expressed in compo-

nents relative to the rotated base tb; t by

na ¼ Nabtb þ Qat; ma ¼ t �Mabtb þMat ¼ ekbMaktb þMat;

f ¼ f btb þ f t; c ¼ t � cbtb þ ct ¼ ekbcktb þ ct:

ð6Þ

The 2D components Ma ¼ ma � t are usually called the drilling
couples.

The shell stretch ea and bending ja vectors associated with the
2D shell kinematics (5), which are work-conjugate to the respec-
tive stress resultant na and stress couple ma vectors, are defined by
ea ¼ y;a � ta ¼ u;a þ ð1� QÞaa ¼ Eabtb þ Eat;

ja ¼ axðQ ;aQ TÞ ¼ t � Kabtb þ Kat ¼ ekbK �ka tb þ Kat;
ð7Þ

where 1 is the metric tensor of 3D space and axð�Þ is the axial vector
of a skew tensor ð�Þ. We call the 2D components Ka ¼ ja � t the dril-
ling bendings.

In the numerical analysis it is convenient to assume aa;n to be
orthonormal, so that ta; t remain orthonormal during shell
deformation.

3. Components of stress resultants and stress couples

Let S ¼ F�1P ¼ Sijgi 	 gj ¼ ST ; i ¼ 1;2;3; be the 2nd Piola–
Kirchhoff stress tensor, where F ¼ Gradv ¼ �gi 	 gi is the 3D defor-
mation gradient tensor in the shell space. In convected coordinates
ðha; nÞwe have F�1¼gk	 �gk and P¼FS¼ Sij�gi	gj, see Pietraszkiewicz
and Badur (1983). Thus, the components of P in the mixed tensor
basis �gi	gj coincide with Sij, although S – P. In terms of Sij the
2D resultants na and ma appearing in (3) take the form

na ¼
Z þ

�
SaiFgildn; ma ¼

Z þ

�
f� SaiFgildn: ð8Þ

In shell theory an initially straight and normal material fiber de-
scribed by x ¼ nn deforms into a generally spatially curved mate-
rial fiber described in the deformed placement by the deviation
vector f, see (1). For what follows it is convenient to utilize after
Pietraszkiewicz et al. (2006) the intrinsic deformation vector
eðx; nÞ defined by

e ¼ Q Tf� nn ¼ eqgq þ en; ð9Þ

where Qe is a measure of deviation of the deformed curved material
fiber, which initially has been straight nn, from its approximately
linear rotated shape nQn, see Fig. 1. The representation (9) is purely
formal and does not introduce any approximation.

Since in this formulation of shell theory the rotational part of
deformation is described by the tensor Q , it is natural to apply
here, in place of the usual polar decomposition F ¼ RU, the modi-
fied one in the form

Fðx; nÞ ¼ QðxÞKðx; nÞ ¼ QðxÞ½1þHðx; nÞ�: ð10Þ

In (10) the modified stretch tensor K satisfies det K > 0, KT – K, and
the modified relative stretch tensor H is also not symmetric, in gen-
eral, H ¼ Hijgi 	 gj – HT .

Let us introduce the referential stress resultant and stress cou-
ple vectors

na¼Q T na¼
Z þ

�
Saiðdk

i þH:k
i Þ gkldn¼NababþQan;

ma¼Q T ma¼
Z þ

�
ðnnþeÞ�Saiðdk

i þH:k
i Þ gkldn¼ eklMakalþMan:

ð11Þ
Fig. 1. Deformation of the shell cross section.

http://mostwiedzy.pl
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After some transformations the vector ma can also be given in
the expanded form

ma ¼
Z þ

�
Sai ðnþ eÞðdw

i þH:w
i Þl

k
w � eqðd3

i þH:3
i Þlk

q

h i
eklal

n
þeqðdw

i þH:w
i Þecklc

ql
k
wn
o
ldn: ð12Þ

The shell stress resultants and stress couples follow now from
(11)1 and (12) leading to

Nab ¼ na � ab ¼
Z þ

�
Saiðdw

i þH:w
i Þl

b
wldn;

Qa ¼ na � n ¼
Z þ

�
Saiðd3

i þH:3
i Þldn;

ð13Þ
Mab ¼ma � ebcac ¼
Z þ

�
Sai ðnþ eÞðdw

i þH:w
i Þ � ewðd3

i þH:3
i Þ

h i
lb

wldn;

Ma ¼ma � n ¼
Z þ

�
Saieqðdw

i þH:w
i Þecblc

ql
b
wldn:

ð14Þ

The relations (13) and (14) are exact implications of the through-the-
thickness integration of an arbitrary stress distribution in the shell
space.

Most shell models are constructed with the use of kinematic
constraints ‘‘material fibers initially normal to the shell base sur-
face remain straight during deformation process’’. In such shell
models e � 0 and the drilling couples (14)2 disappear by definition.

In the resultant geometrically non-linear shell theory the
largest stretch in the shell space is assumed to be small, so that
kHk << 1. Let us also assume here the length of intrinsic deforma-
tion vector e to be at least one order smaller as compared with h, so
that ðjej=hÞ2 << 1: In fact, we shall show in Section 8 that in case of
small elastic strains tangential components of e are of much
smaller order. Then omitting the corresponding small terms with
respect to the unity, we obtain

Nab ’
Z þ

�
ðSaw þ Sa3H:w

3 Þl
b
wldn ’

Z þ

�
Sawlb

wldn;

Qa ’
Z þ

�
ðSa3 þ SawH:3

w Þldn ’
Z þ

�
Sa3ldn;

ð15Þ
Mab ’
Z þ

�
Sawðnþ eÞ þ Sa3ðnH:w

3 � ewÞ
h i

lb
wldn ’

Z þ

�
Sawlb

wlndn;

Ma ’
Z þ

�
ðSawlb

wlÞecblc
qeqdn:

ð16Þ

The explicit definition (16)2 of Ma have become possible be-
cause in (9) we have introduced explicitly the vector e and have
applied the modified polar decomposition (10) of F. The relation
(16)2 indicates that in the geometrically non-linear shell theory
Ma can be established if Sawlb

wl and eq are known. We discuss this
in more detail in Section 8.

Libai and Simmonds (1983, 1998) introduced Ma implicitly as
Ma � t as well, but their resultant stress couple Ma was defined rel-
ative to the deformed, non-material, weighted surface of mass of
the shell, not relative to the deformed material shell base surface
N ¼ vðMÞ as in this report. However, in some papers, see for exam-
ple Naghdi (1972), Paimushin (1986), Bischoff et al. (2004) or
Chróścielewski et al. (2010), the 2D fields Ma or Ma3 are defined
as the resultants of first moments of shear stresses

Rþ
� lSa3n dn.

Such fields have other mechanical meaning than our drilling
couples Ma.
4. 3D complementary energy density

In non-linear elasticity the internal energy of the body is usually
described by the stored energy density W ¼WðFÞ per unit volume
of B such that P ¼ @W=@F. In our approach the 2D vectorial stress
measures (8) are the primary fields defined by direct through-the-
thickness integration of the Piola stress tensor P. Hence, for estab-
lishing 2D constitutive equations from their 3D form it is necessary
to use the complementary energy density.

The first choice of such density Wc ¼WcðPÞ, per unit volume of
B, would be the one which is related to the strain energy density
WðFÞ by the Legendre transformation

WcðPÞ ¼ P : F�WðFÞ; ð17Þ

where P : F ¼ trðPT FÞ. Existence of such WcðPÞ crucially depends on
whether the stress–strain relation P ¼ PðFÞ can be uniquely in-
verted to the form F ¼ FðPÞ. Only then from (17) one could establish
uniquely WcðPÞ from which F ¼ @Wc=@P. Unfortunately, unique
invertibility of the tensor function P ¼ PðFÞ is not assured, because
the scalar-valued function W ¼WðFÞ is not convex, in general. Only
some special cases were discussed in several papers by Zubov, Koit-
er, Ogden, Gao, Shield, Wempner, and others. In particular, in the
case of an isotropic elastic material Zubov (1976) proved that there
are four different branches of such an inversion. But when the angle
of rotation / of principal axes of strain is such that
cos/ < 1=3; i:e: / <
 70

�
, only one branch of the four is realized.

In such a case the inverted tensor function F ¼ FðPÞ can be uniquely
established, at least in principle, provided that the tensor PT P has
distinct eigenvalues at any point of the body. Ogden (1977) inde-
pendently confirmed that such a unique inversion is possible under
the latter condition. These requirements suggest serious difficulties
in constructing explicitly the unique function WcðPÞ.

For our purpose it is more convenient to use, after Koiter (1976),
the stored energy density W ¼ �WðeÞ, where e ¼ U� 1 ¼ eT is the
relative stretch tensor with the right stretch tensor U ¼ UT follow-
ing from the polar decomposition F ¼ RU. Differentiating the den-
sity �WðeÞ we obtain

@ �W
@e
¼ T ¼ 1

2
ðSUþ USÞ ¼ Tijgi 	 gj; ð18Þ

where T ¼ TT is the Jaumann stress tensor. But even in this case
inversion of T ¼ TðeÞ is still complex for anisotropic elastic materi-
als, because then T and e are not coaxial, in general. Only in the case
of an isotropic elastic material, when T and e become coaxial, one
can invert in principle the stress–strain relation to e ¼ eðTÞ, and
applying the Legendre transformation one can construct explicitly
�WcðTÞ such that e ¼ @ �Wc=@T, provided that rotations of material

elements are at most moderate, see Koiter (1976).
The elastic range of many engineering materials is restricted to

small strains such that kek << 1 and the constitutive equations are
governed by the Hooke law. In such case �WðeÞ becomes the posi-
tive definite, homogeneous, convex, quadratic function of the form

�WðeÞ ¼ 1
2

Lijkleijekl; Lijkl ¼ Ljikl ¼ Lijlk ¼ Lklij; ð19Þ

where Lijkl are components of the 4th-order tensor of elastic moduli.
The linear constitutive equations Tij ¼ @ �W=@eij ¼ Lijklekl can now be
easily inverted to obtain eij ¼ KijklT

kl, where Kijkl are components of
the 4th-order tensor of elastic compliances, which satisfy the
relation

KijklL
klpq ¼ 1

2
dp

i d
q
j þ dq

i d
p
j

� �
: ð20Þ

The corresponding complementary energy density follows from
the Legendre transformation and takes the form

http://mostwiedzy.pl
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�WcðTÞ ¼ T : eðTÞ � �W½eðTÞ� ¼ 1
2

KijklT
ijTkl: ð21Þ

It can easily be seen from (18) that within small strains T ’ S, so
that also their components Tij ’ Sij in the undeformed tensor base
gi 	 gj.

For an isotropic elastic material the 3D elastic moduli and com-
pliances are

Lijkl ¼ E
2ð1þ mÞ gikgjl þ gilgjk þ 2m

1� 2m
gijgkl

� �
; ð22Þ

Kijkl ¼
1

2E
ð1þ mÞðgikgjl þ gilgjkÞ � 2mgijgkl

� �
; ð23Þ

with E the Young modulus and m the Poisson ratio.
The restriction to small elastic strains used in (19) and (21) does

not reduce the non-linear elasticity to the linear theory of elastic-
ity, because the rotational part of deformation R ¼ FU�1 is still al-
lowed to be moderate, see Koiter (1976).

Taking into account symmetries of Kijkl and Sij, the quadratic
expression (21) can be written as the sum of four separate terms
each representing a part of 3D complementary energy density cal-
culated from the stresses Suw; Su3 ¼ S3u and S33, so that

�Wc ¼
1
2

KuwhrSuwShr þ Ku3h3ðSu3 þ S3uÞðSh3 þ S3hÞ þ 2Kuw33SuwS33
h

þK3333S33S33
i
¼ 1

2l2 Aabklla
uðlSuwlb

wÞlk
hðlShrll

rÞ
h

þ4Aa3k3la
uðlSu3Þlk

hðlSh3Þþ2Aab33la
uðlSuwlb

wÞðlS33Þ

þA3333ðlS33ÞðlS33Þ
i
; ð24Þ

where

Saw ¼ da
uSuw; Kuwhr ¼ Aabklla

ulb
wl

k
hl

l
r; Kuw33 ¼ Aab33la

ulb
w;

Sa3 ¼ da
uSu3; Ku3h3 ¼ Aa3k3la

ulk
h; K3333 ¼ A3333:

ð25Þ

In particular, for an isotropic linearly elastic solid

Aabkl ¼
1

2E
ð1þ mÞðaakabl þ aalabkÞ � 2maabakl
� �

; Aa3k3 ¼
1þ m

2E
aak;

Aab33 ¼ �
m
E

aab; A3333 ¼
1
E
:

ð26Þ

However, definitions (13)–(16) of the resultant surface stress
measures are given through the stress components Saw; Sa3 alone,
because only those stress components act on the shell cross section
and their resultants enter the resultant shell equilibrium equations
(4). The stress component S33 acts on the shell surfaces n ¼ const
parallel to the base surface M. Although S33 contributes to the 3D
complementary energy density (24), it does not enter the resultant
2D equilibrium equations and does not contribute to the effective
part �Weff

c of �Wc associated with the resultants (13)–(16). Thus,

�Weff
c ¼

1
2l2 Aabklla

uðlSuwlb
wÞlk

hðlShrll
rÞþ4Aa3k3la

uðlSu3Þlk
hðlSh3Þ

h i
:

ð27Þ

This effective part of �Wc will be used to derive the constitutive
equations of elastic shells.

Let us assume, for definiteness, that the base surface M is taken
as the middle surface of the shell in the undeformed placement,
that is h� ¼ hþ ¼ h=2. This particular choice of M will considerably
simplify all transformations given below. We also assume, for sim-
plicity, that there are no surface forces applied at the upper and
lower shell faces M�, and no body forces applied in the internal
shell space (otherwise these loads would appear explicitly in 2D
constitutive equations, which we do not want). Then the exact
reduction of 3D stress field to its 2D resultants defined by (15)
and (16) means that to within bulk terms distribution of pseudo-
stresses in the shell space can, in fact, be approximately repre-
sented up to cubic terms in the thickness direction according to

lSawlb
w ’

1
h

Nab þ 12

h3 Mabnþ QabðnÞ þ CabðnÞ;

lSa3 ’ 1
h

Qaf ðnÞ; f ðnÞ ¼ 3
2

1� 4n2

h2

 !
;

ð28Þ

where QabðnÞ are quadratic and CabðnÞ are cubic polynomials of n
which should satisfy the relations

Qabð�nÞ ¼ QabðnÞ;
Z þ

�
QabðnÞdn ¼ 0;

Z þ

�
nQabðnÞdn ¼ 0;

Cabð�nÞ ¼ �CabðnÞ;
Z þ

�
CabðnÞdn ¼ 0;

Z þ

�
nCabðnÞdn ¼ 0:

ð29Þ

The approximately cubic tangential stress distribution (28)1

with quadratic and cubic parts having properties (29) satisfy defi-
nitions (15)1 for Nab and (16)1 for Mab. This distribution can be used
to derive the approximate expressions for the drilling couples fol-
lowing from (16)2 .

Unfortunately, we are not aware of any discussion in the litera-
ture of possible forms of QabðnÞ and CabðnÞ in the geometrically
non-linear theory of elastic shells. Looking for suggestions as to
appropriate forms of QabðnÞ and CabðnÞ, let us recall some results
available in the linear shell theory.

5. The linear theory of shells

In the linear theory of shells not only strains in the shell space
are small, but also translations and rotations are assumed to be
small,

e ¼max
x2M
ðjjujj; jjwjjÞ << 1; ð30Þ

where w ¼ /i is the linearised rotation vector, with / the angle of
rotation about the rotation axis described by the eigenvector i of
Q , i.e. Qi ¼ þi.

In components we have

u ¼ uaaa þwn; w ¼ n� ðwaaaÞ þ wn ¼ eakwaaa þ wn: ð31Þ

Since for small rotations Q ’ 1þ w� 1, following Chróścielewski
et al., 2004, Chapter 2.8, we can linearize the kinematic relations
(7) with regard to u and w to obtain

Eab ¼ u;a � ab � eabw � n ¼ ubja � babw� eabw;

Ea ¼ u;a � nþ eabw � ab ¼ w;a þ bb
aub þ wa;

ð32Þ

Kab ¼ w;a � ebkak ¼ wbja � ebkbk
aw;

Ka ¼ w;a � n ¼ w;a � ekbbk
aw

b:
ð33Þ

Then linearization of component form of equilibrium equations
(4) written in the reference base aa;n yields

Nabja � bb
aQa þ f b ¼ 0; Qaja þ babNab þ f ¼ 0;

Mabja þ ekbbakMa � Qb þ cb ¼ 0; Maja þ eabðNab � ba
k MkbÞ þ c ¼ 0:

ð34Þ

Please note that within such resultant linear shell theory twelve
linear kinematic relations (32) and (33) involve the drilling rota-
tion w and the drilling bendings Ka while six linear equilibrium
equations (34) include also the drilling couples Ma. This was
explicitly shown already by Reissner (1974). In classical linear shell
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theories of Kirchhoff–Love and Timoshenko-Reissner types the
components w, Ka and Ma do not appear in analogous shell
relations, see for example Love (1927), Naghdi (1972), Bas�ar and
Krätzig (2001), Ciarlet (2000).

However, even within such extended six-field linear theory of
shells we are not aware of any discussion on possible forms of
QabðnÞ and CabðnÞ available in the literature. Leaving such a discus-
sion for future work, for the purpose of this report we shall use
some results available for a simpler version of the linear shell
theory.

Analyzing accuracy of the linear Reissner-type shell theory,
Rychter (1988) constructed consistently refined 3D displacement
and stress fields in the shell as polynomials of 2D shell solutions.
The refined 3D fields were then compared to unknown solutions
of linear elasticity in energy norm using the hypersphere theorem
of Prager and Synge (1947) (see also Synge, 1957) and appropriate
inequalities to obtain refined global error estimates. It was found,
in particular, that the consistently refined kinematically admissible
tangential components of 3D displacement field are (see Rychter,
1988, Eqs. (26a), (27a,b,c,d))

ûaðhj;nÞ’uaðhjÞþnwaðhjÞþ 4n2

h2 �
1
3

 !
qaðhjÞþ 8n3

h3 �
6
5

n
h

 !
caðhjÞ;

qa¼
h
4

DklEðklÞ;a; ca¼
h3

48
DklKðklÞ;a�

5
24

hEa;

Dkl¼ðLkl33=L3333Þjn¼0¼
m

1�m
akl; ð35Þ

where symbols ûa; xb; t; ta; h; ca;da; �Ckl; cðabÞ; ca3;jðabÞ of Rychter
(1988) have been changed here into the respective symbols
ûa; h

j;2n=h; ua;2h; qa; ca;D
kl; EðabÞ; Ea;KðabÞ used in this report. With-

in the consistent approximation (35) the 2D components uaðhjÞ and
waðhjÞ of the linear theory of shells of Reissner type can be inter-
preted through the kinematically admissible 3D components
ûaðhj; nÞ of linear elasticity by

uaðhjÞ ¼
Z þ

�
ûaðhj; nÞdn; waðhjÞ ¼

Z þ

�
ûaðhj; nÞndn: ð36Þ

The corresponding consistently refined statically admissible
tangential pseudo-stresses of the linear shell theory of Reissner
type take the form (see Rychter, 1988, Eqs. (30a), (36)2)

l �rawlb
w ’

1
h

Nab þ n
12

h3 Mab

þ Habkl 4n2

h2 �
1
3

 !
qðkjlÞ þ

8n3

h3 �
6
5

n
h

 !
cðkjlÞ

" #
;

Habkl ¼ ðLabkl � Lab33L33kl=L3333Þjn¼0

¼ E
2ð1þ mÞ aakabl þ aalabk þ 2m

1� m
aabakl

� �
;

ð37Þ

where �raw are statically admissible components of the 3D symmet-
ric stress tensor of linear elasticity. It is easy to check that the stress
field (37)1 is compatible with definitions Nab and Mab following
from linearization of (15)1 and (16)1 ,

Nab ¼
Z þ

�
�rawlb

wldn; Mab ¼
Z þ

�
�rawlb

wlndn: ð38Þ

The Eq. (35)1 suggests that within the linear shell theory of
Reissner type components eqðnÞ of the intrinsic deviation vector
e introduced in (9) can be consistently approximated by the fol-
lowing quadratic and cubic polynomials:

eqðnÞ ’ kðnÞqq þ gðnÞcq;

kðnÞ ¼ 4n2

h2 �
1
3
; gðnÞ ¼ 8n3

h3 �
6
5

n
h
; ð39Þ
which satisfy the relations (29). In particular, the function kðnÞ is
even while gðnÞ is odd with regards to n,

kð�nÞ ¼ kðnÞ; gð�nÞ ¼ �gðnÞ: ð40Þ

Since orders of qq; cq following from (35)2,3 seem to be very
small, the values of Ma calculated from (16)2 would be very small
as well in the linear six-field shell model. This suggests that consis-
tently refined 3D tangential displacement and stress fields (35)1

and (37)1 , which are appropriate for the Reissner type linear shell
model, should also be adequate for the resultant six-field linear
shell model.

6. The geometrically non-linear theory of shells

The bulk distribution of lSawlb
w given in (28)1 does contain only

intrinsic resultant 2D variables. Thus, when strains are small
everywhere in the shell space, the pseudo-stresses can still be re-
fined by quadratic and cubic terms analogous to those appropriate
for the Reissner type linear shell model in (37)1,

lSawlb
w ’

1
h

Nab þ n
12

h3 Mab þ Habkl kðnÞqðkjlÞ þ gðnÞcðkjlÞ
h i

: ð41Þ

For thin isotropic elastic shells undergoing small strains John
(1965) obtained concrete quantitative error estimates for stresses
and their derivatives in the case of vanishing surface and body
forces. With additional physically motivated estimates proposed
by Koiter (1960, 1966, 1980), we can estimate orders of some fields
appearing in such small-strain shell theory as follows:

Aabkl 

1
E
; Aa3k3 


m
E
; Suw 
 Eg; Su3 
 Egh;

L ¼ min
x2M
ðl; LE; LKÞ; h ¼max

x2M

h
L
;
h
d
;

ffiffiffi
h
R

r
;
ffiffiffi
g
p

 !
; h2 << 1;

aab 
 db
a 
 1; bab 
 bb

a 
 H 
 1
R

 h2

h
; K 
 1

R2 

h4

h2 ;

ð42Þ

where 
 means ‘‘of the order of’’, l is the characteristic length of
geometric patterns of M, LE and LK are the characteristic lengths of
extensional and bending deformation patterns on M, respectively,
d is the distance of internal shell points to the shell boundary @B,
and h is the common small parameter.

Assuming that the stresses Suw entering definitions (15)1 of Nab

and (16)1 of Mab are of the same order, from (28) and (42) we ob-
tain the estimates

Nab 
 Ehg; Mab 
 Eh2g; Qa 
 Ehgh: ð43Þ

We have assumed above (15) that in case of small strains
ðjej=hÞ2 << 1: This means that in terms of h defined in (42)2 we
have assigned orders of the amplitudes in (39) to be
qq 
 cq 
 hh. But now from (35)2,3 and (43) follow much stronger
estimates for these amplitudes qk 
 gh; ck 
 hgh and their surface
derivatives qðkjlÞ 
 gh=L; cðkjlÞ 
 gh2. These estimates together with
Habkl 
 E and kðnÞ 
 gðnÞ 
 h indicate that the quadratic and cubic
terms in (41) are of the relative order of h2 and h2h, respectively, as
compared with two principal terms.

The 2D effective complementary energy density Reff
c of the shell

can now be obtained by direct through-the-thickness integration
of the corresponding 3D density,

Reff
c ¼

Z þ

�
l �Weff

c dn: ð44Þ

Taking into account that 1=l ¼ 1þ nbj
j þ n2ð4H2 � KÞ þ ::: and

introducing (28)2 and (41) into (27), we can express the integrand
of (44) by infinite series of the resultant stress measures, curva-
tures of M, material parameters, as well as polynomials of hn and
nn;n ¼ 0;1;2; :::, such that
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l �Weff
c ¼

1
2
ð1þnbj

jþ :::ÞAabkl

�ðda
j�nba

jÞ
1
h

Njbþn
12

h2 MabþhHabklðkðnÞqðkjlÞ þgðnÞcðkjlÞÞ
	 


�ðdk
d�nbk

dÞ
1
h

Ndlþn
12

h2 MdlþhHdlrsðkðnÞqðrjsÞ þgðnÞcðrjsÞÞ
	 


þ2ð1þnbj
jþ :::ÞAa3k3

1
h
ðda

j�nba
jÞQ

jf ðnÞ1
h
ðdk

d�nbk
dÞQ

df ðnÞ: ð45Þ

With the estimates (42), (43) and those given below (43) we are
able to estimate the order of any term appearing in the infinite ser-
ies (45). To speed-up the analysis, one should note that only even
terms containing nn with n ¼ 0;2;4; ::: in (45) should be integrated
in (44), because integrals of odd terms of (45) containing nn with
n ¼ 1;3;5; ::: vanish identically in (44) for our symmetric bounds
of integration �h=2. Performing integration in (44) with (45) we
should also take into account the following relations:

Z þ

�
f ðnÞdn ¼ h;

Z þ

�
kðnÞdn ¼ 0;

Z þ

�
ngðnÞdn ¼ 0;

Z þ

�
n2f ðnÞdn ¼ h3

20
;

Z þ

�
n2kðnÞdn ¼ h3

45
;

Z þ

�
n3gðnÞdn ¼ 1

350
h;Z þ

�
f 2ðnÞdn ¼ 6

5
h;

Z þ

�
k2ðnÞdn ¼ 4

45
h;

Z þ

�
g2ðnÞdn ¼ 4

175
h;Z þ

�
n4kðnÞdn ¼ 1

210
h5
;

Z þ

�
nkðnÞgðnÞdn ¼ 2

175
h; etc:

ð46Þ

The outcome of such an elementary but involved estimation
and through-the-thickness integration procedures, which we do
not reproduce here for brevity of presentation, gives the following
two principal terms 
 Ehg2 and four secondary terms 
 Ehg2h2:

Reff
c ¼

1
h

Aabkl
1
2

NabNkl þ 12

h2 MabMkl
� �

þ bj
jNabMkl

�

� Nabbk
qMql þMabbk

qNql
� �o

þ 2
1
h

Aa3k3
1
as

QaQ k

þ OðEhg2h3Þ; ð47Þ

where Oð�Þ means ‘‘of the order of’’ and the shear correcting factor
as ¼ 5=6.

One would expect that within the higher accuracy OðEhg2h3Þ of
Reff

c there should also appear some terms containing the quadratic
and cubic distributions of stresses through the thickness. But it is
ease to check that terms of (47) with even functions kðnÞ and
ngðnÞ disappear during the integration process according to formu-
lae (46)2,3 . Thus, higher order terms of the stress distribution (41)
do not appear in the refined form of Reff

c .
Two first terms in the first row of (47) take into account the

principal ingredients of the 2D shell complementary energy
density,

Reff
c ¼

1
h

Aabkl
1
2

NðabÞNðklÞ þ 12

h2 MðabÞMðklÞ
� �

þ OðEhg2h2Þ; ð48Þ

where due to symmetries of Aabkl only symmetric parts of 2D stress
measures NðabÞ and MðabÞ are present. The Eq. (48) leads to the cor-
responding constitutive equations

EðabÞ ¼
@Reff

c

@NðabÞ ¼
1
h

AabklNðklÞ þ Oðgh2Þ;

KðabÞ ¼
@Reff

c

@MðabÞ ¼
12

h3 AabklMðklÞ þ O
g
h

h2
� �

:

ð49Þ

To invert (49) for NðabÞ and MðabÞ one has to find components
Hjqab of a 2D 4th-order surface elasticity tensor which are dual
to the compliances Aabkl in the sense
HjqabAabkl ¼
1
2

dj
k dq

l þ dj
ldq

k

� �
: ð50Þ

For the isotropic linearly elastic material with compliances (26)1 it
is easy to find that Hjqab satisfying (50) are

Habkl ¼ E
2ð1þ mÞ aakabl þ aalabk þ 2m

1� m
aabakl

� �
: ð51Þ

Then we can invert the constitutive equations (49) and obtain

NðabÞ ¼ hHabklEðklÞ þ OðEhgh2Þ;

MðabÞ ¼ h3

12
HabklKðklÞ þ OðEh2gh2Þ:

ð52Þ

Please note that Habkl in (52) do not coincide with elasticities
Labkl calculated on M directly from (22) under the condition
n ¼ 0. The elasticities Habkl correspond to the plane stress state
in the shell space as discussed in Pietraszkiewicz (1979,Section 6.1).
In the present approach the plane stress state is automatically in-
duced by the invertibility requirement (50).

The geometrically non-linear theory of thin isotropic elastic
shells based on (48) can be called the consistent first approximation
to the complementary energy density of the geometrically non-linear
isotropic elastic shells. Within the error OðEhg2h2Þ the density (48)
provides the constitutive equations only for symmetric parts
NðabÞ and MðabÞ of 2D stress resultants and stress couples. The dril-
ling couples Ma can be calculated from (83) with accuracy to the
skew part M½ab� which should satisfy the third scalar moment equi-
librium equation following from (4)2. Then Qa can be established
solving two tangential scalar moment equilibrium equations fol-
lowing from (4)2 .

The virtual work identity based on remaining three force equi-
librium equations requires the translation vector u to be the only
kinematic field variable, while the rotation tensor Q becomes en-
tirely expressible through u. This version of shell theory can be
shown to be energetically equivalent to the one based on the con-
sistent first approximation to the shell strain energy density devel-
oped in many historical papers, convincingly presented for the
classical linear theory of shells by Koiter (1960) and summarized
within the geometrically non-linear theory of thin elastic shells
in Pietraszkiewicz (1989). In FEM numerical analyses such 3-field
shell model (of the Kirchhoff–Love type) requires C1 interelement
continuity and second derivatives of the translations appear as no-
dal variables, so that such finite elements become complex and
numerically inefficient.

The remaining four secondary terms in (47), which are

 Ehg2h2, provide the consistent energetic refinement, compatible
with the estimates (42) and (43), of the first two principal terms of
(47). These secondary terms take into account additional comple-
mentary energies following from the transverse shear stress resul-
tants Qa as well as from coupling between the stress resultants Nab

and stress couples Mab due to the undeformed midsurface curva-
ture. We can call (47) the consistent second approximation to the
complementary energy density of the geometrically nonlinear isotropic
elastic shell.

Within the error OðEhg2h3Þ the shell theory based on (47) can-
not be regarded as equivalent to the one based on the consistent
second approximation to the elastic strain energy density of the
shell proposed by Pietraszkiewicz (1979) and extensively dis-
cussed by Badur (1984). In these works shell kinematics was first
simplified by assuming the linear distribution of displacements
through the shell thickness. The error of such an assumption can-
not be precisely estimated. Then 2D strain measures were defined
on M from expansion of 3D Green strain tensor E ¼ 1

2 ðF
T F� 1Þ in

the thickness direction. The resulting 2D strain measures were re-
garded as the primary fields. In the second approximation to the
shell strain energy density there appeared also second-order 2D

http://mostwiedzy.pl
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strain measures lab and corresponding second-order couple stress
fields Kab work-conjugate to lab, while 2D strains c33 and bendings
j33 at M were eliminated through the additional assumption of
plain stress.

In our present approach leading to (47), only twelve compo-
nents of 2D stress measures Nab;Qa,Mab;Ma acting on the shell
cross section are the primary fields, while twelve 2D strain mea-
sures Eab; Ea;Kab,Ka are constructed uniquely only on M through u
and Q as 2D fields work-conjugate to the corresponding 2D stress
measures. Additionally, by definition (16)2 , Ma are expressible
through Nab;Mab and amplitudes qq; cq of the quadratic and cubic
tangential components of the intrinsic deviation vector e. Thus,
within the second-order accuracy of the shell complementary en-
ergy density the resultant 2D stress and strain measures intro-
duced in this paper are not the same as those introduced in
Pietraszkiewicz (1979), and both sets of surface measures cannot
be identified.

The constitutive equations for 2D strain measures should now
follow from differentiation of (47) with regard to appropriate
resultant 2D stress measures. To perform derivative of the tensor
function FðNabÞ with regard to Nab let us recall the general rules
of differentiation of tensor functions given in Pietraszkiewicz
(1974) according to which

@FðNabÞ
@Nab Bab ¼ d

da
FðNab þ aBabÞ

��
a¼0

for any B 2 TxM 	 TxM; a 2 R:
ð53Þ

For the linear tensor function FðNabÞ ¼ 1
h Aabklba

jNjbMkl appear-
ing as the fifth term of (42) we obtain

FðaÞ ¼ 1
h

Aabklba
jðN

jb þ aBjbÞMkl;

dFðaÞ
da

����
a¼0
¼ 1

h
Aabklba

jBjbMkl ¼ 1
h

bj
aAjbklMkl

� �
Bab;

ð54Þ

so that

@FðNabÞ
@Nab ¼ 1

h
bj

aAjbklMkl; ð55Þ

with similar formula for derivative of the fourth term in (47) with
regard to Mab.

The constitutive equations for Eab;Kab and Ea can now be calcu-
lated by differentiating (47) with (55),

Eab ¼
@Reff

c

@Nab ¼
1
h

Aabkl Nkl � bk
qMql þ bj

jMkl
� �

� 1
h

bj
aAjbklMkl þ Oðgh3Þ; ð56Þ

Kab ¼
@Reff

c

@Mab

¼ 1
h

Aabkl
12

h2 Mkl � bk
qNql þ bj

jNkl
� �

� 1
h

bj
aAjbklNkl

þ O
g
h

h3
� �

; ð57Þ

Ea ¼
@Reff

@Qa ¼
4

ash
Aa3k3Q k þ Oðgh3Þ: ð58Þ

The constitutive equations (58) can easily be solved for Qa with
the help of (20) and (26), which leads to

Qa ¼ ashCa3k3Ek þ OðEhgh3Þ; Ca3k3 ¼ La3k3jn¼0 ¼
E

2ð1þ mÞ a
ak:

ð59Þ
The relations (56) and (57) constitute the set of eight linear
inhomogeneous algebraic equations for eight non-symmetric com-
ponents Nab and Mab. It seems to be difficult to solve them analyt-
ically for an arbitrary system of surface coordinates ha, although
such solution can always be performed numerically for any partic-
ular choice of coordinates ha provided that determinant of 8� 8
matrix of coefficients of (56) and (57) does not vanish.

7. Constitutive equations in lines of principal curvatures

To be more specific, let the surface coordinates ha be arc lengths
of orthogonal lines of principal curvatures of M. Then

a11 ¼ a22 ¼ 1; a12 ¼ 0;
ffiffiffi
a
p
¼ 1; b1

1 ¼ �
1
R1
;

b2
2 ¼ �

1
R2
; b1

2 ¼ b2
1 ¼ 0; A1111 ¼ A2222 ¼

1
E
; A1122 ¼ �

m
E
; ð60Þ

A1212 ¼ A1313 ¼ A2323 ¼
1þ m

2E
; A1112 ¼ A2212 ¼ 0;

where R1 and R2 are principal radii of curvatures of M, and other
values of Aabkl follow from symmetries of the surface elastic compli-
ances. In such coordinate system the covariant and contravariant
components become indistinquishable. Then particular components
of Eab and Kab following from (56), (57), and (60) are

E11 ¼
1

Eh
N11 � mN22 þ

1
R1
� 1

R2

� �
M11

	 

þ Oðgh3Þ; ð61Þ

E12 ¼
1þ m
2Eh

ðN12 þ N21Þ þ
1
R1
� 1

R2

� �
M12

	 

þ Oðgh3Þ; ð62Þ

E21 ¼
1þ m
2Eh

ðN12 þ N21Þ �
1
R1
� 1

R2

� �
M21

	 

þ Oðgh3Þ; ð63Þ

E22 ¼
1

Eh
N22 � mN11 �

1
R1
� 1

R2

� �
M22

	 

þ Oðgh3Þ; ð64Þ

K11 ¼
12

Eh3 ðM11 � mM22Þ þ
1

Eh
1
R1
� 1

R2

� �
N11 þ

g
h

h3
� �

; ð65Þ

K12 ¼
6ð1þ mÞ

Eh3 ðM12 þM21Þ þ
1þ m
2Eh

1
R1
� 1

R2

� �
N12 þ O

g
h

h3
� �

; ð66Þ

K21 ¼
6ð1þ mÞ

Eh3 ðM12 þM21Þ �
1þ m
2Eh

1
R1
� 1

R2

� �
N21 þ O

g
h

h3
� �

; ð67Þ

K22 ¼
12

Eh3 ðM22 � mM11Þ �
1

Eh
1
R1
� 1

R2

� �
N22 þ O

g
h

h3
� �

: ð68Þ

One should note that E12 – E21 in (62) and (63) as well as
K12 – K21 in (66) and (67). Thus, within the consistent second
approximation to Reff

c the 2D strain measures are defined as non-
symmetric surface fields on M.

The constitutive equations (61)–(68) can be written in the
matrix form

D ¼ CS; ð69Þ

where

D ¼ ½E11; E12; E21; E22; K11; K12; K21; K22�T ;
S ¼ ½N11; N12; N21; N22; M11; M12; M21; M22�T ;

ð70Þ
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C ¼

1
Eh 0 0 � m

Eh
1

Eh
1

R1
� 1

R2

� �
0 0 0

0 1þm
2Eh

1þm
2Eh 0 0 1þm

2Eh
1

R1
� 1

R2

� �
0 0

0 1þm
2Eh

1þm
2Eh 0 0 0 � 1þm

2Eh
1

R1
� 1

R2

� �
0

� m
Eh 0 0 1

Eh 0 0 0 � 1
Eh

1
R1
� 1

R2

� �
1

Eh
1

R1
� 1

R2

� �
0 0 0 12

Eh3 0 0 � 12m
Eh3

0 1þm
2Eh

1
R1
� 1

R2

� �
0 0 0 6ð1þmÞ

Eh3
6ð1þmÞ

Eh3 0

0 0 � 1þm
2Eh

1
R1
� 1

R2

� �
0 0 6ð1þmÞ

Eh3
6ð1þmÞ

Eh3 0

0 0 0 � 1
Eh

1
R1
� 1

R2

� �
� 12m

Eh3 0 0 12
Eh3

2
666666666666666666666664

3
777777777777777777777775

: ð71Þ
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The matrix C given above is symmetric with non-zero values of
elements along the main diagonal. This matrix is non-singular if its
determinant does not vanish. In such case there exists an inverse
matrix C�1 such that the reduced constitutive equations (69) can
be inverted to the form

S ¼ C�1D: ð72Þ

To reveal when the matrix C may be singular, let us note that
the eight linear algebraic equations (69) can be written as two sep-
arate sets of four linear algebraic equations,

D1 ¼ AS1; D2 ¼ BS2; ð73Þ

where

D1 ¼ ½E11; E22; K11; K22�T ; S1 ¼ ½N11; N22; M11; M22�T ;
D2 ¼ ½E12; E21; K12; K21�T ; S2 ¼ ½N12; N21; M12; M21�T ;

ð74Þ

A ¼

1
Eh � m

Eh
1

Eh
1

R1
� 1

R2

� �
0

� m
Eh

1
Eh 0 � 1

Eh
1

R1
� 1

R2

� �
1

Eh
1

R1
� 1

R2

� �
0 12

Eh3 � 12m
Eh3

0 � 1
Eh

1
R1
� 1

R2

� �
� 12m

Eh3
12
Eh3

2
66666666664

3
77777777775
;

ð75Þ

B ¼

1þm
2Eh

1þm
2Eh

1þm
2Eh

1
R1
� 1

R2

� �
0

1þm
2Eh

1þm
2Eh 0 � 1þm

2Eh
1

R1
� 1

R2

� �
1þm
2Eh

1
R1
� 1

R2

� �
0 6ð1þmÞ

Eh3
6ð1þmÞ

Eh3

0 � 1þm
2Eh

1
R1
� 1

R2

� �
6ð1þmÞ

Eh3
6ð1þmÞ

Eh3

2
66666666664

3
77777777775
:

ð76Þ

Determinant of A is

det A¼ 1
Eh

� �4 12

h2

� �2

ð1� m2Þ2 � 2
12

h2

� �
ð1� m2Þ 1

R1
� 1

R2

� �2

þ 1
R1
� 1

R2

� �4
" #

:

ð77Þ

Hence, the matrix A is non-singular for any geometry of M. Using
the Cramer rule we can calculate analytically elements of S1 with
the second-order accuracy leading to
N11 ¼ CðE11 þ mE22Þ � D
1
R1
� 1

R2

� �
K11 þ OðEhgh3Þ;

N22 ¼ CðE22 þ mE11Þ þ D
1
R1
� 1

R2

� �
K22 þ OðEhgh3Þ;

M11 ¼ DðK11 þ mK22Þ � D
1
R1
� 1

R2

� �
E11 þ OðEh2gh3Þ;

M22 ¼ DðK22 þ mK11Þ þ D
1
R1
� 1

R2

� �
E22 þ OðEh2gh3Þ;

ð78Þ
C ¼ Eh
1� m2 ; D ¼ Eh3

12ð1� m2Þ : ð79Þ

Determinant of B is

det B ¼ 2Eh
1þ m

� �4 1
R1
� 1

R2

� �4

: ð80Þ

Hence, the matrix B is non-singular provided that R1 – R2. If R1 ¼ R2

the principal terms of the inverted constitutive equations are given
by (52) only for the symmetric components of the resultant 2D
stress and 2D strain measures. In order to refine them by the
consistent secondary terms proportional to h=R1 � h=R2 
 h2 we
require B�1 to be such that B � B�1 ¼ Iþ Oðh3Þ, where I is the identity
4� 4 matrix. Then the refined constitutive equations for mixed
components of the resultant 2D stress measures are

N12 ¼
1
2

Cð1� mÞðE12 þ E21Þ � Dð1� mÞ 1
R1
� 1

R2

� �
K12 þ OðEhgh3Þ;

N21 ¼
1
2

Cð1� mÞðE12 þ E21Þ þ Dð1� mÞ 1
R1
� 1

R2

� �
K21 þ OðEhgh3Þ;

M12 ¼
1
2

Dð1� mÞðK12 þ K21Þ � Dð1� mÞ 1
R1
� 1

R2

� �
E12 þ OðEhgh3Þ;

M21 ¼
1
2

Dð1� mÞðK12 þ K21Þ þ Dð1� mÞ 1
R1
� 1

R2

� �
E21 þ OðEhgh3Þ:

ð81Þ

The constitutive equations for shear stress resultants (59)
become

Q1 ¼
1
2
asCð1� mÞE1; Q2 ¼

1
2
asCð1� mÞE2: ð82Þ

The refined constitutive equations (78) and (81) as well as (82)
are particularly suitable for development of numerical FEM codes
for analyses of complex shell structures, see Chróścielewski et al.
(2004).
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It is worth noting that up to the principal first-order terms our
constitutive equations (78) and (81) agree with those proposed in
main classical linear models of an isotropic elastic shell, see for
example Koiter (1960) and Naghdi (1963). Koiter (1960) proposed
to treat various linear shell models with different additional sec-
ondary terms in the constitutive equations as to be equivalent
within the consistent 1st approximation to the shell elastic strain
energy density. We have derived our constitutive equations (78)
and (81) from the consistent 2nd approximation to the shell elastic
complementary energy (47). This has allowed us to select, among
various possible secondary terms, only those which are consistent
with the higher accuracy of (49).

8. Constitutive equations for drilling couples

The constitutive equations for drilling couples Ma can now be
formulated directly from definition (16)2 in which the stress distri-
bution (41) should be introduces together with estimates (42), (43)
and qq 
 gh. To within the relative error of h2 this leads to the fol-
lowing relation:

Ma ¼ 4
15

Mabebcbc
qqq½1þ Oðh2Þ� ¼ O Eh2g � 1

h
gh3

� �
: ð83Þ

From this estimate it is apparent that the influence of Ma on the
stress distribution through the shell thickness is much (gh3=h
times) smaller than the influence of Mab 
 Eh2g.

Introducing (52)2 with (51) and (35)2 into (83), we can repre-
sent Ma in the more explicit and concise form,

Ma ¼ adDð1� mÞKa; ð84Þ

where

ad ¼
4

15
; Ka ¼ KðabÞ þ m

1� m
aabKðkkÞ

� �
ebcbcq h

4
m

1� m
EðllÞ;q

¼ Oðg2h3=h2Þ: ð85Þ

Since within small strains Ma is expressible through MðabÞ; bc
q

and qa, our drilling bendings Ka in (85)2 are not derivable from
rotations but are defined intrinsically through bendings KðabÞ, cur-
vatures bb

a and surface derivatives of the strain invariant EðaaÞ. As a
result, the order of Ka 
 g2h3=h2 is much smaller (again gh3=h
times) than the order of Kab. Such small quantity of Ma can always
be omitted in numerical analyses of regular shell structures. How-
ever, in case of irregular multi-shells (e.g. with branches, intersec-
tions or junctions with beams), when six couple resultants are
required at any interface, one has to keep these very small values
of Ma in order to preserve the structure of six-field shell theory
at the junctions.

If arc-length orthogonal lines of principal curvatures of M are
taken as the surface coordinates ha, then the relations (84) and
(85) lead to

M1 ¼ adDð1� mÞK1; M2 ¼ adDð1� mÞK2; ð86Þ

K1 ¼ �
h
4

m
ð1� mÞ2

ðK11 þ mK22Þ
1
R2
ðE11 þ E22Þ;2

þ h
4

m
1� m

1
2
ðK12 þ K21Þ

1
R1
ðE11 þ E22Þ;1;

K1 ¼
h
4

m
ð1� mÞ2

ðK22 þ mK11Þ
1
R1
ðE11 þ E22Þ;1

� h
4

m
1� m

1
2
ðK12 þ K21Þ

1
R2
ðE11 þ E22Þ;2:

ð87Þ

The constitutive equations in the form (86) were first proposed
by Chróścielewski et al. (1992) with ad � at ¼ 1 and Ka ¼ ja � t,
where ja were understood as expressed in rotations according to
(7)2 . In our case ad ¼ 4=15 follows from the result h3
=45 of

through-the-thickness integration of n2kðnÞ, which is then multi-
plied by 12=h3 standing in front of the constitutive equation
(52)2 . Within the geometrically non-linear theory of elastic shells
the Ka in (87) are not independent surface bendings, but are
expressible entirely through Kab, 1=Ra, and ðE11 þ E22Þ;a.

9. Conclusions

We have discussed several problems arising in the resultant,
six-field, geometrically non-linear model of isotropic elastic shells.
Our approach has been based on the 3D complementary energy
density of geometrically non-linear elasticity undergoing moderate
rotations. Among new results obtained here let us point out the
following:

1. Explicit definition (16)2 of the drilling couples Ma.
2. The tangential stress distribution (41) through the shell thick-

ness consistently refined by quadratic and cubic terms.
3. The consistent 2nd approximation (47) to the 2D complemen-

tary energy density of the geometrically non-linear isotropic
elastic shells.

4. The refined constitutive equations (56) and (57) for 2D strains
Eab and bendings Kab.

5. The refined constitutive equations (61)–(68) for Eab and Kab

expressed in orthogonal lines of principal curvatures of M,
and their inverted forms (78) and (81) for the physical
components of the stress resultants Nab and stress couples Mab.

6. The explicit constitutive equations (83)–(87) for drilling couples
and their estimates as very small quantities of negligible order
in analyses of regular shells.

These theoretical results should be of interest to specialists of
the non-linear theory of elastic shells and those developing com-
puter FEM software for analyses of complex non-linear problems
of irregular multi-shell structures.

Acknowledgments

The research reported in this paper was supported by the Na-
tional Centre of Science of Poland with the grant DEC – 2012/05/
D/ST8/02298.

References

Altenbach, H., Zhilin, P.A., 1988. General theory of elastic simple shells (in Russian).
Adv. Mech. 11 (4), 107–148.

Antman, S.S., 2005. Nonlinear Problems of Elasticity, second ed. Springer.
Atluri, S.N., 1984. Alternative stress and conjugate strain measures, and mixed

variational formulations involving rigid rotations, for computational analyses of
finitely deformed solids, with applications to plates and shells – I. Theory.
Comput. & Struct. 18, 93–116.

Badur, J., 1984. Non-Linear Analysis of Elastic Shells According to Second
Approximation to the Strain Energy (in Polish). Institute of Fluid-Flow
Machinery PASci, Gdańsk.
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