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Integrable zero-range potentials in a plane.
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Abstract. We examine general statements in the Wronskian representation of Darboux
transformations for plane zero-range potentials. Such expressions naturally contain scattering
problem solution. We also apply Abel theorem to Wronskians for differential equations and link
it to chain equations for Darboux transforms to fix conditions for further development of the
underlying distribution concept. Moutard transformations give a convenient insight into the
problem that allows one to formulate general assertions and give complete description of a point
potential in a limit of long waves.

1. Introduction
Solvable models play a basic role as in classical/quantum mechanics [1] as in electrodynamics
[2, 3] and statistical physics [4]. In this rather poor set of models, a significant place is occupied by
the ones based on Zero-Range Potentials (ZRP), whose history started from the seminal work of
E. Fermi [5]. Their mathematical significance in the context of extension theory was established
in [6], see the review [7] and consideration in arbitrary dimensions [3]. The book [8] covers as
multicenter applications of the theory of ZRPs as its multichannels generalizations. Very recent
paper [9] studies two integrable models: it consider ZRP as perturbations of harmonic oscillator.
Interesting applications in solid state physics can be found in [10].

Integrability concept is directly related to Darboux transformations (DT) theory [11, 12].
The zero range potentials were first considered by means of this theory in [13]. The approach
introduces so-called generalized ZRPs (compared to spherically symmetrical - partial s-wave
ZRP). Its distributional nature was examined and extended to two-dimensional space in [14].
An important development of the theory from a point of view of DT or dressing of a many-
center potential and applications to electron-molecular scattering problems can be found in [15].
Dressing of ZRP also gives useful finite range potentials that could be widely applied (see e.g.
[16]). To explain the idea, let us address the one-dimensional spectral problem at x ∈ (−∞,∞)

−ψxx + uψ = λψ, (1)

which is covariant with respect to DT

ψ1 = (∂ − σ)ψ (2)

if σ is a solution of the Riccati equation

σ′ + σ2 − κ2 = u. (3)
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Substitution σ = (lnφ)′ = φ′/φ links it to the solution of the spectral problem (1) with λ = −κ2.
It defines the dressed potential

u1 = u− 2σ′. (4)

Consider a dressing of the ZRP represented by the distribution −αδ(x), whose presence is
equivalent to boundary condition

lim
ε→0

[ψ(ε)− ψ(−ε)] = −αψ(0). (5)

We should rely upon linear independent generalized solutions of the problem (1) with the ZRP:

ψ1 = sin(kxsgn(x) + η), ψ2 = sin(kx), λ = k2, k cot η = −α, (6)

whose derivatives are also distributions. For α > 0, the chosen potential implies one bound state
with eigenfunction

φ = exp[−αxsgnx].

A dressing with such prop function deletes the bound state and leads to the ZRP

u1 = αδ(x).

The boundary condition (5) also changes. This simple example explains how the algorithm
enlarges the space of integrable potentials. Other combinations of eigenfunctions generate ZRP
with different properties.

Separation of variables on three-dimensional Schrödinger equation with spherical symmetry
gives a radial differential equation for partial waves ψl(r) = 1

rφl(r). Precisely, the function φl(r)
satisfies the equation [

−1

2

d2

dr2
+
l(l + 1)

2r2
+ ul − E

]
φl(r) = 0. (7)

The covariance of this equation with respect to DT

ψl1 =
1√

k2 + κ2l

(
d

dr
− σl

)
φl(r) (8)

combines two solutions of the spectral problem (7) with E = k2 and El = −κ2l , so that

σl = ln′ φl(r, iκl). (9)

The transformation was considered in [13, 15] for the quantum problem of scattering on
integrable potential, by applying N -th order DT and taking spherical Hankel functions with
specific parameters κm as prop functions. The potentials are expressed in terms of Wronskians,
which go to Vandermond determinants at infinity. Zero logarithmic derivative of the Wronskians
corresponds to generalized ZRP’s.

The construction is similar to the one given in this article (see Section 2), where the
Wronskians are computed and the solution of the scattering problem is given in explicit form.
For example, in the case of l=1, the direct application of Rayleigh’s formulas for Bessel functions
yields

φ1,i =

√
π

2κir
H 3

2
(κir) =

i

κ2i r
2
eiκir (iκir − 1) . (10)

The Wronskian determinant in this case, by direct evaluation, is equal to:

W = eir(κ3+κ2+κ1) (κ2 − κ3) (κ1 − κ3) (κ1 − κ2)
κ1κ2 + κ1κ3 + κ2κ3 − irκ1κ2κ3

rκ21κ
2
2κ

2
3

. (11)
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Its derivative lnrrW is zero if κ1κ2 + κ1κ3 + κ2κ3 = 0, and ZRP hence follows.
Section 2 is devoted to novel results: explicit form of the boundary conditions in 2d, analog of

the three-dimensional generalized ZRP, is derived by the iterated DT. One can compare resulting
formulas from [3] with those derived here.

Section 3 contains general formalism, based on separated variables, Abel theorem for
Wronskians and DT chain equations that allow to avoid direct differentiations in some physically
significant cases, including novel ones.

In the last Section, a Moutard transformation (MT) is applied to new alternative construction
of ZRP for the wave, Helmholtz and Schrödinger equations in two dimensions. Iterated MT may
produce locally dense set of such ZRP [14].

2. Two-dimensional ZRP for cylindrical symmetry case
To develop the method described in the introduction and show the dressing origin and
generalizations of the results for abundant two-dimensional problems of, e.g., [17], let us consider
the Schrödinger equation in atomic units for xy plane

−1

2
(
∂2ψ

∂2x
+
∂2ψ

∂2y
) + U(~r)ψ = Eψ. (12)

As in the three-dimensional case [13], by reducing to a one-dimensional problem via separation
of variables, ZRP may be introduced whose explicit form depends on the problem symmetry.
Equation (12) for U = 0 is equivalent to the Helmholtz equation (−4+ k2)ψ(~ρ) = 0, E = 2k2,
which, like its inhomogeneous counterpart (−4 + u(ρ) + k2)ψ(~ρ) = 0 where u = 2U ,
finds application in electrodynamics. For a cylindric symmetry, going to polar coordinates
x = ρ cosφ, y = ρ sinφ, we have

∆ =
d2

dρ2
+

1

ρ

d

dρ
+

1

ρ2
d2

dφ2
. (13)

The separation of variables exp[iνφ]R yields R either as the solution R(ρ) = Yv(kρ), ... of the
Bessel equation

[
d2

d(kρ)2
+

1

kρ

d

d (kρ)
+ 1− ν2

(kρ)2
]R = 0, (14)

if E = k2 > 0, or, when E = κ2 < 0, as the solution of the modified Bessel equation

−[
d2

dρ2
+

1

ρ

d

dρ
− ν2

ρ2
]R = −κ2R, (15)

with the feature of the singular behaviour of R = Kv(κz) at ρ = 0. The special case of E = 0
and analogue separation of variables exp[iνφ]R yields

[
d2

dρ2
+

1

ρ

d

dρ
− ν2

ρ2
]R(ρ) = 0. (16)

It is the Euler equation with the basic solutions R = x±ν .
Let us apply the DT technique to these equations following the scheme of [13, 15]. For the

sake of convenience in the application of Crum formulas (see again e.g. [13]), let us transform
the equations via R = ρ−1/2a (ρ). This gives

−∂
2a (ρ)

∂(kρ)2
+
−1 + ν2

4(kρ)2
a (ρ)− a (ρ) = 0. (17)
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Hence, for a seed solution aν (ρ) = ρ1/2R(kρ) and a prop functions cm (ρ) = ρ1/2R(κmρ), the
N-fold transform of a = ρ1/2R is identified by means of the dressed potential

u[N ](ρ) = u(ρ)− 2
d2

dρ2
lnW (ρ1/2R1 (ρ) , ..., ρ1/2RN (ρ)), (18)

and the dressed solution

Sν (ρ)[N ] =
W (ρ1/2R1 (ρ) , ..., ρ1/2RN (ρ) , ρ1/2Sν (ρ))

ρ1/2W (ρ1/2R1 (ρ) , ..., ρ1/2RN (ρ))
. (19)

Having in mind the scattering problem application as it is explained in the Introduction (see

also [13]), it is convenient to use Hankel functions H
(1,2)
ν (κiρ) = Jv (z)± iYν(z), and express the

general solution of the radial equation as

ψν = C(H(1)
ν (kρ)sν +H(2)

ν (kρ)), (20)

sν being a scattering matrix. The convenient choice for the dressing scheme is

Sν =

√
π

2k
Jv (kρ) , Rm =

√
π

2κm
H(1)
ν (κmρ). (21)

Substitution of asymptotes at infinity (for integer ν),

Jv (z) ∼

[√
2

πz
cos
(
z − νπ

2
− π

4

)]
z=kρ

=

√
2√
πkρ

[
cos

(
kρ− 1

2
πν − 1

4
π

)]
, (22)

Yν(z) =
Jv (z) cos (νπ)− J−v (z)

sin (νπ)
∼
√

2

πkρ
sin
(
kρ− νπ

2
− π

4

)
,

into (19) yields the solution

S[N ](ρ) ∼
C
√
ρ

(
V (κ1, ..., κN , ik)

V (κ1, ..., κN )
exp [ikρ]− V (κ1, ..., κN ,−ik)

V (κ1, ..., κN )
exp [−ikρ]

)
, (23)

which solves the scattering problem on the potentials of the form (18). The dressed zero potential
(18) goes to

u[N ](ρ) = −2
d2

dρ2
ln(V (κ1, ..., κN ) exp[i

∑
κmρ]), (24)

which has also zero value, hence defining ZRP.
Let us consider asymptotes at zero, having in mind Y0(z) ∼ 2

π ln z, and restrict ourselves to

the case ν = n > 0; then Yn(z) ∼ 2n(n−1)!
π z−n and Jn(z) ∼ 1

2nn!z
n.

The boundary condition which defines ZRP is extracted from the asymptotic solutions
monomials behaviour

∂2n (znψn) |z=0 =
1

2nn!
= (znψn) |z=0 = αn

2n (n− 1)!

π
, (25)

where αn is the partial scattering length and κm are roots of the algebraic equation kN = iαn,
that guarantee the relation sn =

∏m=N
m=1

ik−κm
ik+κm

.
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3. General remarks: one-dimensional case.
For a problem with symmetry, after separation of variables one is led to a one-dimensional
description. The integrable potentials are effectively generated in terms of the Wronskian
representation naturally appearing within the DT theory [11, 20]. To evaluate the Wronskians
it is convenient to use Abel theorem [18]:

Theorem 1 Let ψi(x) ∈ Cn, ∂ = ∂/∂x. If

(p0∂
N + p1∂

N−1 + ...)ψi(x) = 0,

the Wronskian derivative is given by

W ′(ψ1, ..., ψN ) =
p1
p0
W. (26)

Consider now the second order Schrödinger operator L = −∂2 + u = (−∂ + σ) (∂ + σ) for
a one-dimensional problem based on Equation (1), no matter what interval is of interest. The
iterated Darboux transform (in a slightly different notation compared to Introduction)

ψi+1 = (∂ − σi)ψi =

(
∂ − ϕ′i

ϕi

)
ψ =

(
ϕi∂ϕ

−1
i

)
ψi, (27)

ψi ∈ Rλ, ϕi ∈ Rµi , combines eigenspaces of L. For potentials one has

ui+1 = ui − 2σ′i, (28)

if the so-called Miura constraint
σ′i + σi

2 + µi = ui (29)

holds. The combining of DT (28) and Miura link (29) yields the chain equation (e.g. in [20])

(σi + σi+1)
′ = σ2i − σ2i+1 + µi − µi+1. (30)

N-fold DT [11, 20] have the property:

(∂ − σN ) · ... · (∂ − σ1)φi = 0,

where φi ∈ Rµi . Expanding the l.h.s. yields(
∂N −

i=N∑
i=1

σi∂
N−1 + ...

)
φi = 0,

The application of the Crum result and the Abel theorem, Eq. (26), gives

u[N ] = u− 2 lnxxW [N ] = u− 2

(
W ′[N ]

W [N ]

)′
= u− 2 (

p1
p0

)′ = u+ 2

i=N∑
i=1

σ′i, (31)

because p0 = 1, p1 = −
i=N∑
i=1

σi. This gives the necessary condition of the extra ZRP

i=N∑
i=1

σi = const, (32)
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and an expression for the Wronskian

W = exp[−
∫ i=N∑

i=1

σidx]. (33)

Further, by insertion of σi = φ′i/φi = (lnφi)
′ into (33), one obtains

W = exp[−
∫ i=N∑

i=1

lnx φidx] = exp[− ln
i=N∏
i=1

φi] =
i=N∏
i=1

φ−1i . (34)

N-fold application of (28) thus leads to

i=N∑
i=1

σi =
1

2

∫
(uN+1 − u1)dx+ C. (35)

This formula results in a constant Wronskian via (33) and may be applied in scattering or
eigenvalue problems if ui = u0 or uN+1 − u1 = 0. For the cases studied in the previous section,

u0 = −1+ν2
4(kρ)2

, ρ ∈ [0,∞) and u0 = l(l+1)
2r2

, r ∈ [0,∞) [13].

There are many interesting applications for an operator

u0 = − d

dx
x
d

dx
+ (

x

4
+
m2

x
), (36)

arising after separation of variables in the three-dimensional Shrödinger operator [19]. We can
supply it with extra zero-range potential. The variable x here is directly linked with parabolic
coordinates, and solutions describe Stark effect and particles with spin via Pauli equation. The
ZRP construction is based on the scheme presented here and solutions of the correspondent
equation with u0, given in the Fock textbook [19].

In the alternative language of ”superpotentials” σi, we base ourselves on Eq. (30). Developing
it in a sequence of equalities

(σi+1 + σi+2)
′ = σ2i+1 − σ2i+2 + µi+1 − µi+2,

... ...
(37)

a relation convenient for evaluation of Wronskian via (33) can be derived:

(σ1 + 2σ2 + ...2σN + σN+1)
′ = σ21 − σ2N+1 + µ1 − µN+1. (38)

As a test, this reproduces (35) if the link (29) is taken into account. Notice that the relevant
case of periodic closure (details in e.g. [20]) σN+1 = σ1, i.e. (lnφN+1)

′ = (lnφ1)
′ and hence

µ1 − µN+1 = 0, is concerned with the constraint

i=N∑
i=1

σ′i = 0, (39)

that again gives ZRP as extra potential. The solutions of the closed chain (30) on x ∈ (−∞,∞)
provide finite-gap potentials and the corresponding eigenfunctions of continuous spectrum [21].
A combination of finite-gap potential with ZRP on the axis x ∈ (−∞,∞), implemented directly
by (5), leads to eigen functions similar to (6). It is obtained by direct application of N-fold DT
in Wronskian form similar to (19). The results generalize [9] for the case of delta-perturbation

Physics and Mathematics of Nonlinear Phenomena 2013 (PMNP2013) IOP Publishing
Journal of Physics: Conference Series 482 (2014) 012025 doi:10.1088/1742-6596/482/1/012025

6

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


of periodic finite-gap potential. The result may also be obtained as a limit with respect to
soliton dressing on finite-gap background [21]. Another option, defined through the relations
σN+1 = σ1 + C and σ21 − σ2N+1 = −2σ1C − C2, furnishes

i=N∑
i=1

σ′i =
µ1 − µN

2
− σ1C −

C2

2
. (40)

Plugging this into (33), one has

W = φC1 exp[−(
µ1 − µN

2
− C2

2
)x], (41)

i.e
−2 lnxxW = µN − µ1 + 2Cσ1 + C2 (42)

that gives simple expression of either iterated potential or Wronskians.
Consider one more example of a chain condition, useful in the context of ZRP theory. Let us

put ui+1 = aiui, then
σ′i = 1

2(ui − ui+1) = 1
2ui(1− ai),

u1 = a0u0,
u2 = a1u1 = a1a0u0,

...

uN+1 = aNuN =
N∏
i=0

aiu0.

(43)

Consider an example with ui = bi/x
2, which means

bi =
i∏

j=0

aj . (44)

On the other hand, σ′i = bi
2x2

(1−ai), so that σi =
∫

bi
2x2

(1−ai)dx = (ai−1)bi
2x +ci. Miura constraint

(29) implies
bi

2x2
(1− ai) + [

(ai − 1)bi
2x

+ ci]
2 + µi = bi/x

2. (45)

Euler equation case (16) (zero energy in quantum mechanics, long wave limit in wave theory) is
recovered for µi = ci = 0, or

bi
2

(1− ai) + [
(ai − 1)2b2i

22
]− bi = 0, (1− ai) + [

(a2i − 2ai + 1)bi
2

]− 2 = 0. (46)

By virtue of (44), then

(a2i − 2ai + 1)

i∏
j=0

aj = 2(1 + ai). (47)

The condition is a recurrent algebraic equation for ai; for instance, if i = 1 we have a cubic
equation for a1

(a21 − 2a1 + 1)a1a0 = 2(1 + a1).
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In general Bessel function case (Zn(z), z = kρ in 2d), a similar transformation changes the
parameters l (3d) or ν (2d case). It is known that the case is concerned with recurrent formulas

Zn+1 =

(
− d

dz
+
n

z

)
Zn, Zn−1 =

(
d

dz
+
n

z

)
Zn, (48)

leading to a set of iterated DTs

Z0 =

i=n∏
i=1

(
d

dz
+
i

z

)
Zn (49)

that link different potentials (u0 in our notation).

4. General algorithm in 2d. Moutard transformation.
The Moutard equation

ψστ + u(σ, τ)ψ = 0 (50)

(which has the obvious connection with the Schrödinger, wave and Helmholtz equations for
complex σ, τ) is covariant with respect to the Moutard transformation. The transformed
coefficient (potential in mathematical physics) is given by

u[1] = u− 2(logϕ)στ = −u+ ϕσϕτ/ϕ
2 . (51)

ZRP chain is generated under condition

(logϕ)στ = 0, (52)

or, equivalently, when logϕ = Φ(σ) + Ψ(τ) with arbitrary Φ and Ψ. So, if ϕ and ψ are different
solutions of (50), the solution ψ[1] of the twin equation with (ψ, u)→ (ψ[1], u[1]) is

ψ[1] = ψ − ϕΩ(ϕ,ψ)/Ω(ϕ,ϕ) (53)

where Ω is the integral of the exact differential form

dΩ = ϕψσdσ + ψϕτdτ. (54)

We specify now results from [20] in the following convenient form:

Theorem 2 The N -times iterated potential built on the zero background is

u = 6(ln ∆)στ , (55)

where ∆ = det[∆ik] and,

∆ik =

∫
dΩ(φk, φi) + Cik , Cik + Cki = φk(0)φi(0) ,

This choice fix the constants of integration Cik. The integrand is determined by

Ω(φk, φi) = −2

∫
[δ1dσ + δ2dτ ] ,

with δ1 = φkφiσ and δ2 = φkτφi.
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Proof directly follows from results published in [20]. Investigation of asymptotes proves multikink
structure of (ln ∆)x for the solutions

φk = Ak exp(akσ + ck) +Bk exp(bkτ), (56)

which means a multisoliton content of u.
If we perform integration from −∞, to σ, τ , for kinks with the choice of constants ai > 0,

bi > 0, ck > 0, we obtain

∆ik = [αikpipk exp(χi + χk) + pi exp(χi) + βik] exp[(bi + bk)τ ] + Cik, (57)

where χi = aiσ − biτ + ci, αik = ai
ai+ak

, βik = bi
bi+bk

, ξk = akσ + φk , Ai/Bi = pi. Due to the
impossibility to expand ∆ik as a superposition of exponents with the opposite powers like for the
multisoliton determinant representation for the KP equation, a special asymptotic calculation
technique was elaborated in [20]. A zero limit of the parameters that corresponds to the width
of solitons results in delta - functions that form a network in ξη plane.

There is a way to define ZRP based on direct map of the equation (1) (equivalent to (50)
for complex variables), taking into account a symmetry and class of eventual singularities [14].
For example, integrating (1) over a disk S inside a circumference L of small radius ε and using
Gauss theorem, one has an identity that may be considered as a definition of δ2(ρ, φ), if the rest
terms exist in some class of ψ.

An important paper of E. Ganzha, on local completeness of iterated Moutard transformations
[22], allows to built coordinate systems by means of the link with Ribokur transformations and
solutions of the corresponding Lame equations. The generalization is straightforward if the
coordinate curve is closed [14]. In a similar way, the consideration in a vicinity of arbitrary
coordinate line may lead to a ZRP in the spirit of the theorem in this paper expressed by means
of Equation (55).

5. Conclusion
Integrability means also that the ZRPs may be considered in the context of evolution by Lax
pair, therefore serving as a basis for point particles motion description. The technical difference
is in the accounting of the σt term in Miura link. Note, that Goursat transformation and its
generalizations open a way to the definition of ZRP for matrix spectral problems, arisen, e.g., in
Pauli equation [14]. Application of the theory conventionally makes use of the Green function
of a correspondent problem [2], and in the 2d case this needs special consideration [17]. The
theory of ZRP perturbation of periodic finite-gap potential may be useful in models of solid
state physics that would account point defects of a crystal.
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